Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review

. 2020 Jun 19 ; 25 (12) : . [epub] 20200619

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32575485

Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde's two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.

Zobrazit více v PubMed

Golias C., Tsoutsi E., Matziridis A., Makridis P., Batistatou A., Charalabopoulos K. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In Vivo. 2007;21:757–769. PubMed

Samanta D., Almo S.C. Nectin family of cell-adhesion molecules: Structural and molecular aspects of function and specificity. Cell Mol. Life Sci. 2015;72:645–658. doi: 10.1007/s00018-014-1763-4. PubMed DOI PMC

Harjunpaa H., Llort Asens M., Guenther C., Fagerholm S.C. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front. Immunol. 2019;10:1078. doi: 10.3389/fimmu.2019.01078. PubMed DOI PMC

Ley K. Adhesion Molecules: Function and Inhibition. Birkhäuser. 2007 doi: 10.1007/s00018-014-1763-4. DOI

Feizi T. Carbohydrate ligands for the leukocyte-endothelium adhesion molecules, selectins. Results Probl. Cell Differ. 2001;33:201–223. doi: 10.1007/978-3-540-46410-5. PubMed DOI

Taylor M.E., Drickamer K. Paradigms for glycan-binding receptors in cell adhesion. Curr. Opin. Cell Biol. 2007;19:572–577. doi: 10.1016/j.ceb.2007.09.004. PubMed DOI

Ley K. Functions of selectins. Results Probl. Cell Differ. 2001;33:177–200. doi: 10.1007/978-3-540-46410-5_10. PubMed DOI

Zarbock A., Ley K., McEver R.P., Hidalgo A. Leukocyte ligands for endothelial selectins: Specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118:6743–6751. doi: 10.1182/blood-2011-07-343566. PubMed DOI PMC

Lasky L.A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem. 1995;64:113–139. doi: 10.1146/annurev.bi.64.070195.000553. PubMed DOI

Silva M., Videira P.A., Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front. Immunol. 2018;8:1878. doi: 10.3389/fimmu.2017.01878. PubMed DOI PMC

Ludwig R.J., Schon M.P., Boehncke W.H. P-selectin: A common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin. Ther. Targets. 2007;11:1103–1117. doi: 10.1517/14728222.11.8.1103. PubMed DOI

Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003;9:263–268. doi: 10.1016/S1471-4914(03)00071-6. PubMed DOI

St Hill C.A. Interactions between endothelial selectins and cancer cells regulate metastasis. Front. Biosci. 2011;16:3233–3251. doi: 10.2741/3909. PubMed DOI

Laubli H., Borsig L. Selectins promote tumor metastasis. Semin. Cancer Biol. 2010;20:169–177. doi: 10.1016/j.semcancer.2010.04.005. PubMed DOI

Kansas G.S. Selectins and their ligands: Current concepts and controversies. Blood. 1996;88:3259–3287. doi: 10.1182/blood.V88.9.3259.bloodjournal8893259. PubMed DOI

McEver R.P. Selectins: Initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 2015;107:331–339. doi: 10.1093/cvr/cvv154. PubMed DOI PMC

Witz I.P. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008;27:19–30. doi: 10.1007/s10555-007-9101-z. PubMed DOI

Borsig L. Selectins in cancer immunity. Glycobiology. 2018;28:648–655. doi: 10.1093/glycob/cwx105. PubMed DOI PMC

Sperandio M., Gleissner C.A., Ley K. Glycosylation in immune cell trafficking. Immunol. Rev. 2009;230:97–113. doi: 10.1111/j.1600-065X.2009.00795.x. PubMed DOI PMC

Bedard P.W., Kaila N. Selectin inhibitors: A patent review. Expert Opin. Ther. Pat. 2010;20:781–793. doi: 10.1517/13543771003767468. PubMed DOI

Natoni A., Macauley M.S., O’Dwyer M.E. Targeting Selectins and Their Ligands in Cancer. Front. Oncol. 2016;6:93. doi: 10.3389/fonc.2016.00093. PubMed DOI PMC

Lowe J.B. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 2002;186:19–36. doi: 10.1034/j.1600-065X.2002.18603.x. PubMed DOI

Lorant D.E., Patel K.D., McIntyre T.M., McEver R.P., Prescott S.M., Zimmerman G.A. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils. J. Cell Biol. 1991;115:223–234. doi: 10.1083/jcb.115.1.223. PubMed DOI PMC

Johnston G.I., Cook R.G., McEver R.P. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell. 1989;56:1033–1044. doi: 10.1016/0092-8674(89)90636-3. PubMed DOI

Johnston G.I., Kurosky A., McEver R.P. Structural and biosynthetic studies of the granule membrane protein, GMP-140, from human platelets and endothelial cells. J. Biol. Chem. 1989;264:1816–1823. PubMed

Bezouska K., Crichlow G.V., Rose J.M., Taylor M.E., Drickamer K. Evolutionary conservation of intron position in a subfamily of genes encoding carbohydrate-recognition domains. J. Biol. Chem. 1991;266:11604–11609. PubMed

Ramachandran V., Yago T., Epperson T.K., Kobzdej M.M., Nollert M.U., Cummings R.D., Zhu C., McEver R.P. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc. Natl. Acad. Sci. USA. 2001;98:10166–10171. doi: 10.1073/pnas.171248098. PubMed DOI PMC

Geng J.G., Bevilacqua M.P., Moore K.L., McIntyre T.M., Prescott S.M., Kim J.M., Bliss G.A., Zimmerman G.A., McEver R.P. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990;343:757–760. doi: 10.1038/343757a0. PubMed DOI

Keelan E.T., Licence S.T., Peters A.M., Binns R.M., Haskard D.O. Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am. J. Physiol. 1994;266:H278–H290. doi: 10.1152/ajpheart.1994.266.1.H279. PubMed DOI

Collins T., Williams A., Johnston G.I., Kim J., Eddy R., Shows T., Gimbrone M.A., Jr., Bevilacqua M.P. Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule 1. J. Biol. Chem. 1991;266:2466–2473. PubMed

Jutila M.A., Watts G., Walcheck B., Kansas G.S. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin. J. Exp. Med. 1992;175:1565–1573. doi: 10.1084/jem.175.6.1565. PubMed DOI PMC

Von Andrian U.H., Hansell P., Chambers J.D., Berger E.M., Torres Filho I., Butcher E.C., Arfors K.E. L-selectin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am. J. Physiol. 1992;263:H1034–H1044. doi: 10.1152/ajpheart.1992.263.4.H1034. PubMed DOI

Zimmerman G.A., Prescott S.M., McIntyre T.M. Endothelial cell interactions with granulocytes: Tethering and signaling molecules. Immunol. Today. 1992;13:93–100. doi: 10.1016/0167-5699(92)90149-2. PubMed DOI

Graves B.J., Crowther R.L., Chandran C., Rumberger J.M., Li S., Huang K.S., Presky D.H., Familletti P.C., Wolitzky B.A., Burns D.K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994;367:532–538. doi: 10.1038/367532a0. PubMed DOI

Preston R.C., Jakob R.P., Binder F.P., Sager C.P., Ernst B., Maier T. E-selectin ligand complexes adopt an extended high-affinity conformation. J. Mol. Cell Biol. 2016;8:62–72. doi: 10.1093/jmcb/mjv046. PubMed DOI PMC

Somers W.S., Tang J., Shaw G.D., Camphausen R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 2000;103:467–479. doi: 10.1016/S0092-8674(00)00138-0. PubMed DOI

Mehta-D’souza P., Klopocki A.G., Oganesyan V., Terzyan S., Mather T., Li Z., Panicker S.R., Zhu C., McEver R.P. Glycan Bound to the Selectin Low Affinity State Engages Glu-88 to Stabilize the High Affinity State under Force. J. Biol. Chem. 2017;292:2510–2518. doi: 10.1074/jbc.M116.767186. PubMed DOI PMC

Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49. doi: 10.1093/glycob/cww086. PubMed DOI PMC

Roseman S. Reflections on glycobiology. J. Biol. Chem. 2001;276:41527–41542. doi: 10.1074/jbc.R100053200. PubMed DOI

Laine R.A. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: The Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–767. doi: 10.1093/glycob/4.6.759. PubMed DOI

Varki A. Selectin ligands: Will the real ones please stand up? J. Clin. Investig. 1997;99:158–162. doi: 10.1172/JCI119142. PubMed DOI PMC

Poppe L., Brown G.S., Philo J.S., Nokrad P.V., Shah B.H. Conformation os sLex Tetrasaccharide, Free in Solution and Bound to E-, P-, and L-Selectin. J. Am. Chem. Soc. 1997;119:1727–1736. doi: 10.1021/ja9610702. DOI

Bizik F., Tvaroska I. On the Flexibility of the Lewis x, Lewis a, Sialyl Lewis x, and Sialyl Lewis a Oligosaccharides. Conformational Analysis in Solution by Molecular Modelling. Chem. Pap. 1996;50:84–96.

Haselhorst T., Weimar T., Peters T. Molecular recognition of sialyl Lewis(x) and related saccharides by two lectins. J. Am. Chem. Soc. 2001;123:10705–10714. doi: 10.1021/ja011156h. PubMed DOI

Binder F.P., Lemme K., Preston R.C., Ernst B. Sialyl Lewis(x): A “pre-organized water oligomer”? Angew. Chem. Int. Ed. Engl. 2012;51:7327–7331. doi: 10.1002/anie.201202555. PubMed DOI

Bowman K.G., Cook B.N., de Graffenried C.L., Bertozzi C.R. Biosynthesis of L-selectin ligands: Sulfation of sialyl Lewis x-related oligosaccharides by a family of GlcNAc-6-sulfotransferases. Biochemistry. 2001;40:5382–5391. doi: 10.1021/bi001750o. PubMed DOI

Bowman K.G., Hemmerich S., Bhakta S., Singer M.S., Bistrup A., Rosen S.D., Bertozzi C.R. Identification of an N-acetylglucosamine-6-0-sulfotransferase activity specific to lymphoid tissue: An enzyme with a possible role in lymphocyte homing. Chem. Biol. 1998;5:447–460. doi: 10.1016/S1074-5521(98)90161-2. PubMed DOI

Brandley B.K., Kiso M., Abbas S., Nikrad P., Srivasatava O., Foxall C., Oda Y., Hasegawa A. Structure-function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement. Glycobiology. 1993;3:633–641. doi: 10.1093/glycob/3.6.633. PubMed DOI

Jacob G.S., Kirmaier C., Abbas S.Z., Howard S.C., Steininger C.N., Welply J.K., Scudder P. Binding of sialyl Lewis x to E-selectin as measured by fluorescence polarization. Biochemistry. 1995;34:1210–1217. doi: 10.1021/bi00004a014. PubMed DOI

Barra P.A., Jimenez V.A., Gavin J.A., Daranas A.H., Alderete J.B. Discovery of New E-Selectin Inhibitors by Virtual Screening, Fluorescence Binding Assays, and STD NMR Experiments. ChemMedChem. 2016;11:1008–1014. doi: 10.1002/cmdc.201600058. PubMed DOI

Barra P.A., Ribeiro A.J., Ramos M.J., Jimenez V.A., Alderete J.B., Fernandes P.A. Binding free energy calculations on E-selectin complexes with sLe(x) oligosaccharide analogs. Chem. Biol. Drug Des. 2017;89:114–123. doi: 10.1111/cbdd.12837. PubMed DOI

Wild M.K., Huang M.C., Schulze-Horsel U., van der Merwe P.A., Vestweber D. Affinity, kinetics, and thermodynamics of E-selectin binding to E-selectin ligand-1. J. Biol. Chem. 2001;276:31602–31612. doi: 10.1074/jbc.M104844200. PubMed DOI

Tsukida T., Hiramatsu Y., Tsujishita H., Kiyoi T., Yoshida M., Kurokawa K., Moriyama H., Ohmoto H., Wada Y., Saito T., et al. Studies on selection blockers. 5. Design, synthesis, and biological profile of sialyl Lewis x mimetics based on modified serine-glutamic acid dipeptides. J. Med. Chem. 1997;40:3534–3541. doi: 10.1021/jm970262k. PubMed DOI

Yoshino K., Ohmoto H., Kondo N., Tsujishita H., Hiramatsu Y., Inoue Y., Kondo H. Studies on selectin blockers. 4. Structure-function relationships of sulfated sialyl Lewis X hexasaccharide ceramides toward E-, P-, and L-selectin binding. J. Med. Chem. 1997;40:455–462. doi: 10.1021/jm9605290. PubMed DOI

Croce K., Freedman S.J., Furie B.C., Furie B. Interaction between soluble P-selectin and soluble P-selectin glycoprotein ligand 1: Equilibrium binding analysis. Biochemistry. 1998;37:16472–16480. doi: 10.1021/bi981341g. PubMed DOI

Imai Y., Lasky L.A., Rosen S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature. 1993;361:555–557. doi: 10.1038/361555a0. PubMed DOI

Tsujishita H., Hiramatsu Y., Kondo N., Ohmoto H., Kondo H., Kiso M., Hasegawa A. Selectin-ligand interactions revealed by molecular dynamics simulation in solution. J. Med. Chem. 1997;40:362–369. doi: 10.1021/jm9606103. PubMed DOI

Montreuil J., Vliegenthart J.F., Schachter H. New Comprehensive Biochemistry of Glycoproteins. Volume 29. Elsevier; Amsterdam, The Netherlands: 1995. p. 644.

Tvaroska I. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods. Carbohydr. Res. 2015;403:38–47. doi: 10.1016/j.carres.2014.06.017. PubMed DOI

Perez S., Tvaroska I. Carbohydrate-protein interactions: Molecular modeling insights. Adv. Carbohydr. Chem. Biochem. 2014;71:9–136. doi: 10.1016/B978-0-12-800128-8.00001-7. PubMed DOI

Lairson L.L., Henrissat B., Davies G.J., Withers S.G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. PubMed DOI

Fasting C., Schalley C.A., Weber M., Seitz O., Hecht S., Koksch B., Dernedde J., Graf C., Knapp E.W., Haag R. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. Engl. 2012;51:10472–10498. doi: 10.1002/anie.201201114. PubMed DOI

Reynolds M., Pe’rez S. Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Compt. Rend. Chim. 2011;14:74–95. doi: 10.1016/j.crci.2010.05.020. DOI

Cecioni S., Imberty A., Vidal S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI

Ohtsubo K., Marth J.D. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–867. doi: 10.1016/j.cell.2006.08.019. PubMed DOI

Mehta P., Cummings R.D., McEver R.P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J. Biol. Chem. 1998;273:32506–32513. doi: 10.1074/jbc.273.49.32506. PubMed DOI

Leppanen A., Mehta P., Ouyang Y.B., Ju T., Helin J., Moore K.L., van Die I., Canfield W.M., McEver R.P., Cummings R.D. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J. Biol. Chem. 1999;274:24838–24848. doi: 10.1074/jbc.274.35.24838. PubMed DOI

Leppanen A., White S.P., Helin J., McEver R.P., Cummings R.D. Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J. Biol. Chem. 2000;275:39569–39578. doi: 10.1074/jbc.M005005200. PubMed DOI

Leppanen A., Yago T., Otto V.I., McEver R.P., Cummings R.D. Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 2003;278:26391–26400. doi: 10.1074/jbc.M303551200. PubMed DOI

Cummings R.D. Structure and function of the selectin ligand PSGL-1. Braz. J. Med. Biol. Res. 1999;32:519–528. doi: 10.1590/S0100-879X1999000500004. PubMed DOI

Carlow D.A., Gold M.R., Ziltener H.J. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J. Immunol. 2009;183:1155–1165. doi: 10.4049/jimmunol.0900409. PubMed DOI

Tinoco R., Otero D.C., Takahashi A.A., Bradley L.M. PSGL-1: A New Player in the Immune Checkpoint Landscape. Trends Immunol. 2017;38:323–335. doi: 10.1016/j.it.2017.02.002. PubMed DOI PMC

Snapp K.R., Craig R., Herron M., Nelson R.D., Stoolman L.M., Kansas G.S. Dimerization of P-selectin glycoprotein ligand-1 (PSGL-1) required for optimal recognition of P-selectin. J. Cell Biol. 1998;142:263–270. doi: 10.1083/jcb.142.1.263. PubMed DOI PMC

Epperson T.K., Patel K.D., McEver R.P., Cummings R.D. Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J. Biol. Chem. 2000;275:7839–7853. doi: 10.1074/jbc.275.11.7839. PubMed DOI

Moore K.L., Eaton S.F., Lyons D.E., Lichenstein H.S., Cummings R.D., McEver R.P. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 1994;269:23318–23327. PubMed

Baisse B., Galisson F., Giraud S., Schapira M., Spertini O. Evolutionary conservation of P-selectin glycoprotein ligand-1 primary structure and function. BMC Evol. Biol. 2007;7:166. doi: 10.1186/1471-2148-7-166. PubMed DOI PMC

Kanamori A., Kojima N., Uchimura K., Muramatsu T., Tamatani T., Berndt M.C., Kansas G.S., Kannagi R. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation totyrosine sulfation, whereas p-selectin does not. J. Biol. Chem. 2002;277:32578–32586. doi: 10.1074/jbc.M204400200. PubMed DOI

Woelke A.L., Kuehne C., Meyer T., Galstyan G., Dernedde J., Knapp E.W. Understanding selectin counter-receptor binding from electrostatic energy computations and experimental binding studies. J. Phys. Chem. B. 2013;117:16443–16454. doi: 10.1021/jp4099123. PubMed DOI

Aigner S., Ruppert M., Hubbe M., Sammar M., Sthoeger Z., Butcher E.C., Vestweber D., Altevogt P. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int. Immunol. 1995;7:1557–1565. doi: 10.1093/intimm/7.10.1557. PubMed DOI

Aigner S., Ramos C.L., Hafezi-Moghadam A., Lawrence M.B., Friederichs J., Altevogt P., Ley K. CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J. 1998;12:1241–1251. doi: 10.1096/fasebj.12.12.1241. PubMed DOI

Nelson R.M., Cecconi O., Roberts W.G., Aruffo A., Linhardt R.J., Bevilacqua M.P. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood. 1993;82:3253–3258. doi: 10.1182/blood.V82.11.3253.3253. PubMed DOI

Sackstein R. Glycoengineering of HCELL, the human bone marrow homing receptor: Sweetly programming cell migration. Ann. Biomed. Eng. 2012;40:766–776. doi: 10.1007/s10439-011-0461-8. PubMed DOI PMC

Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 1995;83:333–343. doi: 10.1016/0092-8674(95)90174-4. PubMed DOI

Sako D., Comess K.M., Barone K.M., Camphausen R.T., Cumming D.A., Shaw G.D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995;83:323–331. doi: 10.1016/0092-8674(95)90173-6. PubMed DOI

Asa D., Raycroft L., Ma L., Aeed P.A., Kaytes P.S., Elhammer A.P., Geng J.G. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J. Biol. Chem. 1995;270:11662–11670. doi: 10.1074/jbc.270.19.11662. PubMed DOI

Lenter M., Levinovitz A., Isenmann S., Vestweber D. Monospecific and common glycoprotein ligands for E- and P-selectin on myeloid cells. J. Cell Biol. 1994;125:471–481. doi: 10.1083/jcb.125.2.471. PubMed DOI PMC

Bruehl R.E., Springer T.A., Bainton D.F. Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J. Histochem. Cytochem. 1996;44:835–844. doi: 10.1177/44.8.8756756. PubMed DOI

Gonatas J.O., Mourelatos Z., Stieber A., Lane W.S., Brosius J., Gonatas N.K. MG-160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, binds basic fibroblast growth factor and exhibits a high level of sequence identity to a chicken fibroblast growth factor receptor. J. Cell Sci. 1995;108:457–467. PubMed

Steegmaier M., Levinovitz A., Isenmann S., Borges E., Lenter M., Kocher H.P., Kleuser B., Vestweber D. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature. 1995;373:615–620. doi: 10.1038/373615a0. PubMed DOI

Steegmaier M., Borges E., Berger J., Schwarz H., Vestweber D. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J. Cell Sci. 1997;110:687–694. PubMed

Levinovitz A., Muhlhoff J., Isenmann S., Vestweber D. Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells. J. Cell Biol. 1993;121:449–459. doi: 10.1083/jcb.121.2.449. PubMed DOI PMC

92 Huang M.C., Zollner O., Moll T., Maly P., Thall A.D., Lowe J.B., Vestweber D. P-selectin glycoprotein ligand-1 and E-selectin ligand-1 are differentially modified by fucosyltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils. J. Biol. Chem. 2000;275:31353–31360. doi: 10.1074/jbc.M005449200. PubMed DOI

Hidalgo A., Peired A.J., Wild M., Vestweber D., Frenette P.S. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity. 2007;26:477–489. doi: 10.1016/j.immuni.2007.03.011. PubMed DOI PMC

Jacob G.S., Welply J.K., Scudder P.R., Kirmaier C., Abbas S.Z., Howard S.C., Keene J.L., Schmuke J.J., Broschat K., Steininger C. Studies on selectin-carbohydrate interactions. Adv. Exp. Med. Biol. 1995;376:283–290. doi: 10.1007/978-1-4615-1885-3_31. PubMed DOI

Naor D., Sionov R.V., Ish-Shalom D. CD44: Structure, function, and association with the malignant process. Adv. Cancer Res. 1997;71:241–319. doi: 10.1016/S0065-230X(08)60101-3. PubMed DOI

Ouhtit A., Rizeq B., Saleh H.A., Rahman M., Zayed H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int. J. Biol. Sci. 2018;14:1782–1790. doi: 10.7150/ijbs.23586. PubMed DOI PMC

Dimitroff C.J., Lee J.Y., Fuhlbrigge R.C., Sackstein R. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proc. Natl. Acad. Sci. USA. 2000;97:13841–13846. doi: 10.1073/pnas.250484797. PubMed DOI PMC

Dimitroff C.J., Lee J.Y., Schor K.S., Sandmaier B.M., Sackstein R. differential L-selectin binding activities of human hematopoietic cell L-selectin ligands, HCELL and PSGL-1. J. Biol. Chem. 2001;276:47623–47631. doi: 10.1074/jbc.M105997200. PubMed DOI

Sackstein R. The biology of CD44 and HCELL in hematopoiesis: The ‘step 2-bypass pathway’ and other emerging perspectives. Curr. Opin. Hematol. 2011;18:239–248. doi: 10.1097/MOH.0b013e3283476140. PubMed DOI PMC

Sackstein R. The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J. Investig. Dermatol. Sympos. Proc. 2004;9:215–223. doi: 10.1016/S0022-202X(15)53011-X. PubMed DOI

Dimitroff C.J., Lee J.Y., Rafii S., Fuhlbrigge R.C., Sackstein R. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J. Cell Biol. 2001;153:1277–1286. doi: 10.1083/jcb.153.6.1277. PubMed DOI PMC

Sackstein R., Dimitroff C.J. A hematopoietic cell L-selectin ligand that is distinct from PSGL-1 and displays N-glycan-dependent binding activity. Blood. 2000;96:2765–2774. doi: 10.1182/blood.V96.8.2765. PubMed DOI

Hanley W.D., Burdick M.M., Konstantopoulos K., Sackstein R. CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 2005;65:5812–5817. doi: 10.1158/0008-5472.CAN-04-4557. PubMed DOI

Silva M., Fung R.K.F., Donnelly C.B., Videira P.A., Sackstein R. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology. J. Immunol. 2017;198:3576–3587. doi: 10.4049/jimmunol.1601636. PubMed DOI PMC

Sackstein R., Merzaban J.S., Cain D.W., Dagia N.M., Spencer J.A., Lin C.P., Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 2008;14:181–187. doi: 10.1038/nm1703. PubMed DOI

Sackstein R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: Engineering a roadmap for cell migration. Immunol. Rev. 2009;230:51–74. doi: 10.1111/j.1600-065X.2009.00792.x. PubMed DOI PMC

McEver R.P., Moore K.L., Cummings R.D. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem. 1995;270:11025–11028. doi: 10.1074/jbc.270.19.11025. PubMed DOI

Laszik Z., Jansen P.J., Cummings R.D., Tedder T.F., McEver R.P., Moore K.L. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood. 1996;88:3010–3021. doi: 10.1182/blood.V88.8.3010.bloodjournal8883010. PubMed DOI

Merzaban J.S., Burdick M.M., Gadhoum S.Z., Dagia N.M., Chu J.T., Fuhlbrigge R.C., Sackstein R. Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood. 2011;118:1774–1783. doi: 10.1182/blood-2010-11-320705. PubMed DOI PMC

Rosen S.D. Ligands for L-selectin: Homing, inflammation, and beyond. Ann. Rev. Iimmunol. 2004;22:129–156. doi: 10.1146/annurev.immunol.21.090501.080131. PubMed DOI

Rosen S.D. Endothelial ligands for L-selectin: From lymphocyte recirculation to allograft rejection. Am. J. Pathol. 1999;155:1013–1020. doi: 10.1016/S0002-9440(10)65201-7. PubMed DOI PMC

Rosen S.D., Tsay D., Singer M.S., Hemmerich S., Abraham W.M. Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am. J. Pathol. 2005;166:935–944. doi: 10.1016/S0002-9440(10)62313-9. PubMed DOI PMC

Hemmerich S., Rosen S.D. Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology. 2000;10:849–856. doi: 10.1093/glycob/10.9.849. PubMed DOI

Nicholson M.W., Barclay A.N., Singer M.S., Rosen S.D., van der Merwe P.A. Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J. Biol. Chem. 1998;273:763–770. doi: 10.1074/jbc.273.2.763. PubMed DOI

Chen C.C., Rosenbloom C.L., Anderson D.C., Manning A.M. Selective inhibition of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression by inhibitors of I kappa B-alpha phosphorylation. J. Immunol. 1995;155:3538–3545. PubMed

Satomaa T., Renkonen O., Helin J., Kirveskari J., Makitie A., Renkonen R. O-glycans on human high endothelial CD34 putatively participating in L-selectin recognition. Blood. 2002;99:2609–2611. doi: 10.1182/blood.V99.7.2609. PubMed DOI

Hernandez Mir G., Helin J., Skarp K.P., Cummings R.D., Makitie A., Renkonen R., Leppanen A. Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood. 2009;114:733–741. PubMed PMC

Nielsen J.S., McNagny K.M. Novel functions of the CD34 family. J. Cell Sci. 2008;121:3683–3692. doi: 10.1242/jcs.037507. PubMed DOI

Hoke D., Mebius R.E., Dybdal N., Dowbenko D., Gribling P., Kyle C., Baumhueter S., Watson S.R. Selective modulation of the expression of L-selectin ligands by an immune response. Curr. Biol. 1995;5:670–678. doi: 10.1016/S0960-9822(95)00132-1. PubMed DOI

Berg E.L., McEvoy L.M., Berlin C., Bargatze R.F., Butcher E.C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature. 1993;366:695–698. doi: 10.1038/366695a0. PubMed DOI

Patel K.D., Cuvelier S.L., Wiehler S. Selectins: Critical mediators of leukocyte recruitment. Semin. Immunol. 2002;14:73–81. doi: 10.1006/smim.2001.0344. PubMed DOI

Berlin C., Bargatze R.F., Campbell J.J., von Andrian U.H., Szabo M.C., Hasslen S.R., Nelson R.D., Berg E.L., Erlandsen S.L., Butcher E.C. alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995;80:413–422. doi: 10.1016/0092-8674(95)90491-3. PubMed DOI

Kleene R., Berger E.G. The molecular and cell biology of glycosyltransferases. Biochim. Biophys. Acta. 1993;1154:283–325. doi: 10.1016/0304-4157(93)90003-7. PubMed DOI

Beyer T.A., Sadler J.E., Rearick J.I., Paulson J.C., Hill R.L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol. Relat. Areas Mol. Biol. 1981;52:23–175. PubMed

Campbell J.A., Davies G.J., Bulone V., Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 1997;32:929–939. doi: 10.1042/bj3260929u. PubMed DOI PMC

Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucl. Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC

Tenno M., Ohtsubo K., Hagen F.K., Ditto D., Zarbock A., Schaerli P., von Andrian U.H., Ley K., Le D., Tabak L.A., et al. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol. Cell Biol. 2007;27:8783–8796. doi: 10.1128/MCB.01204-07. PubMed DOI PMC

Ten Hagen K.G., Fritz T.A., Tabak L.A. All in the family: The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 2003;13:1R–6R. doi: 10.1093/glycob/cwg007. PubMed DOI

Fritz T.A., Raman J., Tabak L.A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J. Biol. Chem. 2006;281:8613–8619. doi: 10.1074/jbc.M513590200. PubMed DOI

Kubota T., Shiba T., Sugioka S., Furukawa S., Sawaki H., Kato R., Wakatsuki S., Narimatsu H. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: Polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10) J. Mol. Biol. 2006;359:708–727. doi: 10.1016/j.jmb.2006.03.061. PubMed DOI

Tenno M., Kezdy F.J., Elhammer A.P., Kurosaka A. Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase 1. Biochem. Biophys. Res. Commun. 2002;298:755–759. doi: 10.1016/S0006-291X(02)02549-4. PubMed DOI

Trnka T., Kozmon S., Tvaroska I., Koca J. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2. PLoS Comput. Biol. 2015;11:e1004061. doi: 10.1371/journal.pcbi.1004061. PubMed DOI PMC

Janos P., Trnka T., Kozmon S., Tvaroska I., Koca J. Different QM/MM Approaches To Elucidate Enzymatic Reactions: Case Study on ppGalNAcT2. J. Chem. Theory Comput. 2016;12:6062–6076. doi: 10.1021/acs.jctc.6b00531. PubMed DOI

Pak J.E., Arnoux P., Zhou S., Sivarajah P., Satkunarajah M., Xing X., Rini J.M. X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 2006;281:26693–26701. doi: 10.1074/jbc.M603534200. PubMed DOI

Tvaroska I., Kozmon S., Wimmerova M., Koca J. A QM/MM investigation of the catalytic mechanism of metal-ion-independent core 2 beta1,6-N-acetylglucosaminyltransferase. Chem. Eur. J. 2013;19:8153–8162. doi: 10.1002/chem.201300383. PubMed DOI

Angata K., Lee W., Mitoma J., Marth J.D., Fukuda M. Cellular and molecular analysis of neural development of glycosyltransferase gene knockout mice. Methods Enzymol. 2006;417:25–37. doi: 10.1016/S0076-6879(06)17003-2. PubMed DOI

Ellies L.G., Tsuboi S., Petryniak B., Lowe J.B., Fukuda M., Marth J.D. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity. 1998;9:881–890. doi: 10.1016/S1074-7613(00)80653-6. PubMed DOI

Snapp K.R., Heitzig C.E., Ellies L.G., Marth J.D., Kansas G.S. Differential requirements for the O-linked branching enzyme core 2 beta1-6-N-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. Blood. 2001;97:3806–3811. doi: 10.1182/blood.V97.12.3806. PubMed DOI

Sperandio M., Thatte A., Foy D., Ellies L.G., Marth J.D., Ley K. Severe impairment of leukocyte rolling in venules of core 2 glucosaminyltransferase-deficient mice. Blood. 2001;97:3812–3819. doi: 10.1182/blood.V97.12.3812. PubMed DOI

Lo C.Y., Antonopoulos A., Gupta R., Qu J., Dell A., Haslam S.M., Neelamegham S. Competition between core-2 GlcNAc-transferase and ST6GalNAc-transferase regulates the synthesis of the leukocyte selectin ligand on human P-selectin glycoprotein ligand-1. J. Biol. Chem. 2013;288:13974–13987. doi: 10.1074/jbc.M113.463653. PubMed DOI PMC

Ramakrishnan B., Qasba P.K. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta-1,4-galactosyltransferase-I. J. Mol. Biol. 2001;310:205–218. doi: 10.1006/jmbi.2001.4757. PubMed DOI

Ramakrishnan B., Balaji P.V., Qasba P.K. Crystal structure of beta-1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 2002;318:491–502. doi: 10.1016/S0022-2836(02)00020-7. PubMed DOI

Krupicka M., Tvaroska I. Hybrid quantum mechanical/molecular mechanical investigation of the beta-1,4-galactosyltransferase-I mechanism. J. Phys. Chem. B. 2009;113:11314–11319. doi: 10.1021/jp904716t. PubMed DOI

Asano M., Nakae S., Kotani N., Shirafuji N., Nambu A., Hashimoto N., Kawashima H., Hirose M., Miyasaka M., Takasaki S., et al. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood. 2003;102:1678–1685. doi: 10.1182/blood-2003-03-0836. PubMed DOI

Asano M., Furukawa K., Kido M., Matsumoto S., Umesaki Y., Kochibe N., Iwakura Y. Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 1997;16:1850–1857. doi: 10.1093/emboj/16.8.1850. PubMed DOI PMC

Oriol R., Mollicone R., Cailleau A., Balanzino L., Breton C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology. 1999;9:323–334. doi: 10.1093/glycob/9.4.323. PubMed DOI

de Vries T., Knegtel R.M., Holmes E.H., Macher B.A. Fucosyltransferases: Structure/function studies. Glycobiology. 2001;11:119R–128R. doi: 10.1093/glycob/11.10.119R. PubMed DOI

Ma B., Simala-Grant J.L., Taylor D.E. Fucosylation in prokaryotes and eukaryotes. Glycobiology. 2006;16:158R–184R. doi: 10.1093/glycob/cwl040. PubMed DOI

Huang X., Wei C., Li F., Jia L., Zeng P., Li J., Tan J., Sun T., Jiang S., Wang J., et al. PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions. Protein Cell. 2019;10:709–725. doi: 10.1007/s13238-019-0629-9. PubMed DOI PMC

Sun H.Y., Lin S.W., Ko T.P., Pan J.F., Liu C.L., Lin C.N., Wang A.H., Lin C.H. Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J. Biol. Chem. 2007;282:9973–9982. doi: 10.1074/jbc.M610285200. PubMed DOI

Murray B.W., Wittmann V., Burkart M.D., Hung S.C., Wong C.H. Mechanism of human alpha-1,3-fucosyltransferase V: Glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry. 1997;36:823–831. doi: 10.1021/bi962284z. PubMed DOI

Maly P., Thall A., Petryniak B., Rogers C.E., Smith P.L., Marks R.M., Kelly R.J., Gersten K.M., Cheng G., Saunders T.L., et al. The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996;86:643–653. doi: 10.1016/S0092-8674(00)80137-3. PubMed DOI

Weninger W., Ulfman L.H., Cheng G., Souchkova N., Quackenbush E.J., Lowe J.B., von Andrian U.H. Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity. 2000;12:665–676. doi: 10.1016/S1074-7613(00)80217-4. PubMed DOI

Harduin-Lepers A., Vallejo-Ruiz V., Krzewinski-Recchi M.A., Samyn-Petit B., Julien S., Delannoy P. The human sialyltransferase family. Biochimie. 2001;83:727–737. doi: 10.1016/S0300-9084(01)01301-3. PubMed DOI

Li F., Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell. 2019;10:550–565. doi: 10.1007/s13238-018-0597-5. PubMed DOI PMC

Audry M., Jeanneau C., Imberty A., Harduin-Lepers A., Delannoy P., Breton C. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology. 2011;21:716–726. doi: 10.1093/glycob/cwq189. PubMed DOI

Rao F.V., Rich J.R., Rakic B., Buddai S., Schwartz M.F., Johnson K., Bowe C., Wakarchuk W.W., Defrees S., Withers S.G., et al. Structural insight into mammalian sialyltransferases. Nat. Struct. Mol. Biol. 2009;16:1186–1188. doi: 10.1038/nsmb.1685. PubMed DOI

Meng L., Forouhar F., Thieker D., Gao Z., Ramiah A., Moniz H., Xiang Y., Seetharaman J., Milaninia S., Su M., et al. Enzymatic basis for N-glycan sialylation: Structure of rat alpha2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. J. Biol. Chem. 2013;288:34680–34698. doi: 10.1074/jbc.M113.519041. PubMed DOI PMC

Kuhn B., Benz J., Greif M., Engel A.M., Sobek H., Rudolph M.G. The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans. Acta Crystallogr. D Biol. Crystallogr. 2013;69:1826–1838. doi: 10.1107/S0907444913015412. PubMed DOI

Ellies L.G., Sperandio M., Underhill G.H., Yousif J., Smith M., Priatel J.J., Kansas G.S., Ley K., Marth J.D. Sialyltransferase specificity in selectin ligand formation. Blood. 2002;100:3618–3625. doi: 10.1182/blood-2002-04-1007. PubMed DOI

Priatel J.J., Chui D., Hiraoka N., Simmons C.J., Richardson K.B., Page D.M., Fukuda M., Varki N.M., Marth J.D. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity. 2000;12:273–283. doi: 10.1016/S1074-7613(00)80180-6. PubMed DOI

Chapman E., Best M.D., Hanson S.R., Wong C.H. Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. Engl. 2004;43:3526–3548. doi: 10.1002/anie.200300631. PubMed DOI

Bowman K.G., Bertozzi C.R. Carbohydrate sulfotransferases: Mediators of extracellular communication. Chem. Biol. 1999;6:R9–R22. doi: 10.1016/S1074-5521(99)80014-3. PubMed DOI

Brockhausen I. Sulphotransferases acting on mucin-type oligosaccharides. Biochem. Soc. Trans. 2003;31:318–325. doi: 10.1042/bst0310318. PubMed DOI

Rath V.L., Verdugo D., Hemmerich S. Sulfotransferase structural biology and inhibitor discovery. Drug Discov. Today. 2004;9:1003–1011. doi: 10.1016/S1359-6446(04)03273-8. PubMed DOI

Negishi M., Pedersen L.G., Petrotchenko E., Shevtsov S., Gorokhov A., Kakuta Y., Pedersen L.C. Structure and function of sulfotransferases. Arch. Biochem. Biophys. 2001;390:149–157. doi: 10.1006/abbi.2001.2368. PubMed DOI

Uchimura K., Gauguet J.M., Singer M.S., Tsay D., Kannagi R., Muramatsu T., von Andrian U.H., Rosen S.D. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat. Immunol. 2005;6:1105–1113. doi: 10.1038/ni1258. PubMed DOI

Kawashima H., Petryniak B., Hiraoka N., Mitoma J., Huckaby V., Nakayama J., Uchimura K., Kadomatsu K., Muramatsu T., Lowe J.B., et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat. Immunol. 2005;6:1096–1104. doi: 10.1038/ni1259. PubMed DOI

Moore K.L. The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 2003;278:24243–24246. doi: 10.1074/jbc.R300008200. PubMed DOI

Ramachandran V., Nollert M.U., Qiu H., Liu W.J., Cummings R.D., Zhu C., McEver R.P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc. Natl. Acad. Sci. USA. 1999;96:13771–13776. doi: 10.1073/pnas.96.24.13771. PubMed DOI PMC

Teramoto T., Fujikawa Y., Kawaguchi Y., Kurogi K., Soejima M., Adachi R., Nakanishi Y., Mishiro-Sato E., Liu M.C., Sakakibara Y., et al. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Nat. Commun. 2013;4:1572. doi: 10.1038/ncomms2593. PubMed DOI PMC

Marforio T.D., Giacinto P., Bottoni A., Calvaresi M. Computational Evidence for the Catalytic Mechanism of Tyrosylprotein Sulfotransferases: A Density Functional Theory Investigation. Biochemistry. 2015;54:4404–4410. doi: 10.1021/acs.biochem.5b00343. PubMed DOI

Ouyang Y.B., Moore K.L. Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans. J. Biol. Chem. 1998;273:24770–24774. doi: 10.1074/jbc.273.38.24770. PubMed DOI

Yu Y., Hoffhines A.J., Moore K.L., Leary J.A. Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat. Methods. 2007;4:583–588. doi: 10.1038/nmeth1056. PubMed DOI

Ley K., Kansas G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 2004;4:325–335. doi: 10.1038/nri1351. PubMed DOI

Romano S.J. Selectin antagonists: Therapeutic potential in asthma and COPD. Treat. Respir. Med. 2005;4:85–94. doi: 10.2165/00151829-200504020-00002. PubMed DOI PMC

Romano S.J., Slee D.H. Targeting selectins for the treatment of respiratory diseases. Curr. Opin. Investig. Drugs. 2001;2:907–913. PubMed

Czech W., Schopf E., Kapp A. Soluble E-selectin in sera of patients with atopic dermatitis and psoriasis--correlation with disease activity. Br. J. Dermatol. 1996;134:17–21. doi: 10.1111/j.1365-2133.1996.tb07833.x. PubMed DOI

Schon M.P., Drewniok C., Boehncke W.H. Targeting selectin functions in the therapy of psoriasis. Curr. Drug Targets Inflamm. Allergy. 2004;3:163–168. doi: 10.2174/1568010043343895. PubMed DOI

Bock D., Philipp S., Wolff G. Therapeutic potential of selectin antagonists in psoriasis. Expert Opin. Investig. Drugs. 2006;15:963–979. doi: 10.1517/13543784.15.8.963. PubMed DOI

Merten M., Thiagarajan P. P-selectin in arterial thrombosis. Z. Kardiol. 2004;93:855–863. doi: 10.1007/s00392-004-0146-5. PubMed DOI

Sfikakis P.P., Mavrikakis M. Adhesion and lymphocyte costimulatory molecules in systemic rheumatic diseases. Clin. Rheumatol. 1999;18:317–327. doi: 10.1007/s100670050109. PubMed DOI

Davies M.J., Gordon J.L., Gearing A.J., Pigott R., Woolf N., Katz D., Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 1993;171:223–229. doi: 10.1002/path.1711710311. PubMed DOI

Collins R.G., Velji R., Guevara N.V., Hicks M.J., Chan L., Beaudet A.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 2000;191:189–194. doi: 10.1084/jem.191.1.189. PubMed DOI PMC

Dong Z.M., Chapman S.M., Brown A.A., Frenette P.S., Hynes R.O., Wagner D.D. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Investig. 1998;102:145–152. doi: 10.1172/JCI3001. PubMed DOI PMC

Ishikawa H., Nishibayashi Y., Kita K., Ohno O., Imura S., Hirata S. Adhesion molecules in the lymphoid cell distribution in rheumatoid synovial membrane. Bull. Hosp. Jt. Dis. 1993;53:23–28. doi: 10.1007/BF00290200. PubMed DOI

Chapman P.T., Jamar F., Keelan E.T., Peters A.M., Haskard D.O. Use of a radiolabeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. Arthr. Rheum. 1996;39:1371–1375. doi: 10.1002/art.1780390815. PubMed DOI

Zhao J., Gao Y., Cheng C., Yan M., Wang J. Upregulation of beta-1,4-galactosyltransferase I in rat spinal cord with experimental autoimmune encephalomyelitis. J. Mol. Neurosci. 2013;49:437–445. doi: 10.1007/s12031-012-9824-3. PubMed DOI

Abdi R., Moore R., Sakai S., Donnelly C.B., Mounayar M., Sackstein R. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice. Stem Cells. 2015;33:1523–1531. doi: 10.1002/stem.1948. PubMed DOI PMC

Konstantopoulos K., Thomas S.N. Cancer cells in transit: The vascular interactions of tumor cells. Annu. Rev. Biomed. Eng. 2009;11:177–202. doi: 10.1146/annurev-bioeng-061008-124949. PubMed DOI

Chen D.S., Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39:1–10. doi: 10.1016/j.immuni.2013.07.012. PubMed DOI

Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007;7:678–689. doi: 10.1038/nri2156. PubMed DOI

Butcher E.C. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell. 1991;67:1033–1036. doi: 10.1016/0092-8674(91)90279-8. PubMed DOI

McEver R.P., Zhu C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 2010;26:363–396. doi: 10.1146/annurev.cellbio.042308.113238. PubMed DOI PMC

Barreiro O., Sanchez-Madrid F. Molecular basis of leukocyte-endothelium interactions during the inflammatory response. Rev. Espan. Cardiol. 2009;62:552–562. doi: 10.1016/S0300-8932(09)71035-8. PubMed DOI

Butcher E.C., Picker L.J. Lymphocyte homing and homeostasis. Science. 1996;272:60–66. doi: 10.1126/science.272.5258.60. PubMed DOI

Geng Y., Marshall J.R., King M.R. Glycomechanics of the metastatic cascade: Tumor cell-endothelial cell interactions in the circulation. Ann. Biomed. Eng. 2012;40:790–805. doi: 10.1007/s10439-011-0463-6. PubMed DOI

Ley K., Bullard D.C., Arbones M.L., Bosse R., Vestweber D., Tedder T.F., Beaudet A.L. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med. 1995;181:669–675. doi: 10.1084/jem.181.2.669. PubMed DOI PMC

Jung U., Bullard D.C., Tedder T.F., Ley K. Velocity differences between L- and P-selectin-dependent neutrophil rolling in venules of mouse cremaster muscle in vivo. Am. J. Physiol. 1996;271:H2740–H2747. doi: 10.1152/ajpheart.1996.271.6.H2740. PubMed DOI

Ley K., Tedder T.F., Kansas G.S. L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin. Blood. 1993;82:1632–1638. doi: 10.1182/blood.V82.5.1632.1632. PubMed DOI

Bevilacqua M.P., Pober J.S., Majeau G.R., Fiers W., Cotran R.S., Gimbrone M.A., Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: Characterization and comparison with the actions of interleukin 1. Proc. Natl. Acad. Sci. USA. 1986;83:4533–4537. doi: 10.1073/pnas.83.12.4533. PubMed DOI PMC

Cotran R.S., Gimbrone M.A., Jr., Bevilacqua M.P., Mendrick D.L., Pober J.S. Induction and detection of a human endothelial activation antigen in vivo. J. Exp. Med. 1986;164:661–666. doi: 10.1084/jem.164.2.661. PubMed DOI PMC

Shimizu Y., Shaw S., Graber N., Gopal T.V., Horgan K.J., Van Seventer G.A., Newman W. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 1991;349:799–802. doi: 10.1038/349799a0. PubMed DOI

Picker L.J., Kishimoto T.K., Smith C.W., Warnock R.A., Butcher E.C. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature. 1991;349:796–799. doi: 10.1038/349796a0. PubMed DOI

Thomas W. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 2008;10:39–57. doi: 10.1146/annurev.bioeng.10.061807.160427. PubMed DOI

Cheung L.S., Raman P.S., Balzer E.M., Wirtz D., Konstantopoulos K. Biophysics of selectin-ligand interactions in inflammation and cancer. Phys. Biol. 2011;8:015013. doi: 10.1088/1478-3975/8/1/015013. PubMed DOI

Zhu C., Yago T., Lou J., Zarnitsyna V.I., McEver R.P. Mechanisms for flow-enhanced cell adhesion. Ann. Biomed. Eng. 2008;36:604–621. doi: 10.1007/s10439-008-9464-5. PubMed DOI PMC

Alon R., Chen S., Puri K.D., Finger E.B., Springer T.A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol. 1997;138:1169–1180. doi: 10.1083/jcb.138.5.1169. PubMed DOI PMC

Finger E.B., Puri K.D., Alon R., Lawrence M.B., von Andrian U.H., Springer T.A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996;379:266–269. doi: 10.1038/379266a0. PubMed DOI

Lawrence M.B., Kansas G.S., Kunkel E.J., Ley K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E) J. Cell Biol. 1997;136:717–727. doi: 10.1083/jcb.136.3.717. PubMed DOI PMC

Alon R., Hammer D.A., Springer T.A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995;374:539–542. doi: 10.1038/374539a0. PubMed DOI

Alon R., Chen S., Fuhlbrigge R., Puri K.D., Springer T.A. The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc. Natl. Acad. Sci. USA. 1998;95:11631–11636. doi: 10.1073/pnas.95.20.11631. PubMed DOI PMC

Puri K.D., Finger E.B., Springer T.A. The faster kinetics of L-selectin than of E-selectin and P-selectin rolling at comparable binding strength. J. Immunol. 1997;158:405–413. PubMed

Kunkel E.J., Ley K. Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ. Res. 1996;79:1196–1204. doi: 10.1161/01.RES.79.6.1196. PubMed DOI

Hanley W.D., Wirtz D., Konstantopoulos K. Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J. Cell Sci. 2004;117:2503–2511. doi: 10.1242/jcs.01088. PubMed DOI

Zhu C., Long M., Chesla S.E., Bongrand P. Measuring receptor/ligand interaction at the single-bond level: Experimental and interpretative issues. Ann. Biomed. Eng. 2002;30:305–314. doi: 10.1114/1.1467923. PubMed DOI

Huang J., Chen J., Chesla S.E., Yago T., Mehta P., McEver R.P., Zhu C., Long M. Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J. Biol. Chem. 2004;279:44915–44923. doi: 10.1074/jbc.M407039200. PubMed DOI

Chen W., Evans E.A., McEver R.P., Zhu C. Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys. J. 2008;94:694–701. doi: 10.1529/biophysj.107.117895. PubMed DOI PMC

Klopocki A.G., Yago T., Mehta P., Yang J., Wu T., Leppanen A., Bovin N.V., Cummings R.D., Zhu C., McEver R.P. Replacing a lectin domain residue in L-selectin enhances binding to P-selectin glycoprotein ligand-1 but not to 6-sulfo-sialyl Lewis x. J. Biol. Chem. 2008;283:11493–11500. doi: 10.1074/jbc.M709785200. PubMed DOI PMC

Bell G.I. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627. doi: 10.1126/science.347575. PubMed DOI

Dembo M., Torney D.C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B Biol. Sci. 1988;234:55–83. PubMed

Sarangapani K.K., Yago T., Klopocki A.G., Lawrence M.B., Fieger C.B., Rosen S.D., McEver R.P., Zhu C. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 2004;279:2291–2298. doi: 10.1074/jbc.M310396200. PubMed DOI

Marshall B.T., Long M., Piper J.W., Yago T., McEver R.P., Zhu C. Direct observation of catch bonds involving cell-adhesion molecules. Nature. 2003;423:190–193. doi: 10.1038/nature01605. PubMed DOI

Yago T., Wu J., Wey C.D., Klopocki A.G., Zhu C., McEver R.P. Catch bonds govern adhesion through L-selectin at threshold shear. J. Cell Biol. 2004;166:913–923. doi: 10.1083/jcb.200403144. PubMed DOI PMC

Lou J., Yago T., Klopocki A.G., Mehta P., Chen W., Zarnitsyna V.I., Bovin N.V., Zhu C., McEver R.P. Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell Biol. 2006;174:1107–1117. doi: 10.1083/jcb.200606056. PubMed DOI PMC

Springer T.A. Structural basis for selectin mechanochemistry. Proc. Natl. Acad. Sci. USA. 2009;106:91–96. doi: 10.1073/pnas.0810784105. PubMed DOI PMC

Waldron T.T., Springer T.A. Transmission of allostery through the lectin domain in selectin-mediated cell adhesion. Proc. Natl. Acad. Sci. USA. 2009;106:85–90. doi: 10.1073/pnas.0810620105. PubMed DOI PMC

Lou J., Zhu C. A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 2007;92:1471–1485. doi: 10.1529/biophysj.106.097048. PubMed DOI PMC

Gunnerson K.N., Pereverzev Y.V., Prezhdo O.V. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. J. Phys. Chem. B. 2009;113:2090–2100. doi: 10.1021/jp803955u. PubMed DOI

Furie B., Furie B.C. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol. Med. 2004;10:171–178. doi: 10.1016/j.molmed.2004.02.008. PubMed DOI

Cambien B., Wagner D.D. A new role in hemostasis for the adhesion receptor P-selectin. Trends Mol. Med. 2004;10:179–186. doi: 10.1016/j.molmed.2004.02.007. PubMed DOI

Vandendries E.R., Furie B.C., Furie B. Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb. Haemost. 2004;92:459–466. doi: 10.1160/TH04-05-0306. PubMed DOI

Polgar J., Matuskova J., Wagner D.D. The P-selectin, tissue factor, coagulation triad. J. Thromb. Haemost. 2005;3:1590–1596. doi: 10.1111/j.1538-7836.2005.01373.x. PubMed DOI

Frenette P.S., Denis C.V., Weiss L., Jurk K., Subbarao S., Kehrel B., Hartwig J.H., Vestweber D., Wagner D.D. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J. Exp. Med. 2000;191:1413–1422. doi: 10.1084/jem.191.8.1413. PubMed DOI PMC

Palabrica T., Lobb R., Furie B.C., Aronovitz M., Benjamin C., Hsu Y.M., Sajer S.A., Furie B. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359:848–851. doi: 10.1038/359848a0. PubMed DOI

Fijnheer R., Frijns C.J., Korteweg J., Rommes H., Peters J.H., Sixma J.J., Nieuwenhuis H.K. The origin of P-selectin as a circulating plasma protein. Thromb. Haemost. 1997;77:1081–1085. doi: 10.1055/s-0038-1656116. PubMed DOI

Celi A., Pellegrini G., Lorenzet R., De Blasi A., Ready N., Furie B.C., Furie B. P-selectin induces the expression of tissue factor on monocytes. Proc. Natl. Acad. Sci. USA. 1994;91:8767–8771. doi: 10.1073/pnas.91.19.8767. PubMed DOI PMC

Weyrich A.S., Elstad M.R., McEver R.P., McIntyre T.M., Moore K.L., Morrissey J.H., Prescott S.M., Zimmerman G.A. Activated platelets signal chemokine synthesis by human monocytes. J. Clin. Investig. 1996;97:1525–1534. doi: 10.1172/JCI118575. PubMed DOI PMC

Andre P., Denis C.V., Ware J., Saffaripour S., Hynes R.O., Ruggeri Z.M., Wagner D.D. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood. 2000;96:3322–3328. doi: 10.1182/blood.V96.10.3322. PubMed DOI

Rauch U., Nemerson Y. Tissue factor, the blood, and the arterial wall. Trends Cardiovasc. Med. 2000;10:139–143. doi: 10.1016/S1050-1738(00)00049-9. PubMed DOI

Ishiwata N., Takio K., Katayama M., Watanabe K., Titani K., Ikeda Y., Handa M. Alternatively spliced isoform of P-selectin is present in vivo as a soluble molecule. J. Biol. Chem. 1994;269:23708–23715. PubMed

Blann A.D., Dobrotova M., Kubisz P., McCollum C.N. von Willebrand factor, soluble P-selectin, tissue plasminogen activator and plasminogen activator inhibitor in atherosclerosis. Thromb. Haemost. 1995;74:626–630. doi: 10.1055/s-0038-1649788. PubMed DOI

Merten M., Thiagarajan P. P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation. 2000;102:1931–1936. doi: 10.1161/01.CIR.102.16.1931. PubMed DOI

Falati S., Liu Q., Gross P., Merrill-Skoloff G., Chou J., Vandendries E., Celi A., Croce K., Furie B.C., Furie B. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med. 2003;197:1585–1598. doi: 10.1084/jem.20021868. PubMed DOI PMC

Myers D., Jr., Farris D., Hawley A., Wrobleski S., Chapman A., Stoolman L., Knibbs R., Strieter R., Wakefield T. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J. Surg. Res. 2002;108:212–221. doi: 10.1006/jsre.2002.6552. PubMed DOI

Myers D.D., Hawley A.E., Farris D.M., Wrobleski S.K., Thanaporn P., Schaub R.G., Wagner D.D., Kumar A., Wakefield T.W. P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J. Vasc. Surg. 2003;38:1075–1089. doi: 10.1016/S0741-5214(03)01033-4. PubMed DOI

Chong B.H., Murray B., Berndt M.C., Dunlop L.C., Brighton T., Chesterman C.N. Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood. 1994;83:1535–1541. doi: 10.1182/blood.V83.6.1535.1535. PubMed DOI

Wu G., Li F., Li P., Ruan C. Detection of plasma alpha-granule membrane protein GMP-140 using radiolabeled monoclonal antibodies in thrombotic diseases. Haemostasis. 1993;23:121–128. doi: 10.1159/000216864. PubMed DOI

Smith A., Quarmby J.W., Collins M., Lockhart S.M., Burnand K.G. Changes in the levels of soluble adhesion molecules and coagulation factors in patients with deep vein thrombosis. Thromb. Haemost. 1999;82:1593–1599. doi: 10.1055/s-0037-1614884. PubMed DOI

Frenette P.S., Johnson R.C., Hynes R.O., Wagner D.D. Platelets roll on stimulated endothelium in vivo: An interaction mediated by endothelial P-selectin. Proc. Natl. Acad. Sci. USA. 1995;92:7450–7454. doi: 10.1073/pnas.92.16.7450. PubMed DOI PMC

Wakefield T.W., Strieter R.M., Downing L.J., Kadell A.M., Wilke C.A., Burdick M.D., Wrobleski S.K., Phillips M.L., Paulson J.C., Anderson D.C., et al. P-selectin and TNF inhibition reduce venous thrombosis inflammation. J. Surg. Res. 1996;64:26–31. doi: 10.1006/jsre.1996.0301. PubMed DOI

Ridker P.M., Buring J.E., Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation. 2001;103:491–495. doi: 10.1161/01.CIR.103.4.491. PubMed DOI

Hillis G.S., Terregino C., Taggart P., Killian A., Zhao N., Dalsey W.C., Mangione A. Elevated soluble P-selectin levels are associated with an increased risk of early adverse events in patients with presumed myocardial ischemia. Am. Heart J. 2002;143:235–241. doi: 10.1067/mhj.2002.120303. PubMed DOI

Andre P., Hartwell D., Hrachovinova I., Saffaripour S., Wagner D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA. 2000;97:13835–13840. doi: 10.1073/pnas.250475997. PubMed DOI PMC

Panicker S.R., Mehta-D’souza P., Zhang N., Klopocki A.G., Shao B., McEver R.P. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood. 2017;130:181–191. doi: 10.1182/blood-2017-02-770479. PubMed DOI PMC

Cagnoni A.J., Perez Saez J.M., Rabinovich G.A., Marino K.V. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front. Oncol. 2016;6:109. doi: 10.3389/fonc.2016.00109. PubMed DOI PMC

Bendas G., Borsig L. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. Int. J. Cell Biol. 2012;2012:676731. doi: 10.1155/2012/676731. PubMed DOI PMC

Labelle M., Hynes R.O. The initial hours of metastasis: The importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2:1091–1099. doi: 10.1158/2159-8290.CD-12-0329. PubMed DOI PMC

Chambers A.F., Groom A.C., MacDonald I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer. 2002;2:563–572. doi: 10.1038/nrc865. PubMed DOI

Poste G., Fidler I.J. The pathogenesis of cancer metastasis. Nature. 1980;283:139–146. doi: 10.1038/283139a0. PubMed DOI

Laubli H., Spanaus K.S., Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114:4583–4591. doi: 10.1182/blood-2008-10-186585. PubMed DOI

Witz I.P. Tumor-microenvironment interactions: The selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treat. Res. 2006;130:125–140. doi: 10.1016/j.imlet.2005.11.008. PubMed DOI

Wirtz D., Konstantopoulos K., Searson P.C. The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer. 2011;11:512–522. doi: 10.1038/nrc3080. PubMed DOI PMC

Pearce O.M.T. Cancer glycan epitopes: Biosynthesis, structure and function. Glycobiology. 2018;28:670–696. doi: 10.1093/glycob/cwy023. PubMed DOI

Hauselmann I., Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front. Oncol. 2014;4:28. doi: 10.3389/fonc.2014.00028. PubMed DOI PMC

Pinho S.S., Reis C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer. 2015;15:540–555. doi: 10.1038/nrc3982. PubMed DOI

Hakomori S., Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. J. Natl. Cancer Inst. 1983;71:231–251. doi: 10.1093/jnci/71.2.231. PubMed DOI

Läubli H., Borsig L. Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Front. Immunol. 2019;10:2120. doi: 10.3389/fimmu.2019.02120. PubMed DOI PMC

Kannagi R., Izawa M., Koike T., Miyazaki K., Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004;95:377–384. doi: 10.1111/j.1349-7006.2004.tb03219.x. PubMed DOI PMC

Kim Y.J., Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 1997;14:569–576. doi: 10.1023/A:1018580324971. PubMed DOI

Kim Y.J., Borsig L., Varki N.M., Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc. Natl. Acad. Sci. USA. 1998;95:9325–9330. doi: 10.1073/pnas.95.16.9325. PubMed DOI PMC

Borsig L., Wong R., Feramisco J., Nadeau D.R., Varki N.M., Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA. 2001;98:3352–3357. doi: 10.1073/pnas.061615598. PubMed DOI PMC

Kim Y.J., Borsig L., Han H.L., Varki N.M., Varki A. Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am. J. Pathol. 1999;155:461–472. doi: 10.1016/S0002-9440(10)65142-5. PubMed DOI PMC

Borsig L. Selectin facilitate carcinoma metastasis and heparin can prevent them. News Physiol. Sci. 2014;19:16–21. doi: 10.1152/nips.01450.2003. PubMed DOI

Edwards E.E., Oh J., Anilkumar A., Birmingham K.G., Thomas S.N. P-, but not E- or L-, selectin-mediated rolling adhesion persistence in hemodynamic flow diverges between metastatic and leukocytic cells. Oncotarget. 2017;8:83585–83601. doi: 10.18632/oncotarget.18786. PubMed DOI PMC

Khatib A.M., Kontogiannea M., Fallavollita L., Jamison B., Meterissian S., Brodt P. Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res. 1999;59:1356–1361. PubMed

Brodt P., Fallavollita L., Bresalier R.S., Meterissian S., Norton C.R., Wolitzky B.A. Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int. J. Cancer. 1997;71:612–619. doi: 10.1002/(SICI)1097-0215(19970516)71:4<612::AID-IJC17>3.0.CO;2-D. PubMed DOI

Charpin C., Bergeret D., Garcia S., Andrac L., Martini F., Horschowski N., Choux R., Lavaut M.N. ELAM selectin expression in breast carcinomas detected by automated and quantitative immunohistochemical assays. Int. J. Oncol. 1998;12:1041–1048. doi: 10.3892/ijo.12.5.1041. PubMed DOI

Nguyen M., Corless C.L., Kraling B.M., Tran C., Atha T., Bischoff J., Barsky S.H. Vascular expression of E-selectin is increased in estrogen-receptor-negative breast cancer: A role for tumor-cell-secreted interleukin-1 alpha. Am. J. Pathol. 1997;150:1307–1314. PubMed PMC

Staal-van den Brekel A.J., Thunnissen F.B., Buurman W.A., Wouters E.F. Expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in non-small-cell lung carcinoma. Virchows Arch. 1996;428:21–27. doi: 10.1007/BF00192923. PubMed DOI

Muller A.M., Weichert A., Muller K.M. E-cadherin, E-selectin and vascular cell adhesion molecule: Immunohistochemical markers for differentiation between mesothelioma and metastatic pulmonary adenocarcinoma? Virchows Arch. 2002;441:41–46. doi: 10.1007/s00428-001-0563-z. PubMed DOI

Bhaskar V., Law D.A., Ibsen E., Breinberg D., Cass K.M., DuBridge R.B., Evangelista F., Henshall S.M., Hevezi P., Miller J.C., et al. E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res. 2003;63:6387–6394. PubMed

Laferriere J., Houle F., Taher M.M., Valerie K., Huot J. Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J. Biol. Chem. 2001;276:33762–33772. doi: 10.1074/jbc.M008564200. PubMed DOI

Tremblay P.L., Auger F.A., Huot J. Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene. 2006;25:6563–6573. doi: 10.1038/sj.onc.1209664. PubMed DOI

Laubli H., Borsig L. Selectins as mediators of lung metastasis. Cancer Microenviron. 2010;3:97–105. doi: 10.1007/s12307-010-0043-6. PubMed DOI PMC

Stubke K., Wicklein D., Herich L., Schumacher U., Nehmann N. Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer. Cancer Lett. 2012;321:89–99. doi: 10.1016/j.canlet.2012.02.019. PubMed DOI

Price T.T., Burness M.L., Sivan A., Warner M.J., Cheng R., Lee C.H., Olivere L., Comatas K., Magnani J., Kim Lyerly H., et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 2016;8:340ra73. doi: 10.1126/scitranslmed.aad4059. PubMed DOI PMC

Zen K., Liu D.Q., Guo Y.L., Wang C., Shan J., Fang M., Zhang C.Y., Liu Y. CD44v4 is a major E-selectin ligand that mediates breast cancer cell transendothelial migration. PLoS ONE. 2008;3:e1826. doi: 10.1371/journal.pone.0001826. PubMed DOI PMC

Laubli H., Stevenson J.L., Varki A., Varki N.M., Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006;66:1536–1542. doi: 10.1158/0008-5472.CAN-05-3121. PubMed DOI

Mannori G., Crottet P., Cecconi O., Hanasaki K., Aruffo A., Nelson R.M., Varki A., Bevilacqua M.P. Differential colon cancer cell adhesion to E-, P-, and L-selectin: Role of mucin-type glycoproteins. Cancer Res. 1995;55:4425–4431. PubMed

Borsig L., Wong R., Hynes R.O., Varki N.M., Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl. Acad. Sci. USA. 2002;99:2193–2198. doi: 10.1073/pnas.261704098. PubMed DOI PMC

Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205. PubMed DOI

Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer. 2009;9:239–252. doi: 10.1038/nrc2618. PubMed DOI PMC

Sceneay J., Smyth M.J., Moller A. The pre-metastatic niche: Finding common ground. Cancer Metastasis Rev. 2013;32:449–464. doi: 10.1007/s10555-013-9420-1. PubMed DOI

Smith H.A., Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J. Mol. Med. (Berl.) 2013;91:411–429. doi: 10.1007/s00109-013-1021-5. PubMed DOI PMC

Hiratsuka S., Goel S., Kamoun W.S., Maru Y., Fukumura D., Duda D.G., Jain R.K. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc. Natl. Acad. Sci. USA. 2011;108:3725–3730. doi: 10.1073/pnas.1100446108. PubMed DOI PMC

Vestweber D., Blanks J.E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 1999;79:181–213. doi: 10.1152/physrev.1999.79.1.181. PubMed DOI

Juliano R.L. Signal transduction by cell adhesion receptors and the cytoskeleton: Functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 2002;42:283–323. doi: 10.1146/annurev.pharmtox.42.090401.151133. PubMed DOI

Lorant D.E., Topham M.K., Whatley R.E., McEver R.P., McIntyre T.M., Prescott S.M., Zimmerman G.A. Inflammatory roles of P-selectin. J. Clin. Investig. 1993;92:559–570. doi: 10.1172/JCI116623. PubMed DOI PMC

Crockett-Torabi E. Selectins and mechanisms of signal transduction. J. Leukoc. Biol. 1998;63:1–14. doi: 10.1002/jlb.63.1.1. PubMed DOI

Lefort C.T., Ley K. Neutrophil arrest by LFA-1 activation. Front. Immunol. 2012;3:157. doi: 10.3389/fimmu.2012.00157. PubMed DOI PMC

Kuwano Y., Spelten O., Zhang H., Ley K., Zarbock A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 2010;116:617–624. doi: 10.1182/blood-2010-01-266122. PubMed DOI PMC

Evangelista V., Manarini S., Sideri R., Rotondo S., Martelli N., Piccoli A., Totani L., Piccardoni P., Vestweber D., de Gaetano G., et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: Role of PSGL-1 as a signaling molecule. Blood. 1999;93:876–885. doi: 10.1182/blood.V93.3.876. PubMed DOI

Kaila N., Thomas B.E. Selectin inhibitors. Expert Opin. Ther. Patents. 2003;13:305–317. doi: 10.1517/13543776.13.3.305. DOI

Barthel S.R., Gavino J.D., Descheny L., Dimitroff C.J. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets. 2007;11:1473–1491. doi: 10.1517/14728222.11.11.1473. PubMed DOI PMC

Boland E.W. Clinical observations with 16 alpha-methyl corticosteroid compounds; preliminary therapeutic trials with dexamethasone (16 alpha-methyl 9 alpha-fluoroprednisolone) in patients with rheumatoid arthritis. Ann. Rheum Dis. 1958;17:376–382. doi: 10.1136/ard.17.4.376. PubMed DOI PMC

Brostjan C., Anrather J., Csizmadia V., Natarajan G., Winkler H. Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J. Immunol. 1997;158:3836–3844. PubMed

Grau M., Montero J.L., Guasch J., Felipe A., Carrasco E., Julia S. The pharmacological profile of aceclofenac, a new nonsteroidal antiinflammatory and analgesic drug. Agents Act. Suppl. 1991;32:125–129. PubMed

Sharma G., Singh J., Anand D., Kumar M., Raza K., Pareek A., Katare O.P. Aceclofenac: Species-Dependent Metabolism and Newer Paradigm Shift from Oral to Non-oral Delivery. Curr. Top. Med. Chem. 2017;17:107–119. doi: 10.2174/1568026616666160530152958. PubMed DOI

Raza K., Kumar M., Kumar P., Malik R., Sharma G., Kaur M., Katare O.P. Topical delivery of aceclofenac: Challenges and promises of novel drug delivery systems. Biomed. Res. Int. 2014;2014:406731. doi: 10.1155/2014/406731. PubMed DOI PMC

Gonzalez-Alvaro I., Carmona L., Diaz-Gonzalez F., Gonzalez-Amaro R., Mollinedo F., Sanchez-Madrid F., Laffon A., Garcia-Vicuna R. Aceclofenac, a new nonsteroidal antiinflammatory drug, decreases the expression and function of some adhesion molecules on human neutrophils. J. Rheumatol. 1996;23:723–729. PubMed

Liu J., Zhang J., Shi Y., Grimsgaard S., Alraek T., Fonnebo V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: A meta-analysis of randomized controlled trials. Chin. Med. 2006;1:4. doi: 10.1186/1749-8546-1-4. PubMed DOI PMC

Zhao Z.J., Pan Y.Z., Liu Q.J., Li X.H. Exposure assessment of lovastatin in Pu-erh tea. Int. J. Food Microbiol. 2013;164:26–31. doi: 10.1016/j.ijfoodmicro.2013.03.018. PubMed DOI

Jakobisiak M., Golab J. Potential antitumor effects of statins (Review) Int. J. Oncol. 2003;23:1055–1069. doi: 10.3892/ijo.23.4.1055. PubMed DOI

Chae Y.K., Yousaf M., Malecek M.K., Carneiro B., Chandra S., Kaplan J., Kalyan A., Sassano A., Platanias L.C., Giles F. Statins as anti-cancer therapy; Can we translate preclinical and epidemiologic data into clinical benefit? Discov. Med. 2015;20:413–427. PubMed

Nubel T., Dippold W., Kleinert H., Kaina B., Fritz G. Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. FASEB J. 2004;18:140–142. doi: 10.1096/fj.03-0261fje. PubMed DOI

Ostrau C., Hulsenbeck J., Herzog M., Schad A., Torzewski M., Lackner K.J., Fritz G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother. Oncol. 2009;92:492–499. doi: 10.1016/j.radonc.2009.06.020. PubMed DOI

Hevey R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals (Basel) 2019;12:55. doi: 10.3390/ph12020055. PubMed DOI PMC

Kaila N., Thomas B.E.T. Design and synthesis of sialyl Lewis(x) mimics as E- and P-selectin inhibitors. Med. Res. Rev. 2002;22:566–601. doi: 10.1002/med.10018. PubMed DOI

Ernst B., Magnani J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009;8:661–677. doi: 10.1038/nrd2852. PubMed DOI PMC

Lefer D.J. Pharmacology of selectin inhibitors in ischemia/reperfusion states. Annu. Rev. Pharmacol. Toxicol. 2000;40:283–294. doi: 10.1146/annurev.pharmtox.40.1.283. PubMed DOI

Dube D.H., Bertozzi C.R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 2005;4:477–488. doi: 10.1038/nrd1751. PubMed DOI

Valverde P., Arda A., Reichardt N.-C., Jimenez-Barbero J., Gimeno A. Glycans in drug discovery. Med. Chem. Commun. 2019;10:1678–1691. doi: 10.1039/C9MD00292H. PubMed DOI PMC

Aydt E.M., Bock D., Wolff G. Selectin antagonists and their potential impact for the treatment of inflammatory lung diseases. In: Hansel T.T., Barnes P.J., editors. New Drugs and Targets for Asthma and COPD. Volume 39. S Karger AG; Basel, Switzerland: 2010. pp. 175–184.

Tamburrini A., Colombo C., Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2019 doi: 10.1002/med.21625. PubMed DOI

Kerr K.M., Auger W.R., Marsh J.J., Comito R.M., Fedullo R.L., Smits G.J., Kapelanski D.P., Fedullo P.F., Channick R.N., Jamieson S.W., et al. The use of cylexin (CY-1503) in prevention of reperfusion lung injury in patients undergoing pulmonary thromboendarterectomy. Am. J. Respir. Crit. Care Med. 2000;162:14–20. doi: 10.1164/ajrccm.162.1.9712142. PubMed DOI

Ohmoto H., Nakamura K., Inoue T., Kondo N., Inoue Y., Yoshino K., Kondo H., Ishida H., Kiso M., Hasegawa A. Studies on selectin blocker. 1. Structure-activity relationships of sialyl Lewis X analogs. J. Med. Chem. 1996;39:1339–1343. doi: 10.1021/jm9506478. PubMed DOI

Banteli R., Ernst B. Synthesis of sialyl Lewis(x) mimics. Modifications of the 6-position of galactose. Bioorg. Med. Chem. Lett. 2001;11:459–462. doi: 10.1016/S0960-894X(00)00692-2. PubMed DOI

Hanessian S., Huynh H.K., Reddy G.V., McNaughton-Smith G., Ernst B., Kolb H.C., Magnani J., Sweeley C. Exploration of beta-turn scaffolding motifs as components of sialyl Le(X) mimetics and their relevance to P-selectin. Bioorg. Med. Chem. Lett. 1998;8:2803–2808. doi: 10.1016/S0960-894X(98)00500-9. PubMed DOI

Rao B.N., Anderson M.B., Musser J.H., Gilbert J.H., Schaefer M.E., Foxall C., Brandley B.K. Sialyl Lewis X mimics derived from a pharmacophore search are selectin inhibitors with anti-inflammatory activity. J. Biol. Chem. 1994;269:19663–19666. PubMed

Kogan T.P., Dupre B., Keller K.M., Scott I.L., Bui H., Market R.V., Beck P.J., Voytus J.A., Revelle B.M., Scott D. Rational design and synthesis of small molecule, non-oligosaccharide selectin inhibitors: (alpha-D-mannopyranosyloxy)biphenyl-substituted carboxylic acids. J. Med. Chem. 1995;38:4976–4984. doi: 10.1021/jm00026a004. PubMed DOI

Stewart A.O., Bhatia P.A., McCarty C.M., Patel M.V., Staeger M.A., Arendsen D.L., Gunawardana I.W., Melcher L.M., Zhu G.D., Boyd S.A., et al. Discovery of inhibitors of cell adhesion molecule expression in human endothelial cells. 1. Selective inhibition of ICAM-1 and E-selectin expression. J. Med. Chem. 2001;44:988–1002. doi: 10.1021/jm000452m. PubMed DOI

Kaila N., Chen L., Thomas B.E.T., Tsao D., Tam S., Bedard P.W., Camphausen R.T., Alvarez J.C., Ullas G. Beta-C-mannosides as selectin inhibitors. J. Med. Chem. 2002;45:1563–1566. doi: 10.1021/jm010390f. PubMed DOI

Prodger J.C., Bamford M.J., Bird M.I., Gore P.M., Holmes D.S., Priest R., Saez V. Mimics of the sialyl Lewis X tetrasaccharide. Replacement of the N-acetylglucosamine sugar with simple C2-symmetric 1,2-diols. Bioorg. Med. Chem. 1996;4:793–801. doi: 10.1016/0968-0896(96)00055-7. PubMed DOI

Thoma G., Magnani J.L., Patton J.T., Ernst B., Jahnke W. Preorganization of the Bioactive Conformation of Sialyl Lewis(X) Analogues Correlates with Their Affinity to E-Selectin. Angew. Chem. Int. Ed. Engl. 2001;40:1941–1945. doi: 10.1002/1521-3773(20010518)40:10<1941::AID-ANIE1941>3.0.CO;2-T. PubMed DOI

Thoma G., Magnani J.L., Patton J.T. Synthesis and biological evaluation of a sialyl Lewis X mimic with significantly improved E-selectin inhibition. Bioorg. Med. Chem. Lett. 2001;11:923–925. doi: 10.1016/S0960-894X(01)00092-0. PubMed DOI

De Vleeschauwer M., Vaillancourt M., Goudreau N., Guindon Y., Gravel D. Design and synthesis of a new sialyl Lewis X mimetic: How selective are the selectin receptors? Bioorg. Med. Chem. Lett. 2001;11:1109–1112. doi: 10.1016/S0960-894X(01)00130-5. PubMed DOI

Hanessian S., Mascitti V., Rogel O. Synthesis of a potent antagonist of E-selectin. J. Org. Chem. 2002;67:3346–3354. doi: 10.1021/jo0110956. PubMed DOI

Schwizer D., Patton J.T., Cutting B., Smiesko M., Wagner B., Kato A., Weckerle C., Binder F.P., Rabbani S., Schwardt O., et al. Pre-organization of the core structure of E-selectin antagonists. Chem. Eur. J. 2012;18:1342–1351. doi: 10.1002/chem.201102884. PubMed DOI

Kogan T.P., Dupre B., Bui H., McAbee K.L., Kassir J.M., Scott I.L., Hu X., Vanderslice P., Beck P.J., Dixon R.A. Novel synthetic inhibitors of selectin-mediated cell adhesion: Synthesis of 1,6-bis[3-(3-carboxymethylphenyl)-4-(2-alpha-D- mannopyranosyloxy)phenyl]hexane (TBC1269) J. Med. Chem. 1998;41:1099–1111. doi: 10.1021/jm9704917. PubMed DOI

Tsai C.Y., Park W.K., Weitz-Schmidt G., Ernst B., Wong C.H. Synthesis of sialyl Lewis X mimetics using the Ugi four-component reaction. Bioorg. Med. Chem. Lett. 1998;8:2333–2338. doi: 10.1016/S0960-894X(98)00422-3. PubMed DOI

Thoma G., Banteli R., Jahnke W., Magnani J.L., Patton J.T. A Readily Available, Highly Potent E-Selectin Antagonist. Angew. Chem. Int. Ed. Engl. 2001;40:3644–3647. doi: 10.1002/1521-3773(20011001)40:19<3644::AID-ANIE3644>3.0.CO;2-S. PubMed DOI

Hiramatsu Y., Tsujishita H., Kondo H. Studies on selectin blocker. 3. Investigation of the carbohydrate ligand sialyl Lewis X recognition site of P-selectin. J. Med. Chem. 1996;39:4547–4553. doi: 10.1021/jm960134g. PubMed DOI

Calosso M., Charpentier D., Vaillancourt M., Bencheqroun M., St-Pierre G., Wilkes B.C., Guindon Y. A new approach to explore the binding space of polysaccharide-based ligands: Selectin antagonists. ACS Med. Chem. Lett. 2012;3:1045–1049. doi: 10.1021/ml300263x. PubMed DOI PMC

Calosso M., Tambutet G., Charpentier D., St-Pierre G., Vaillancourt M., Bencheqroun M., Gratton J.P., Prevost M., Guindon Y. Acyclic tethers mimicking subunits of polysaccharide ligands: Selectin antagonists. ACS Med. Chem. Lett. 2014;5:1054–1059. doi: 10.1021/ml500266x. PubMed DOI PMC

Egger J., Weckerle C., Cutting B., Schwardt O., Rabbani S., Lemme K., Ernst B. Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J. Am. Chem. Soc. 2013;135:9820–9828. doi: 10.1021/ja4029582. PubMed DOI

Bruehl R.E., Dasgupta F., Katsumoto T.R., Tan J.H., Bertozzi C.R., Spevak W., Ahn D.J., Rosen S.D., Nagy J.O. Polymerized liposome assemblies: Bifunctional macromolecular selectin inhibitors mimicking physiological selectin ligands. Biochemistry. 2001;40:5964–5974. doi: 10.1021/bi002921s. PubMed DOI

Sakagami M., Horie K., Nakamoto K., Kawaguchi T., Hamana H. Synthesis of sialyl Lewis X-polysaccharide conjugates. Chem. Pharm. Bull. (Tokyo) 2000;48:1256–1263. doi: 10.1248/cpb.48.1256. PubMed DOI

Murohara T., Margiotta J., Phillips L.M., Paulson J.C., DeFrees S., Zalipsky S., Guo L.S., Lefer A.M. Cardioprotection by liposome-conjugated sialyl Lewisx-oligosaccharide in myocardial ischaemia and reperfusion injury. Cardiovasc. Res. 1995;30:965–974. doi: 10.1016/S0008-6363(95)00157-3. PubMed DOI

Spevak W., Foxall C., Charych D.H., Dasgupta F., Nagy J.O. Carbohydrates in an acidic multivalent assembly: Nanomolar P-selectin inhibitors. J. Med. Chem. 1996;39:1018–1020. doi: 10.1021/jm950914+. PubMed DOI

Moog K.E., Barz M., Bartneck M., Beceren-Braun F., Mohr N., Wu Z., Braun L., Dernedde J., Liehn E.A., Tacke F., et al. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration. Angew. Chem. Int. Ed. Engl. 2017;56:1416–1421. doi: 10.1002/anie.201610395. PubMed DOI

Thoma G., Duthaler R.O., Magnani J.L., Patton J.T. Nanomolar E-selectin inhibitors: 700-fold potentiation of affinity by multivalent ligand presentation. J. Am. Chem. Soc. 2001;123:10113–10114. doi: 10.1021/ja0164430. PubMed DOI

Esko J.D., Lindahl U. Molecular diversity of heparan sulfate. J. Clin. Investig. 2001;108:169–173. doi: 10.1172/JCI200113530. PubMed DOI PMC

Wang L., Brown J.R., Varki A., Esko J.D. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J. Clin. Investig. 2002;110:127–136. doi: 10.1172/JCI0214996. PubMed DOI PMC

Aydt E., Wolff G. Development of synthetic pan-selectin antagonists: A new treatment strategy for chronic inflammation in asthma. Pathobiology. 2002;70:297–301. doi: 10.1159/000070746. PubMed DOI

Kozlowski E.O., Pavao M.S., Borsig L. Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin. J. Thromb. Haemost. 2011;9:1807–1815. doi: 10.1111/j.1538-7836.2011.04401.x. PubMed DOI

Kawashima H., Hirose M., Hirose J., Nagakubo D., Plaas A.H., Miyasaka M. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 2000;275:35448–35456. doi: 10.1074/jbc.M003387200. PubMed DOI

Wang R., Huang J., Wei M., Zeng X. The synergy of 6-O-sulfation and N- or 3-O-sulfation of chitosan is required for efficient inhibition of P-selectin-mediated human melanoma A375 cell adhesion. Biosci. Biotechnol. Biochem. 2010;74:1697–1700. doi: 10.1271/bbb.100140. PubMed DOI

van Weelden G., Bobinski M., Okla K., van Weelden W.J., Romano A., Pijnenborg J.M.A. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar. Drugs. 2019;17:32. doi: 10.3390/md17010032. PubMed DOI PMC

Atashrazm F., Lowenthal R.M., Woods G.M., Holloway A.F., Dickinson J.L. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar. Drugs. 2015;13:2327–2346. doi: 10.3390/md13042327. PubMed DOI PMC

Hsu H.Y., Hwang P.A. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin. Transl. Med. 2019;8:15. doi: 10.1186/s40169-019-0234-9. PubMed DOI PMC

Kwak J.Y. Fucoidan as a marine anticancer agent in preclinical development. Mar. Drugs. 2014;12:851–870. doi: 10.3390/md12020851. PubMed DOI PMC

Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I., et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 2007;17:541–552. doi: 10.1093/glycob/cwm014. PubMed DOI

Bachelet L., Bertholon I., Lavigne D., Vassy R., Jandrot-Perrus M., Chaubet F., Letourneur D. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Biophys. Acta. 2009;1790:141–146. doi: 10.1016/j.bbagen.2008.10.008. PubMed DOI

Weyrich A.S., Ma X.Y., Lefer D.J., Albertine K.H., Lefer A.M. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J. Clin. Investig. 1993;91:2620–2629. doi: 10.1172/JCI116501. PubMed DOI PMC

Bhushan M., Bleiker T.O., Ballsdon A.E., Allen M.H., Sopwith M., Robinson M.K., Clarke C., Weller R.P., Graham-Brown R.A., Keefe M., et al. Anti-E-selectin is ineffective in the treatment of psoriasis: A randomized trial. Br. J. Dermatol. 2002;146:824–831. doi: 10.1046/j.1365-2133.2002.04743.x. PubMed DOI

Eniola A.O., Hammer D.A. Artificial polymeric cells for targeted drug delivery. J. Control. Release. 2003;87:15–22. doi: 10.1016/S0168-3659(02)00346-2. PubMed DOI

Shamay Y., Elkabets M., Li H., Shah J., Brook S., Wang F., Adler K., Baut E., Scaltriti M., Jena P.V., et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci. Transl. Med. 2016;8:345ra87. doi: 10.1126/scitranslmed.aaf7374. PubMed DOI PMC

Spragg D.D., Alford D.R., Greferath R., Larsen C.E., Lee K.D., Gurtner G.C., Cybulsky M.I., Tosi P.F., Nicolau C., Gimbrone M.A., Jr. Immunotargeting of liposomes to activated vascular endothelial cells: A strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA. 1997;94:8795–8800. doi: 10.1073/pnas.94.16.8795. PubMed DOI PMC

Bendas G., Krause A., Schmidt R., Vogel J., Rothe U. Selectins as new targets for immunoliposome-mediated drug delivery. A potential way of anti-nflammatory therapy. Pharm. Acta Helv. 1998;73:19–26. doi: 10.1016/S0031-6865(97)00043-5. PubMed DOI

Slee D.H., Romano S.J., Yu J., Nguyen T.N., John J.K., Raheja N.K., Axe F.U., Jones T.K., Ripka W.C. Development of potent non-carbohydrate imidazole-based small molecule selectin inhibitors with antiinflammatory activity. J. Med. Chem. 2001;44:2094–2107. doi: 10.1021/jm000508c. PubMed DOI

Kranich R., Busemann A.S., Bock D., Schroeter-Maas S., Beyer D., Heinemann B., Meyer M., Schierhorn K., Zahlten R., Wolff G., et al. Rational design of novel, potent small molecule pan-selectin antagonists. J. Med. Chem. 2007;50:1101–1115. doi: 10.1021/jm060536g. PubMed DOI

Kaila N., Somers W.S., Thomas B.E., Thakker P., Janz K., DeBernardo S., Tam S., Moore W.J., Yang R., Wrona W., et al. Quinic acid derivatives as sialyl Lewis(x)-mimicking selectin inhibitors: Design, synthesis, and crystal structure in complex with E-selectin. J. Med. Chem. 2005;48:4346–4357. doi: 10.1021/jm050049l. PubMed DOI

Schon M.P., Krahn T., Schon M., Rodriguez M.L., Antonicek H., Schultz J.E., Ludwig R.J., Zollner T.M., Bischoff E., Bremm K.D., et al. Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nat. Med. 2002;8:366–372. doi: 10.1038/nm0402-366. PubMed DOI

Ulbrich H.K., Luxenburger A., Prech P., Eriksson E.E., Soehnlein O., Rotzius P., Lindbom L., Dannhardt G. A novel class of potent nonglycosidic and nonpeptidic pan-selectin inhibitors. J. Med. Chem. 2006;49:5988–5999. doi: 10.1021/jm060468y. PubMed DOI

Hiramatsu Y., Tsukida T., Nakai Y., Inoue Y., Kondo H. Study on selectin blocker. 8. Lead discovery of a non-sugar antagonist using a 3D-pharmacophore model. J. Med. Chem. 2000;43:1476–1483. doi: 10.1021/jm990342j. PubMed DOI

von Bonin A., Buchmann B., Bader B., Rausch A., Venstrom K., Schafer M., Grundemann S., Gunther J., Zorn L., Nubbemeyer R., et al. Efomycine M: An inhibitor of selectins? Nat. Med. 2006;12:873. doi: 10.1038/nm0806-873a. PubMed DOI

Wienrich B.G., Krahn T., Schon M., Rodriguez M.L., Kramer B., Busemann M., Boehncke W.H., Schon M.P. Structure-function relation of efomycines, a family of small-molecule inhibitors of selectin functions. J. Investig. Dermatol. 2006;126:882–889. doi: 10.1038/sj.jid.5700159. PubMed DOI

Barth R., Mulzer J. Two-directional total synthesis of efomycine M and formal total synthesis of elaiolide. Tetrahedron. 2008;64:4718–4735. doi: 10.1016/j.tet.2008.01.114. DOI

Fukuda M.N., Ohyama C., Lowitz K., Matsuo O., Pasqualini R., Ruoslahti E., Fukuda M. A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res. 2000;60:450–456. PubMed

Molenaar T.J., Appeldoorn C.C., de Haas S.A., Michon I.N., Bonnefoy A., Hoylaerts M.F., Pannekoek H., van Berkel T.J., Kuiper J., Biessen E.A. Specific inhibition of P-selectin-mediated cell adhesion by phage display-derived peptide antagonists. Blood. 2002;100:3570–3577. doi: 10.1182/blood-2002-02-0641. PubMed DOI

Ye Z., Zhang S., Liu Y., Wang S., Zhang J., Huang R. A Peptide Analogue of Selectin Ligands Attenuated Atherosclerosis by Inhibiting Monocyte Activation. Mediat. Inflamm. 2019;2019:8709583. doi: 10.1155/2019/8709583. PubMed DOI PMC

Watz H., Bock D., Meyer M., Schierhorn K., Vollhardt K., Woischwill C., Pedersen F., Kirsten A., Beeh K.M., Meyer-Sabellek W., et al. Inhaled pan-selectin antagonist Bimosiamose attenuates airway inflammation in COPD. Pulm Pharmacol. Ther. 2013;26:265–270. doi: 10.1016/j.pupt.2012.12.003. PubMed DOI

Peterson J., Vohra Y., Myers D.D., Locatelli-Hoops S., Magnani J.L. A Novel Glycomimetic Compound (GMI-1757) with Dual Functional Antagonism to E-Selectin and Galectin-3 Demonstrates Inhibition of Thrombus Formation in an Inferior Vena Cava Model. Blood. 2018;132(Suppl. 1):2211. doi: 10.1182/blood-2018-99-118122. PubMed DOI

DeAngelo D.J., Erba H.P., Jonas B.A., O’Dwyer M., Marlton P., Hul G.A., Liesveld J., Cooper B.W., Bhatnagar B., Armstrong M., et al. A phase III trial to evaluate the efficacy of uproleselan (GMI-1271) with chemotherapy in patients with relapsed/refractory acute myeloid leukemia. J. Clin. Oncol. 2019:37. doi: 10.1200/JCO.2019.37.15_suppl.TPS7066. DOI

Telen M.J., Wun T., McCavit T.L., De Castro L.M., Krishnamurti L., Lanzkron S., Hsu L.L., Smith W.R., Rhee S., Magnani J.L., et al. Randomized phase 2 study of GMI-1070 in SCD: Reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125:2656–2664. doi: 10.1182/blood-2014-06-583351. PubMed DOI PMC

Compain P., Martin O.R. Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors. Curr. Top. Med. Chem. 2003;3:541–560. doi: 10.2174/1568026033452474. PubMed DOI

Compain P., Martin O.R. Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg. Med. Chem. 2001;9:3077–3092. doi: 10.1016/S0968-0896(01)00176-6. PubMed DOI

Wang S., Vidal S. Recent design of glycosyltransferase inhibitors. Carbohydr. Chem. 2013;39:78–101. doi: 10.1039/9781849737173-00073. DOI

Szabo R., Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med. Res. Rev. 2017;37:219–270. doi: 10.1002/med.21407. PubMed DOI

Tu Z., Lin Y.N., Lin C.H. Development of fucosyltransferase and fucosidase inhibitors. Chem. Soc. Rev. 2013;42:4459–4475. doi: 10.1039/c3cs60056d. PubMed DOI

Wang L., Liu Y., Wu L., Sun X.L. Sialyltransferase inhibition and recent advances. Biochim. Biophys. Acta. 2016;1864:143–153. doi: 10.1016/j.bbapap.2015.07.007. PubMed DOI

Kajimoto T., Node M. Synthesis of Glycosyltransferase Inhibitors. Synthesis. 2009:3179–3210. doi: 10.1055/s-0029-1216976. DOI

Videira P.A., Marcelo F., Grewal R.K. Glycosyltransferase inhibitors: A promising strategy to pave a path from laboratory to therapy. Carbohydr. Chem. 2018;43:135–158. doi: 10.1039/9781788010641-00135. DOI

Tedaldi L., Wagner G.K. Beyond substrate analogues: New inhibitor chemotypes for glycosyltransferases. MedChemComm. 2014;5:1106–1125. doi: 10.1039/C4MD00086B. DOI

Butters T.D., Dwek R.A., Platt F.M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology. 2005;15:43R–52R. doi: 10.1093/glycob/cwi076. PubMed DOI

Belanger A.E., Besra G.S., Ford M.E., Mikusova K., Belisle J.T., Brennan P.J., Inamine J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA. 1996;93:11919–11924. doi: 10.1073/pnas.93.21.11919. PubMed DOI PMC

Tvaroska I., Andre I., Carver J.P. Ab Initio Molecular Orbital Study of the Catalytic Mechanism of Glycosyltransferases: Description of Reaction Pthways and Determination of Transition-State Structures for Inverting N-Acetylglucosaminyltranferases. J. Am. Chem. Soc. 2000;122:8762–8776. doi: 10.1021/ja001525u. DOI

Merino P., Tejero T., Delso I., Hurtado-Guerrero R., Gomez-SanJuan A., Sadaba D. Recent progress on fucosyltransferase inhibitors. Mini Rev. Med. Chem. 2012;12:1455–1464. doi: 10.2174/138955712803832753. PubMed DOI

Lin Y.-H., Stein D., Liin S.-M., Chang T.-C., Lin Y.-R., Chuang J., Gervey-Hague H., Narimatsu H., Lin C.-H. Chemoenzymatic Synthesis of GDP-l-Fucose Derivatives as Potent and Selective a-1,3-Fucosyltransferase Inhibitors. Adv. Synth. Catal. 2012;354:1750–1758. doi: 10.1002/adsc.201100940. DOI

Lee L.V., Mitchell M.L., Huang S.J., Fokin V.V., Sharpless K.B., Wong C.H. A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc. 2003;125:9588–9589. doi: 10.1021/ja0302836. PubMed DOI

Williams S.J., Withers S.G. Glycosyl fluorides in enzymatic reactions. Carbohydr. Res. 2000;327:27–46. doi: 10.1016/S0008-6215(00)00041-0. PubMed DOI

Burkart M.D., Vincent S.P., Duffels A., Murray B.W., Ley S.V., Wong C.H. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: Useful mechanistic probes for glycosyltransferases. Bioorg. Med. Chem. 2000;8:1937–1946. doi: 10.1016/S0968-0896(00)00139-5. PubMed DOI

Rillahan C.D., Antonopoulos A., Lefort C.T., Sonon R., Azadi P., Ley K., Dell A., Haslam S.M., Paulson J.C. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 2012;8:661–668. doi: 10.1038/nchembio.999. PubMed DOI PMC

Macauley M.S., Arlian B.M., Rillahan C.D., Pang P.C., Bortell N., Marcondes M.C., Haslam S.M., Dell A., Paulson J.C. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J. Biol. Chem. 2014;289:35149–35158. doi: 10.1074/jbc.M114.606517. PubMed DOI PMC

Heise T., Pijnenborg J.F.A., Bull C., van Hilten N., Kers-Rebel E.D., Balneger N., Elferink H., Adema G.J., Boltje T.J. Potent Metabolic Sialylation Inhibitors Based on C-5-Modified Fluorinated Sialic Acids. J. Med. Chem. 2019;62:1014–1021. doi: 10.1021/acs.jmedchem.8b01757. PubMed DOI PMC

Yuasa H., Palcic M.M., Hindsgaul O. Synthesis of the carbocyclic analog of uridine 5′-(a-galactopyranosyl diphosphate) (UDP-Gal) as an inhibitor of b(1-4)-galactosyltransferase. Can. J. Chem. 1995;73:2190–2195. doi: 10.1139/v95-272. DOI

Takaya K., Nagahori N., Kurogochi M., Furuike T., Miura N., Monde K., Lee Y.C., Nishimura S. Rational design, synthesis, and characterization of novel inhibitors for human beta-1,4-galactosyltransferase. J. Med. Chem. 2005;48:6054–6065. doi: 10.1021/jm0504297. PubMed DOI

Schaub C., Muller B., Schmidt R.R. New sialyltransferase inhibitors based on CMP-quinic acid: Development of a new sialyltransferase assay. Glycoconj. J. 1998;15:345–354. doi: 10.1023/A:1006917717161. PubMed DOI

Hosoguchi K., Maeda T., Furukawa J., Shinohara Y., Hinou H., Sekiguchi M., Togame H., Takemoto H., Kondo H., Nishimura S. An efficient approach to the discovery of potent inhibitors against glycosyltransferases. J. Med. Chem. 2010;53:5607–5619. doi: 10.1021/jm100612r. PubMed DOI

Dimitroff C.J., Bernacki R.J., Sackstein R. Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: Implications in modulating lymphocyte migration to skin. Blood. 2003;101:602–610. doi: 10.1182/blood-2002-06-1736. PubMed DOI

Dimitroff C.J., Kupper T.S., Sackstein R. Prevention of leukocyte migration to inflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen. J. Clin. Investig. 2003;112:1008–1018. doi: 10.1172/JCI19220. PubMed DOI PMC

Zandberg W.F., Kumarasamy J., Pinto B.M., Vocadlo D.J. Metabolic inhibition of sialyl-Lewis X biosynthesis by 5-thiofucose remodels the cell surface and impairs selectin-mediated cell adhesion. J. Biol. Chem. 2012;287:40021–40030. doi: 10.1074/jbc.M112.403568. PubMed DOI PMC

Wang X., Zhang L.H., Ye X.S. Recent development in the design of sialyltransferase inhibitors. Med. Res. Rev. 2003;23:32–47. doi: 10.1002/med.10030. PubMed DOI

Brockhausen I., Reck F., Kuhns W., Khan S., Matta K.L., Meinjohanns E., Paulsen H., Shah R.N., Baker M.A., Schachter H. Substrate specificity and inhibition of UDP-GlcNAc:GlcNAc beta 1-2Man alpha 1-6R beta 1,6-N-acetylglucosaminyltransferase V using synthetic substrate analogues. Glycoconj. J. 1995;12:371–379. doi: 10.1007/BF00731340. PubMed DOI

Pesnot T., Jorgensen R., Palcic M.M., Wagner G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 2010;6:321–323. doi: 10.1038/nchembio.343. PubMed DOI PMC

Pesnot T., Wagner G.K. Novel derivatives of UDP-glucose: Concise synthesis and fluorescent properties. Org. Biomol. Chem. 2008;6:2884–2891. doi: 10.1039/b805216f. PubMed DOI

Descroix K., Pesnot T., Yoshimura Y., Gehrke S.S., Wakarchuk W., Palcic M.M., Wagner G.K. Inhibition of galactosyltransferases by a novel class of donor analogues. J. Med. Chem. 2012;55:2015–2024. doi: 10.1021/jm201154p. PubMed DOI

Jorgensen R., Pesnot T., Lee H.J., Palcic M.M., Wagner G.K. Base-modified donor analogues reveal novel dynamic features of a glycosyltransferase. J. Biol. Chem. 2013;288:26201–26208. doi: 10.1074/jbc.M113.465963. PubMed DOI PMC

Qasba P.K., Ramakrishnan B., Boeggeman E. Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 2005;30:53–62. doi: 10.1016/j.tibs.2004.11.005. PubMed DOI

Jiang J., Kanabar V., Padilla B., Man F., Pitchford S.C., Page C.P., Wagner G.K. Uncharged nucleoside inhibitors of beta-1,4-galactosyltransferase with activity in cells. Chem. Commun. (Camb.) 2016;52:3955–3958. doi: 10.1039/C5CC09289B. PubMed DOI

Hindsgaul O., Kaurz K.J., Srivastavaz G., Balaszczyk-ThurinlI M., CrawleyII S.C., Heerzell L.D., Palcic M.M. Evaluation of Deoxygenated Oligosaccharide Specific Inhibitors of Glycosyltransferases. J. Biol. Chem. 1991;266:17858–17862. PubMed

Brown J.R., Fuster M.M., Li R., Varki N., Glass C.A., Esko J.D. A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clin. Cancer Res. 2006;12:2894–2901. doi: 10.1158/1078-0432.CCR-05-2745. PubMed DOI

Fuster M.M., Brown J.R., Wang L., Esko J.D. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 2003;63:2775–2781. PubMed

Sarkar A.K., Fritz T.A., Taylor W.H., Esko J.D. Disaccharide uptake and priming in animal cells: Inhibition of sialyl Lewis X by acetylated Gal beta 1-->4GlcNAc beta-O-naphthalenemethanol. Proc. Natl. Acad. Sci. USA. 1995;92:3323–3327. doi: 10.1073/pnas.92.8.3323. PubMed DOI PMC

Sarkar A.K., Rostand K.S., Jain R.K., Matta K.L., Esko J.D. Fucosylation of disaccharide precursors of sialyl LewisX inhibit selectin-mediated cell adhesion. J. Biol. Chem. 1997;272:25608–25616. doi: 10.1074/jbc.272.41.25608. PubMed DOI

Brown J.R., Fuster M.M., Whisenant T., Esko J.D. Expression patterns of alpha 2,3-sialyltransferases and alpha 1,3-fucosyltransferases determine the mode of sialyl Lewis X inhibition by disaccharide decoys. J. Biol. Chem. 2003;278:23352–23359. doi: 10.1074/jbc.M303093200. PubMed DOI

Brown J.R., Yang F., Sinha A., Ramakrishnan B., Tor Y., Qasba P.K., Esko J.D. Deoxygenated disaccharide analogs as specific inhibitors of beta-1-4-galactosyltransferase 1 and selectin-mediated tumor metastasis. J. Biol. Chem. 2009;284:4952–4959. doi: 10.1074/jbc.M805782200. PubMed DOI PMC

Mong T.K., Lee L.V., Brown J.R., Esko J.D., Wong C.H. Synthesis of N-acetyllactosamine derivatives with variation in the aglycon moiety for the study of inhibition of sialyl Lewis x expression. ChemBioChem. 2003;4:835–840. doi: 10.1002/cbic.200300650. PubMed DOI

Izumi M., Yuasa H., Hashimoto H. Bisubstrate analogues as glycosyltransferase inhibitors. Curr. Top. Med. Chem. 2009;9:87–105. doi: 10.2174/156802609787354351. PubMed DOI

Hashimoto H., Endo T., Kajihara Y. Synthesis of the First Tricomponent Bisubstrate Analogue That Exhibits Potent Inhibition against GlcNAc:beta-1,4-Galactosyltransferase. J. Org. Chem. 1997;62:1914–1915. doi: 10.1021/jo962235s. PubMed DOI

Izumi M., Kaneko S., Yuasa H., Hashimoto H. Synthesis of bisubstrate analogues targeting alpha-1,3-fucosyltransferase and their activities. Org. Biomol. Chem. 2006;4:681–690. doi: 10.1039/B513897C. PubMed DOI

Hinou H., Sun X.L., Ito Y. Systematic syntheses and inhibitory activities of bisubstrate-type inhibitors of sialyltransferases. J. Org. Chem. 2003;68:5602–5613. doi: 10.1021/jo030042g. PubMed DOI

Wu C.Y., Hsu C.C., Chen S.T., Tsai Y.C. Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun. 2001;284:466–469. doi: 10.1006/bbrc.2001.5002. PubMed DOI

Chang W.W., Yu C.Y., Lin T.W., Wang P.H., Tsai Y.C. Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 2006;341:614–619. doi: 10.1016/j.bbrc.2005.12.216. PubMed DOI

Chiang C.H., Wang C.H., Chang H.C., More S.V., Li W.S., Hung W.C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling. J. Cell Physiol. 2010;223:492–499. doi: 10.1002/jcp.22068. PubMed DOI

Chang K.H., Lee L., Chen J., Li W.S. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors. Chem. Commun. 2006:629–631. doi: 10.1039/b514915k. PubMed DOI

Niu X., Fan X., Sun J., Ting P., Narula S., Lundell D. Inhibition of fucosyltransferase VII by gallic acid and its derivatives. Arch. Biochem. Biophys. 2004;425:51–57. doi: 10.1016/j.abb.2004.02.039. PubMed DOI

Lee K.Y., Kim H.G., Hwang M.R., Chae J.I., Yang J.M., Lee Y.C., Choo Y.K., Lee Y.I., Lee S.S., Do S.I. The Hexapeptide inhibitor of Galbeta 1,3GalNAc-specific alpha-2,3-sialyltransferase as a generic inhibitor of sialyltransferases. J. Biol. Chem. 2002;277:49341–49351. doi: 10.1074/jbc.M209618200. PubMed DOI

Badhani B., Sharma N., Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–27557. doi: 10.1039/C5RA01911G. DOI

Gao Y., Vlahakis J.Z., Szarek W.A., Brockhausen I. Selective inhibition of glycosyltransferases by bivalent imidazolium salts. Bioorg. Med. Chem. 2013;21:1305–1311. doi: 10.1016/j.bmc.2012.12.034. PubMed DOI

Takayama S., Chung S.J., Igarashi Y., Ichikawa Y., Sepp A., Lechler R.I., Wu J., Hayashi T., Siuzdak G., Wong C.H. Selective inhibition of beta-1,4- and alpha-1,3-galactosyltransferases: Donor sugar-nucleotide based approach. Bioorg. Med. Chem. 1999;7:401–409. doi: 10.1016/S0968-0896(98)00249-1. PubMed DOI

Pauling L. Chemical achievement and hope for the future. Am. Sci. 1948;36:51–58. PubMed

Wolfenden R. Transition state analogues for enzyme catalysis. Nature. 1969;223:704–705. doi: 10.1038/223704a0. PubMed DOI

Schramm V.L. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 1998;67:693–720. doi: 10.1146/annurev.biochem.67.1.693. PubMed DOI

Schramm V.L. Transition States and transition state analogue interactions with enzymes. Acc. Chem. Res. 2015;48:1032–1039. doi: 10.1021/acs.accounts.5b00002. PubMed DOI PMC

Gloster T.M., Vocadlo D.J. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat. Chem. Biol. 2012;8:683–694. doi: 10.1038/nchembio.1029. PubMed DOI

Truhlar D.G. Transition state theory for enzyme kinetics. Arch. Biochem. Biophys. 2015;582:10–17. doi: 10.1016/j.abb.2015.05.004. PubMed DOI PMC

Schwartz S.D., Schramm V.L. Enzymatic transition states and dynamic motion in barrier crossing. Nat. Chem. Biol. 2009;5:551–558. doi: 10.1038/nchembio.202. PubMed DOI PMC

Schmidt R.R., Frische K. A new Galactosyl Transferase Inhibitor. Bioorg. Med. Chem. Lett. 1993;3:1747–1750. doi: 10.1016/S0960-894X(00)80055-4. DOI

Muller B., Schaub C., Schmidt R.R. Efficient Sialyltransferase Inhibitors Based on Transition-State Analogues of the Sialyl Donor. Angew. Chem. Int. Ed. Engl. 1998;37:2893–2897. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2893::AID-ANIE2893>3.0.CO;2-W. PubMed DOI

Amann F., Schaub C., Muller B., Schmidt R.R. New Potent Sialyltransferase Inhibitors—Synthesis of Donor and of Transition-State Analogues of Sialyl Donor CMP-Neu5Ac. Chem. Eur. J. 1998;4:1106–1115. doi: 10.1002/(SICI)1521-3765(19980615)4:6<1106::AID-CHEM1106>3.0.CO;2-7. DOI

Guo J., Li W., Xue W., Ye X.S. Transition State-Based Sialyltransferase Inhibitors: Mimicking Oxocarbenium Ion by Simple Amide. J. Med. Chem. 2017;60:2135–2141. doi: 10.1021/acs.jmedchem.6b01644. PubMed DOI

Sun H.T., Yang J., Amaral K.E., Horenstein N.A. Synthesis of a new transition-state analog of the sialyl donor. Inhibition of sialyltransferases. Tetrahedron Lett. 2001;42:2451–2453. doi: 10.1016/S0040-4039(01)00204-0. DOI

Mitchell M.L., Tian F., Lee L.V., Wong C.H. Synthesis and evaluation of transition-state analogue inhibitors of alpha-1,3-fucosyltransferase. Angew. Chem. Int. Ed. Engl. 2002;41:3041–3044. doi: 10.1002/1521-3773(20020816)41:16<3041::AID-ANIE3041>3.0.CO;2-V. PubMed DOI

Raab M., Kozmon S., Tvaroska I. Potential transition-state analogs for glycosyltransferases. Design and DFT calculations of conformational behavior. Carbohydr. Res. 2005;340:1051–1057. doi: 10.1016/j.carres.2005.01.041. PubMed DOI

Sihelnikova L., Kozmon S., Tvaroska I. DFT and Docking Study of Potential Transition State Analogue Inhibitors of Glycosyltransferases. Collect. Czech. Chem. Commun. 2008;73:591–607. doi: 10.1135/cccc20080591. DOI

Barath M., Koos M., Tvaroska I., Hirsch J.A. Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc. Chem. Pap. 2015;69:339–347. doi: 10.1515/chempap-2015-0017. DOI

Barath M., Lin C.-H., Tvaroska I., Hirsch J. Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psico- or D-tagatofuranose scaffolds. Chem. Pap. 2015;69:348–357. doi: 10.1515/chempap-2015-0063. DOI

Hirsch J.A., Koos M., Tvaroska I. Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltransferases. Chem. Pap. 2009;63:329–333. doi: 10.2478/s11696-009-0008-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...