• This record comes from PubMed

Skeletal Muscle and the Effects of Ammonia Toxicity in Fish, Mammalian, and Avian Species: A Comparative Review Based on Molecular Research

. 2020 Jun 30 ; 21 (13) : . [epub] 20200630

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
NC1084 USDA Regional Project

Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species' myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species.

See more in PubMed

Wang W., Walsh W. High ammonia tolerance in fishes of the family Batrachoididae (Toadfish and Midshipmen) Aquat. Toxicol. 2000;50:205–219. doi: 10.1016/S0166-445X(99)00101-0. PubMed DOI

Wee N.L.J., Tng Y.Y.M., Cheng H.T., Lee S.M.L., Chew S.F., Ip Y.K. Ammonia toxicity and tolerance in the brain of the African sharptooth catfish, Clarias gariepinus. Aquat. Toxicol. 2007;82:204–213. doi: 10.1016/j.aquatox.2007.02.015. PubMed DOI

Ip Y.K., Leong M.W.F., Sim M.Y., Goh G.S., Wong W.P., Chew S.F. Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti: Brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801. J. Exp. Biol. 2005;208:1993–2004. doi: 10.1242/jeb.01586. PubMed DOI

Sänger A.M., Stoiber W. Muscle Fiber Diversity and Plasticity. Fish Physiol. 2001;18:187–250.

Greer-Walker M. Growth and development of the Skeletal Muscle Fibres of the Cod (Gadus morhua L.) ICES J. Mar. Sci. 1970;33:228–244. doi: 10.1093/icesjms/33.2.228. DOI

Zhang G., Swank D.M., Rome L.C. Quantitative distribution of muscle fiber types in the scup Stenotomus chrysops. J. Morphol. 1996;229:71–81. doi: 10.1002/(SICI)1097-4687(199607)229:1<71::AID-JMOR4>3.0.CO;2-S. PubMed DOI

Rome L.C., Swank D., Corda D. How fish power swimming. Science. 1993;261:340–343. doi: 10.1126/science.8332898. PubMed DOI

Bone Q. Fish Physiology. Elsevier; Amsterdam, The Netherlands: 1978. Locomotor muscle.

Jayne B.C., Lauder G.V. How swimming fish use slow and fast muscle fibers: Implications for models of vertebrate muscle recruitment. J. Comp. Physiol. A. 1994;175:123–131. doi: 10.1007/BF00217443. PubMed DOI

Driedzic W.R., Hochachka P.W. Control of Energy Metabolism in Fish White Muscle. Am. J. Physiol. 1976;230:579–582. doi: 10.1152/ajplegacy.1976.230.3.579. PubMed DOI

McKenzie D.J. Encyclopedia of Fish Physiology. Elsevier; Amsterdam, The Netherlands: 2011. Energetics of Fish Swimming.

Videler J.J. Fish Swimming. Springer; Dordrecht, Netherlands: 1993.

Rowlerson A., Mascarello F., Radaelli G., Veggetti A. Differentiation and growth of muscle in the fish Sparus aurata (L): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J. Muscle Res. Cell Motil. 1995;16:223–236. doi: 10.1007/BF00121131. PubMed DOI

Johnston I.A., Davison W., Goldspink G. Energy metabolism of carp swimming muscles. J. Comp. Physiol. B. 1977;114:203–216. doi: 10.1007/BF00688970. DOI

Johnston I.A., Patterson S., Ward P., Goldspink G. The histochemical demonstration of myofibrillar adenosine triphosphatase activity in fish muscle. Can. J. Zool. 1974;52:871–877. doi: 10.1139/z74-118. PubMed DOI

Schiaffino S., Reggiani C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011;91:1447–1531. doi: 10.1152/physrev.00031.2010. PubMed DOI

Gerrard D.E., Grant A.L. Principles of Animal Growth and Development. Kendall Hunt; Dubuque, IA, USA: 2003.

Sawatari E., Seki R., Adachi T., Hashimoto H., Uji S., Wakamatsu Y., Nakata T., Kinoshita M. Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes) Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010;155:183–189. doi: 10.1016/j.cbpa.2009.10.030. PubMed DOI

Wiskus K.J., Addis P.B., Ma R.-I. Distribution of βR, αR and αW Fibers in Turkey Muscles. Poult. Sci. 1976;55:562–572. doi: 10.3382/ps.0550562. DOI

Pette D., Staron R. Myosin Isoforms, Muscle Fiber Types, and Transitions. Microsc. Res. Tech. 2000;50:500–509. doi: 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7. PubMed DOI

Vélez E.J., Lutfi E., Azizi S., Perelló M., Salmerón C., Riera-Codina M., Ibarz A., Fernández-Borràs J., Blasco J., Capilla E., et al. Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture. 2017;467:28–40. doi: 10.1016/j.aquaculture.2016.07.004. DOI

Mommsen T.P. Paradigms of Growth in Fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001;129:207–219. doi: 10.1016/S1096-4959(01)00312-8. PubMed DOI

Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001;3:1014–1019. doi: 10.1038/ncb1101-1014. PubMed DOI

Wigmore P.M., Strickland N.C. DNA, RNA and Protein in Skeletal Muscle of Large and Small Pig Fetuses. Growth. 1983;47:67–76. doi: 10.1371/journal.pone.0072418. PubMed DOI

Koumans J.T.M., Akster H.A., Booms G.H.R., Osse J.W.M. Growth of carp (Cyprinus carpio) white axial muscle; hyperplasia and hypertrophy in relation to the myonucleus/sarcoplasm ratio and the occurrence of different subclasses of myogenic cells. J. Fish Biol. 1993;43:69–80. doi: 10.1111/j.1095-8649.1993.tb00411.x. DOI

Koumans J.T.M., Akster H.A., Witkam A., Osse J.W.M. Numbers of muscle nuclei and myosatellite cell nuclei in red and white axial muscle during growth of the carp (Cyprinus carpio) J. Fish Biol. 1994;44:391–408. doi: 10.1111/j.1095-8649.1994.tb01220.x. DOI

Stickland N.C. Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri) J. Anat. 1983;137:323–333. PubMed PMC

Rowlerson A., Veggetti A. Cellular Mechanisms of Post-Embryonic Muscle Growth in Aquaculture Species. Fish Physiol. 2001;18:103–140. doi: 10.1016/S1546-5098(01)18006-4. DOI

Veggetti A., Mascarello F., Scapolo P.A., Rowlerson A., Carnevali C. Muscle growth and myosin isoform transitions during development of a small teleost fish, Poecilia reticulata (Peters) (Atheriniformes, Poeciliidae): A histochemical, immunohistochemical, ultrastructural and morphometric study. Anat. Embryol. 1993;187:353–361. doi: 10.1007/BF00185893. PubMed DOI

Carpenè E., Veggetti A. Increase in muscle fibres in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei) Experientia. 1981;37:191–193. doi: 10.1007/BF01963227. PubMed DOI

Romanello M.G., Scapolo P.A., Luprano S., Mascarello F. Post-larval growth in the lateral white muscle of the eel, Anguilla anguilla. J. Fish Biol. 1987;30:161–172. doi: 10.1111/j.1095-8649.1987.tb05742.x. DOI

Patterson S.E., Mook L.B., Devoto S.H. Growth in the Larval Zebrafish Pectoral Fin and Trunk Musculature. Dev. Dyn. 2008;237:307–315. doi: 10.1002/dvdy.21400. PubMed DOI

Ahammad A.K.S., Asaduzzaman M., Asakawa S., Watabe S., Kinoshita S. Regulation of gene expression mediating indeterminate muscle growth in teleosts. Mech. Dev. 2015;137:53–65. doi: 10.1016/j.mod.2015.02.006. PubMed DOI

Froehlich J.M., Fowler Z.G., Galt N.J., Smith D.L., Biga P.R. Sarcopenia and piscines: The case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front. Genet. 2013;4:159. doi: 10.3389/fgene.2013.00159. PubMed DOI PMC

Seale P., Sabourin L.A., Girgis-Gabardo A., Mansouri A., Gruss P., Rudnicki M.A. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102:777–786. doi: 10.1016/S0092-8674(00)00066-0. PubMed DOI

Wang Y.X., Rudnicki M.A. Satellite Cells, the Engines of Muscle Repair. Nat. Rev. Mol. Cell Biol. 2011;13:127–133. doi: 10.1038/nrm3265. PubMed DOI

Kablar B., Krastel K., Ying C., Asakura A., Tapscott S.J., Rudnicki M.A. MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development. 1997;124:4729–4738. PubMed

Rudnicki M.A., Schnegelsberg P.N., Stead R.H., Braun T., Arnold H.H., Jaenisch R. MyoD or Myf-5 Is Required for the Formation of Skeletal Muscle. Cell. 1993;75:1351–1359. doi: 10.1016/0092-8674(93)90621-V. PubMed DOI

Tajbakhsh S., Cossu G. Establishing myogenic identity during somitogenesis. Curr. Opin. Genet. Dev. 1997;7:634–641. doi: 10.1016/S0959-437X(97)80011-1. PubMed DOI

Hasty P., Bradley A., Morris J.H., Edmondson D.G., Venuti J.M., Olson E.N., Klein W.H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993;364:501–506. doi: 10.1038/364501a0. PubMed DOI

Hinits Y., Osborn D.P.S., Carvajal J.J., Rigby P.W.J., Hughes S.M. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr. Patterns. 2007;7:738–745. doi: 10.1016/j.modgep.2007.06.003. PubMed DOI PMC

Nabeshima Y., Hanaoka K., Hayasaka M., Esuml E., Li S., Nonaka I., Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993;364:532–535. doi: 10.1038/364532a0. PubMed DOI

Weinberg E.S., Allende M.L., Kelly C.S., Abdelhamid A., Murakami T., Andermann P., Doerre O.G., Grunwald D.J., Riggleman B. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development. 1996;122:271–280. PubMed

Cole N.J., Hall T.E., Martin C.I., Chapman M.A., Kobiyama A., Nihei Y., Watabe S., Johnston I.A. Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L. J. Exp. Biol. 2004;207:2111–2120. doi: 10.1242/jeb.01263. PubMed DOI

Xie S.Q., Mason P.S., Wilkes D., Goldspink G., Fauconneau B., Stickland N.C. Lower environmental temperature delays and prolongs myogenic regulatory factor expression and muscle differentiation in rainbow trout (Onchrhynchus mykiss) embryos. Differentiation. 2001;68:106–114. doi: 10.1046/j.1432-0436.2001.680204.x. PubMed DOI

Steinbacher P., Haslett J.R., Obermayer A., Marschallinger J., Bauer H.C., Sänger A.M., Stoiber W. MyoD and Myogenin expression during myogenic phases in brown trout: A precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev. Dyn. 2007;236:1106–1114. doi: 10.1002/dvdy.21103. PubMed DOI

Schiaffino S., Dyar K.A., Ciciliot S., Blaauw B., Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–4314. doi: 10.1111/febs.12253. PubMed DOI

Barclay R.D., Burd N.A., Tyler C., Tillin N.A., Mackenzie R.W. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front. Nutr. 2019;6:146. doi: 10.3389/fnut.2019.00146. PubMed DOI PMC

Tortorella L.L., Milasincic D.J., Pilch P.F. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J. Biol. Chem. 2001;276:13709–13717. doi: 10.1074/jbc.M100091200. PubMed DOI

Ju L., Johnson S.E. ERK2 Is Required for Efficient Terminal Differentiation of Skeletal Myoblasts. Biochem. Biophys. Res. Commun. 2006;345:1425–1433. doi: 10.1016/J.BBRC.2006.05.051. PubMed DOI

Beckman B.R., Larsen D.A., Moriyama S., Lee-Pawlak B., Dickhoff W.W. Insulin-like Growth factor-I and Environmental Modulation of Growth During Smoltification of Spring Chinook Salmon (Oncorhynchus Tshawystscha) Gen. Comp. Endocrinol. 1998;109:325–335. doi: 10.1006/gcen.1997.7036. PubMed DOI

Pérez-Sánchez J., Martí-Palanca H., Kaushik S.J. Ration size and protein intake affect circulating growth hormone concentration, hepatic growth hormone binding and plasma insulin-like growth factor-I immunoreactivity in a marine teleost, the gilthead sea bream (Sparus aurata) J. Nutr. 1995;125:546–552. doi: 10.1093/jn/125.3.546. PubMed DOI

McCormick S.D., Kelley K.M., Young G., Nishioka R.S., Bern H.A. Stimulation of coho salmon growth by insulin-like growth factor I. Gen. Comp. Endocrinol. 1992;86:398–406. doi: 10.1016/0016-6480(92)90064-Q. PubMed DOI

McPherron A.C., Lawler A.M., Lee S.-J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90. doi: 10.1038/387083a0. PubMed DOI

Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 2000;275:40235–40243. doi: 10.1074/jbc.M004356200. PubMed DOI

Zhu X., Topouzis S., Liang L.F., Stotish R.L. Myostatin Signaling Through Smad2, Smad3 and Smad4 Is Regulated by the Inhibitory Smad7 by a Negative Feedback Mechanism. Cytokine. 2004;26:262–272. doi: 10.1016/j.cyto.2004.03.007. PubMed DOI

McFarlane C., Plummer E., Thomas M., Hennebry A., Ashby M., Ling N., Smith H., Sharma M., Kambadur R. Myostatin Induces Cachexia by Activating the Ubiquitin Proteolytic System Through an NF-kappaB-independent, FoxO1-dependent Mechanism. J. Cell. Physiol. 2006;209:501–514. doi: 10.1002/jcp.20757. PubMed DOI

Trendelenburg A.U., Meyer A., Rohner D., Boyle J., Hatakeyama S., Glass D.J. Myostatin Reduces Akt/TORC1/p70S6K Signaling, Inhibiting Myoblast Differentiation and Myotube Size. Am. J. Physiol. Cell Physiol. 2009;296:1258–1270. doi: 10.1152/ajpcell.00105.2009. PubMed DOI

McPherron A.C., Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 1997;94:12457–12461. doi: 10.1073/pnas.94.23.12457. PubMed DOI PMC

Kambadur R., Sharma M., Smith T.P., Bass J.J. Mutations in Myostatin (GDF8) in Double-Muscled Belgian Blue and Piedmontese Cattle. Genome Res. 1997;7:910–915. doi: 10.1101/gr.7.9.910. PubMed DOI

Acosta J., Carpio Y., Borroto I., González O., Estrada M.P. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 2005;119:324–331. doi: 10.1016/j.jbiotec.2005.04.023. PubMed DOI

Fuentes E.N., Pino K., Navarro C., Delgado I., Valdés J.A., Molina A. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway. J. Biotechnol. 2013;168:295–302. doi: 10.1016/j.jbiotec.2013.10.028. PubMed DOI

Lee S.B., Kim Y.S., Oh M.-Y., Jeong I., Seong K.-B., Jin H.-J. Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture. 2010;302:270–278. doi: 10.1016/j.aquaculture.2010.02.027. DOI

Rescan P.-Y., Jutel I., Rallière C. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss) J. Exp. Biol. 2001;204:3523–3529. PubMed

Østbye T.K., Galloway T.F., Nielsen C., Gabestad I., Bardal T., Andersen Ø. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur. J. Biochem. 2001;268:5249–5257. doi: 10.1046/j.0014-2956.2001.02456.x. PubMed DOI

Roberts S.B., Goetz F.W. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett. 2001;491:212–216. doi: 10.1016/S0014-5793(01)02196-2. PubMed DOI

Wang C., Chen Y.L., Bian W.P., Xie S.L., Qi G.L., Liu L., PR S., JX Z., DS P. Deletion of Mstna and Mstnb Impairs the Immune System and Affects Growth Performance in Zebrafish. Fish Shellfish Immunol. 2018;72:572–580. doi: 10.1016/j.fsi.2017.11.040. PubMed DOI

Maccatrozzo L., Bargelloni L., Radaelli G., Mascarello F., Patarnello T. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): Sequence, genomic structure, and expression pattern. Mar. Biotechnol. 2001;3:224–230. doi: 10.1007/s101260000064. PubMed DOI

Leggatt R.A., Iwama G.K. Occurrence of polyploidy in the fishes. Rev. Fish Biol. Fish. 2003;13:237–246. doi: 10.1023/B:RFBF.0000033049.00668.fe. DOI

Gabillard J.C., Biga P.R., Rescan P.Y., Seiliez I. Revisiting the Paradigm of Myostatin in Vertebrates: Insights from Fishes. Gen. Comp. Endocrinol. 2013;194:45–54. doi: 10.1016/j.ygcen.2013.08.012. PubMed DOI

Ji S., Losinski R.L., Cornelius S.G., Frank G.R., Willis G.M., Gerrard D.E., Depreux F.F., Spurlock M.E. Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 1998;275:1265–1273. doi: 10.1152/ajpregu.1998.275.4.R1265. PubMed DOI

Sharma M., Kambadur R., Matthews K.G., Somers W.G., Devlin G.P., Conaglen J.V., Fowke P.J., Bass J.J. Myostatin, a Transforming Growth Factor-Beta Superfamily Member, Is Expressed in Heart Muscle and Is Upregulated in Cardiomyocytes After Infarct. J. Cell. Physiol. 1999;180:1–9. doi: 10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V. PubMed DOI

Rodgers B.D., Weber G.M., Sullivan C.V., Levine M.A. Isolation and Characterization of Myostatin Complementary Deoxyribonucleic Acid Clones from Two Commercially Important Fish: Oreochromis mossambicusand Morone chrysops. Endocrinology. 2001;142:1412–1418. doi: 10.1210/endo.142.4.8097. PubMed DOI

Radaelli G., Rowlerson A., Mascarello F., Patruno M., Funkenstein B. Myostatin Precursor is Present in Several Tissues in Teleost Fish: A Comparative Immunolocalization Study. Cell Tissue Res. 2003;311:239–250. doi: 10.1007/s00441-002-0668-y. PubMed DOI

Carlson C.J., Booth F.W., Gordon S.E. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am. J. Physiol. 1999;277:601–606. doi: 10.1152/ajpregu.1999.277.2.R601. PubMed DOI

Campbell J.W., Aster P.L., Vorhaben J.E. Mitochondrial ammoniagenesis in liver of the channel catfish Ictalurus punctatus. Am. J. Physiol. 1983;244:R709–R717. doi: 10.1152/ajpregu.1983.244.5.R709. PubMed DOI

Ip Y.K., Chew S.F. Ammonia production, excretion, toxicity, and defense in fish: A review. Front. Physiol. 2010;1:134. doi: 10.3389/fphys.2010.00134. PubMed DOI PMC

Campbell J.W., Vorhaben J.E. Avian Mitochondrial Glutamine Metabolism. J. Biol. Chem. 1976;251:781–786. PubMed

Aoki T.T., Brennan M.F., Fitzpatrick G.F., Knight D.C. Leucine Meal Increases Glutamine and Total Nitrogen Release from Forearm Muscle. J. Clin. Investig. 1981;68:1522–1528. doi: 10.1172/JCI110406. PubMed DOI PMC

Cooper A.J. 13N as a Tracer for Studying Glutamate Metabolism. Neurochem. Int. 2011;59:456–464. doi: 10.1016/j.neuint.2010.11.011. PubMed DOI PMC

Smith D.D., Campbell J.W. Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver. Proc. Natl. Acad. Sci. USA. 1988;85:160–164. doi: 10.1073/pnas.85.1.160. PubMed DOI PMC

Randall D.J., Wood C.M., Perry S.F., Bergman H., Maloiy G.M., Mommsen T.P., Wright P.A. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature. 1989;337:165–166. doi: 10.1038/337165a0. PubMed DOI

Walsh P.J., Danulat E., Mommsen T.P. Variation in urea excretion in the gulf toadfish Opsanus beta. Mar. Biol. 1990;106:323–328. doi: 10.1007/BF01344308. DOI

Walsh P., Milligan C. Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta. J. Exp. Biol. 1995;198:1559–1566. PubMed

Ip Y.K., Zubaidah R.M., Liew P.C., Loong A.M., Hiong K.C., Wong W.P., Chew S.F. African sharptooth catfish Clarias gariepinus does not detoxify ammonia to urea or amino acids but actively excretes ammonia during exposure to environmental ammonia. Physiol. Biochem. Zool. 2004;77:242–254. doi: 10.1086/383499. PubMed DOI

Blair S.D., Wilkie M.P., Edwards S.L. Rh glycoprotein immunoreactivity in the skin and its role in extrabranchial ammonia excretion by the sea lamprey (Petromyzon marinus) in fresh water. Can. J. Zool. 2017;95:95–105. doi: 10.1139/cjz-2016-0120. DOI

Evans D.H., Piermarini P.M., Choe K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005;85:97–177. doi: 10.1152/physrev.00050.2003. PubMed DOI

Goldstein L., Claiborne J.B., Evans D.E. Ammonia excretion by the gills of two marine teleost fish: The importance of NH4+ permeance. J. Exp. Zool. 1982;219:395–397. doi: 10.1002/jez.1402190317. PubMed DOI

Danulat E., Kempe S. Nitrogenous waste excretion and accumulation of urea and ammonia inChalcalburnus tarichi (Cyprinidae), endemic to the extremely alkaline Lake Van (Eastern Turkey) Fish Physiol. Biochem. 1992;9:377–386. doi: 10.1007/BF02274218. PubMed DOI

Wright P.A., Wood C.M. A New Paradigm for Ammonia Excretion in Aquatic Animals: Role of Rhesus (Rh) Glycoproteins. J. Exp. Biol. 2009;212:2303–2312. doi: 10.1242/jeb.023085. PubMed DOI

Maetz J. Na+/NH4+, Na+/H+ Exchanges and NH3 Movement Across the Gill of Carassius Auratus. J. Exp. Biol. 1973;58:255–275.

Planelles G. Ammonium Homeostasis and Human Rhesus Glycoproteins. Nephron. Physiol. 2007;105:11–17. doi: 10.1159/000096979. PubMed DOI

Nakada T., Westhoff C.M., Kato A., Hirose S. Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J. 2007;21:1067–1074. doi: 10.1096/fj.06-6834com. PubMed DOI

Nawata C.M., Wood C.M. mRNA expression analysis of the physiological responses to ammonia infusion in rainbow trout. J. Comp. Physiol. B. 2009;179:799–810. doi: 10.1007/s00360-009-0361-5. PubMed DOI

Egnew N., Renukdas N., Ramena Y., Yadav A.K., Kelly A.M., Lochmann R.T., Sinha A.K. Physiological insights into largemouth bass (Micropterus salmoides) survival during long-term exposure to high environmental ammonia. Aquat. Toxicol. 2019;207:72–82. doi: 10.1016/j.aquatox.2018.11.027. PubMed DOI

Braun M.H., Steele S.L., Perry S.F. The responses of zebrafish (Danio rerio) to high external ammonia and urea transporter inhibition: Nitrogen excretion and expression of rhesus glycoproteins and urea transporter proteins. J. Exp. Biol. 2009;212:3846–3856. doi: 10.1242/jeb.034157. PubMed DOI

Chen X.L., Zhang B., Chng Y.R., Ong J.L.Y., Chew S.F., Wong W.P., Lam S.H., Nakada T., Ip Y.K. Ammonia exposure affects the mRNA and protein expression levels of certain Rhesus glycoproteins in the gills of climbing perch. J. Exp. Biol. 2017;220:2916–2931. doi: 10.1242/jeb.157123. PubMed DOI

Tsui T.K.N., Hung C.Y.C., Nawata C.M., Wilson J.M., Wright P.A., Wood C.M. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: The importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex. J. Exp. Biol. 2009;212:878–892. doi: 10.1242/jeb.021899. PubMed DOI

Iwata K., Deguchi M. Metabolic Fate and Distribution of 15 N-Ammonia in an Ammonotelic Amphibious Fish, Periophthalmus modestus, Following Immersion in 15 N-Ammonium Sulfate: A Long Term Experiment. Zool. Sci. 1995;12:175–184. doi: 10.2108/zsj.12.175. DOI

Wright P.A., Steele S.L., Huitema A., Bernier N.J. Induction of Four Glutamine Synthetase Genes in Brain of Rainbow Trout in Response to Elevated Environmental Ammonia. J. Exp. Biol. 2007;210:2905–2911. doi: 10.1242/jeb.003905. PubMed DOI

Wicks B.J., Randall D.J. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 2002;59:71–82. doi: 10.1016/S0166-445X(01)00237-5. PubMed DOI

Banerjee B., Koner D., Bhuyan G., Saha N. Differential Expression of Multiple Glutamine Synthetase Genes in Air-Breathing Magur Catfish, Clarias magur and Their Induction Under Hyper-Ammonia Stress. Gene. 2018;671:85–95. doi: 10.1016/j.gene.2018.05.111. PubMed DOI

Veauvy C.M., McDonald M.D., Van Audekerke J., Vanhoutte G., Van Camp N., Van der Linden A., Walsh P.J. Ammonia Affects Brain Nitrogen Metabolism but Not Hydration Status in the Gulf Toadfish (Opsanus Beta) Aquat. Toxicol. 2005;74:32–46. doi: 10.1016/j.aquatox.2005.05.003. PubMed DOI

Takahashi H., Koehler R.C., Brusilow S.W., Traystman R.J. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 1991;261:825–829. doi: 10.1152/ajpheart.1991.261.3.H825. PubMed DOI

Clemmesen J.O., Larsen F.S., Kondrup J., Hansen B.A., Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29:648–653. doi: 10.1002/hep.510290309. PubMed DOI

Dasarathy S. Consilience in Sarcopenia of Cirrhosis. J. Cachexia Sarcopenia Muscle. 2012;3:225–237. doi: 10.1007/s13539-012-0069-3. PubMed DOI PMC

Ganda O.P., Ruderman N.B. Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism. 1976;25:427–435. doi: 10.1016/0026-0495(76)90075-5. PubMed DOI

Stern R.A., Dasarathy S., Mozdziak P.E. Ammonia elicits a different myogenic response in avian and murine myotubes. In Vitro Cell Dev. Biol. Anim. 2017;53:99–110. doi: 10.1007/s11626-016-0088-z. PubMed DOI

Dasarathy S., Hatzoglou M. Hyperammonemia and Proteostasis in Cirrhosis. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:30–36. doi: 10.1097/MCO.0000000000000426. PubMed DOI PMC

Beker A., Vanhooser S.L., Swartzlander J.H., Teeter R.G. Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. J. Appl. Poult. Res. 2004;13:5–9. doi: 10.1093/japr/13.1.5. DOI

Zhang J., Li C., Tang X., Lu Q., Sa R., Zhang H. High Concentrations of Atmospheric Ammonia Induce Alterations in the Hepatic Proteome of Broilers (Gallus gallus): An iTRAQ-Based Quantitative Proteomic Analysis. PLoS ONE. 2015;10:e0123596. doi: 10.1371/journal.pone.0123596. PubMed DOI PMC

Smart G.R. Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. J. Fish Biol. 1978;12:93–104. doi: 10.1111/j.1095-8649.1978.tb04155.x. DOI

Randall D.J., Tsui T.K. Ammonia Toxicity in Fish. Mar. Pollut. Bull. 2002;45:17–23. doi: 10.1016/S0025-326X(02)00227-8. PubMed DOI

Suski C.D., Kieffer J.D., Killen S.S., Tufts B.L. Sub-lethal ammonia toxicity in largemouth bass. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007;146:381–389. doi: 10.1016/j.cbpa.2006.11.005. PubMed DOI

Robinette H.R. Effect of Selected Sublethal Levels of Ammonia on the Growth of Channel Catfish (Ictalurus punctatus) Progress. Fish Cult. 1976;38:26–29. doi: 10.1577/1548-8659(1976)38[26:EOSSLO]2.0.CO;2. DOI

Smart G. The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri) J. Fish Biol. 1976;8:471–475. doi: 10.1111/j.1095-8649.1976.tb03990.x. DOI

Daoust P.Y., Ferguson H.W. The pathology of chronic ammonia toxicity in rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 1984;7:199–205. doi: 10.1111/j.1365-2761.1984.tb00924.x. DOI

Ferguson R.I., Ashmore P.E., Ashworth P.J., Paola C., Prestegaard K.L. Measurements in a Braided River chute and lobe: 1. Flow pattern, sediment transport, and channel change. Water Resour. Res. 1992;28:1877–1886. doi: 10.1029/92WR00700. DOI

Tng Y.Y.M., Chew S.F., Wee N.L.J., Wong F.K., Wong W.P., Tok C.Y., Ip Y.K. Acute ammonia toxicity and the protective effects of methionine sulfoximine on the swamp eel, Monopterus albus. J. Exp. Zool. A Ecol. Genet. Physiol. 2009;311:676–688. doi: 10.1002/jez.555. PubMed DOI

Binstock L., Lecar H. Ammonium Ion Currents in the Squid Giant Axon. J. Gen. Physiol. 1969;53:342–361. doi: 10.1085/jgp.53.3.342. PubMed DOI PMC

Cooper A.J., Plum F. Biochemistry and Physiology of Brain Ammonia. Physiol. Rev. 1987;67:440–519. doi: 10.1152/physrev.1987.67.2.440. PubMed DOI

Stern R.A., Ashwell C.M., Dasarathy S., Mozdziak P.E. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos. Animal. 2015;9:992–999. doi: 10.1017/S1751731115000117. PubMed DOI PMC

McKenzie D.J., Shingles A., Taylor E.W. Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003;135:515–526. doi: 10.1016/S1095-6433(03)00116-8. PubMed DOI

Dosdat A., Person-Le Ruyet J., Covès D., Dutto G., Gasset E., Le Roux A., Lemarié G. Effect of chronic exposure to ammonia on growth, food utilisation and metabolism of the European sea bass (Dicentrarchus labrax) Aquat. Living Resour. 2003;16:509–520. doi: 10.1016/j.aquliv.2003.08.001. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...