Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
INFRA-2010-1.1.31-262163
EC FP7 project QualityNano
FNR/12/SR/4009651
Fonds National de la Recherche of Luxembourg, project NANION
1117448
DG06 (Direction générale opérationnelle de l'Economie, de l'Emploi et de la Recherche) of the Walloon Region of Belgium
239199/070
Norwegian Research Council, NorNANoREG project
PubMed
32707981
PubMed Central
PMC7466672
DOI
10.3390/nano10081430
PII: nano10081430
Knihovny.cz E-resources
- Keywords
- best practice, cytotoxicity, inter-laboratory comparison, nanosafety, training,
- Publication type
- Journal Article MeSH
The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.
Biomedical Research Center University of Vigo Campus Lagoas Marcosende 36310 Vigo Spain
Centre for BioNano Interactions University College Dublin Belfield Dublin 4 Ireland
Charles River Laboratories Carrowntreila Ballina Co Mayo Ireland
Environmental Research and Innovation 41 rue du Brill L 4422 Belvaux Luxembourg
Gentian Diagnostics AS Bjørnåsveien 5 1596 Moss Norway
Health Department Flemish Institute for Technological Research Boeretang 200 2400 Mol Belgium
Research Unit in Cellular Biology rue de Bruxelles 61 5000 Namur Belgium
School of Life Sciences Heriot Watt University Riccarton Campus Edinburgh EH14 4AS UK
Science Foundation Ireland Three Park Place Hatch Street Upper Dublin 2 Ireland
SEQme s r o Dlouha 176 26301 Dobris Czech Republic
Swiss Centre for Occupational and Environmental Health Binzhofstrasse 87 8404 Winterthur Switzerland
See more in PubMed
Editorial, Join the dialogue. Nat. Nanotechnol. 2012;7:545. doi: 10.1038/nnano.2012.150. PubMed DOI
Editorial, The dialogue continues. Nat. Nanotechnol. 2013;8:69. doi: 10.1038/nnano.2013.19. PubMed DOI
Dawson K.A. Leave the policing to others. Nat. Nanotechnol. 2013;8:73. doi: 10.1038/nnano.2013.9. PubMed DOI
Krug H.F. Nanosafety research—Are we on the right track? Angew. Chem. Int. Ed. Engl. 2014;53:12304–12319. doi: 10.1002/anie.201403367. PubMed DOI
Ioannidis J.P.A. Why most published research findings are false. PLoS Med. 2005;2:e124. doi: 10.1371/journal.pmed.0020124. PubMed DOI PMC
Begley C.G., Ellis L.M. Drug development: Raise standards for preclinical cancer research. Nature. 2012;483:531–533. doi: 10.1038/483531a. PubMed DOI
McNutt M. Journals unite for reproducibility. Science. 2014;346:679. doi: 10.1126/science.aaa1724. PubMed DOI
Prinz F., Schlange T., Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 2011;10:712. doi: 10.1038/nrd3439-c1. PubMed DOI
Berry C. Reproducibility in experimentation—The implications for regulatory toxicology. Toxicol. Res. 2014;3:411–417. doi: 10.1039/C4TX00069B. DOI
Alberts B., Cicerone R.J., Fienberg S.E., Kamb A., McNutt M., Nerem R.M., Schekman R., Shiffrin R., Stodden V., Suresh S., et al. Scientific integrity. Self-correction in science at work. Science. 2015;348:1420–1422. doi: 10.1126/science.aab3847. PubMed DOI
Schneider K. Faking it: The case against Industrial Bio-Test Laboratories. Amicus J. 1983:14–26.
Cox C. Glyphosate, Part 1: Toxicology. [(accessed on 20 July 2020)];J. Pesticide Reform. 1995 15 Available online: http://www.1hope.org/glyphos8.htm.
Seiler J.P. Good Laboratory Practice—The Why and the How. 2nd ed. Springer; Heidelberg, Germany: 2005. DOI
Hristozov D.R., Gottardo S., Critto A., Marcomini A. Risk assessment of engineered nanomaterials: A review of available data and approaches from a regulatory perspective. Nanotoxicology. 2012;6:880–898. doi: 10.3109/17435390.2011.626534. PubMed DOI
DaNa 2.0 Knowledge Base Nanomaterials—Methodology for Selection of Publications (Version 2016) [(accessed on 22 June 2020)]; Available online: http://www.nanoobjects.info/en/nanoinfo/methods/991-literature-criteria-checklist.
Vankoningsloo S., Piret J.P., Saout C., Noel F., Mejia J., Zouboulis C.C., Delhalle J., Lucas S., Toussaint O. Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: Effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology. 2010;4:84–97. doi: 10.3109/17435390903428869. PubMed DOI
Maiorano G., Sabella S., Sorce B., Brunetti V., Malvindi M.A., Cingolani R., Pompa P.P. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano. 2010;4:7481–7491. doi: 10.1021/nn101557e. PubMed DOI
Taurozzi J.S., Hackley V.A., Wiesner M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—Issues and recommendations. Nanotoxicology. 2011;5:711–729. doi: 10.3109/17435390.2010.528846. PubMed DOI
Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7:779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Drescher D., Orts-Gil G., Laube G., Natte K., Veh R.W., Osterle W., Kneipp J. Toxicity of amorphous silica nanoparticles on eukryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal. Bioanal. Chem. 2011;400:1367–1373. doi: 10.1007/s00216-011-4893-7. PubMed DOI
Lesniak A., Fenaroli F., Monopoli M.P., Åberg C., Dawson K.A., Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–5857. doi: 10.1021/nn300223w. PubMed DOI
Wang F., Yu L., Monopoli M.P., Sandin P., Mahon E., Salvati A., Dawson K.A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine. 2013;9:1159–1168. doi: 10.1016/j.nano.2013.04.010. PubMed DOI
Ge C., Du J., Zhao L., Wang L., Liu Y., Li D., Yang Y., Zhou R., Zhao Y., Chai Z., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA. 2011;108:16968–16973. doi: 10.1073/pnas.1105270108. PubMed DOI PMC
Hu W., Peng C., Lv M., Li X., Zhang Y., Chen N., Fan C., Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–3700. doi: 10.1021/nn200021j. PubMed DOI
Salvati A., Pitek A.S., Monopoli M.P., Prapainop K., Bombelli F.B., Hristov D.R., Kelly P.M., Åberg C., Mahon E., Dawson K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013;8:137–143. doi: 10.1038/nnano.2012.237. PubMed DOI
Kim J.A., Salvati A., Åberg C., Dawson K.A. Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: Limitations of in vitro testing for nanosafety. Nanoscale. 2014;6:14180–14184. doi: 10.1039/C4NR04970E. PubMed DOI
Francia V., Yang K., Deville S., Reker-Smit C., Nelissen I., Salvati A. Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles. ACS Nano. 2019;13:11107–11121. doi: 10.1021/acsnano.9b03824. PubMed DOI PMC
Guadagnini R., Halamoda Kenzaoui B., Cartwright L., Pojana G., Magdolenova Z., Bilanicova D., Saunders M., Juillerat L., Marcomini A., Huk A., et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9:13–24. doi: 10.3109/17435390.2013.829590. PubMed DOI
Yu M., Selvaraj S.K., Liang-Chu M.M., Aghajani S., Busse M., Yuan J., Lee G., Peale F., Klijn C., Bourgon R., et al. A resource for cell line authentication, annotation and quality control. Nature. 2015;520:307–311. doi: 10.1038/nature14397. PubMed DOI
Nübling C.M., Baylis S.A., Hanschmann K.M., Montag-Lessing T., Chudy M., Kress J., Ulrych U., Czurda S., Rosengarten R., Mycoplasma Collaborative Study Group World Health Organization International Standard To Harmonize Assays for Detection of Mycoplasma DNA. Appl. Environ. Microbiol. 2015;81:5694–5702. doi: 10.1128/AEM.01150-15. PubMed DOI PMC
Lundholt B.K., Scudder K.M., Pagliaro L. A simple technique for reducing edge effect in cell-based assays. J. Biomol. Screen. 2003;8:566–570. doi: 10.1177/1087057103256465. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Xia T., Hamilton R.F., Bonner J.C., Crandall E.D., Elder A., Fazlollahi F., Girtsman T.A., Kim K., Mitra S., Ntim S.A., et al. Inter-laboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environ. Health Perspect. 2013;121:683–690. doi: 10.1289/ehp.1306561. PubMed DOI PMC
Elliott J.T., Rösslein M., Song N.W., Toman B., Kinsner-Ovaskainen A., Maniratanachote R., Salit M.L., Petersen E.J., Seqeira F., Romsos E.L., et al. Toward achieving harmonization in a nanocytotoxicity assay measurement through an interlaboratory comparison study. ALTEX. 2017;34:201–218. doi: 10.14573/altex.1605021. PubMed DOI
Piret J.-P., Bondarenko O.M., Boyles M.S.P., Himly M., Ribeiro A.R., Benetti F., Smal C., Lima B., Potthoff A., Simion M., et al. Pan-European Inter-Laboratory Studies on a Panel of in Vitro Cytotoxicity and Pro-Inflammation Assays for Nanoparticles. Arch. Toxicol. 2017;91:2315–2330. doi: 10.1007/s00204-016-1897-2. PubMed DOI
Rösslein M., Elliott J.T., Salit M., Petersen E.J., Hirsch C., Krug H.F., Wick P. Use of Cause-and-Effect Analysis to Design a High-Quality Nanocytotoxicology Assay. Chem. Res. Toxicol. 2015;28:21–30. doi: 10.1021/tx500327y. PubMed DOI
International Standard ISO 19007:2018(E) Nanotechnologies—In Vitro Mts Assay for Measuring the Cytotoxic Effect of Nanoparticles. ISO; Geneva, Switzerland: 2018.
International Standard ISO/IEC 17043:2010 . Conformity Assessment—General Requirements for Proficiency Testing. ISO; Geneva, Switzerland: 2010.
Monteiro-Riviere N.A., Inman A.O., Zhang L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009;234:222–235. doi: 10.1016/j.taap.2008.09.030. PubMed DOI
International Standard ISO 10993-5:2009 . Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO; Geneva, Switzerland: 2009.
Gangwal S., Brown J.S., Wang A., Houck K.A., Dix D.J., Kavlock R.J., Hubal E.A. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ. Health Perspect. 2011;119:1539–1546. doi: 10.1289/ehp.1103750. PubMed DOI PMC
Panas A., Marquardt C., Nalcaci O., Bockhorn H., Baumann W., Paur H.R., Mülhopt S., Diabaté S., Weiss C. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology. 2013;7:259–273. doi: 10.3109/17435390.2011.652206. PubMed DOI
Moche H., Chevalier D., Barois N., Lorge E., Claude N., Nesslany F. Tungsten Carbide-Cobalt as a Nanoparticulate Reference Positive Control in in Vitro Genotoxicity Assays. Toxicol. Sci. 2014;137:125–134. doi: 10.1093/toxsci/kft222. PubMed DOI
Loza K., Föhring I., Bünger J., Westphal G.A., Köller M., Epple M., Sengstock C. Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology. Nanotoxicology. 2016;10:1492–1502. doi: 10.1080/17435390.2016.1235740. PubMed DOI
Paget V., Sergent J.A., Grall R., Altmeyer-Morel S., Girard H.A., Petit T., Gesset C., Mermoux M., Bergonzo P., Arnault J.C., et al. Carboxylated Nanodiamonds Are Neither Cytotoxic Nor Genotoxic on Liver, Kidney, Intestine and Lung Human Cell Lines. Nanotoxicology. 2014;8:46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI
Mülhopt S., Diabaté S., Dilger M., Adelhelm C., Anderlohr C., Bergfeldt T., Gómez de la Torre J., Jiang Y., Valsami-Jones E., Langevin D., et al. Characterization of Nanoparticle Batch-To-Batch Variability. Nanomaterials. 2018;8:311. doi: 10.3390/nano8050311. PubMed DOI PMC
Kim J.A., Åberg C., Salvati A., Dawson K.A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 2012;7:62–68. doi: 10.1038/nnano.2011.191. PubMed DOI
Wang F., Bexiga M.G., Anguissola S., Boya P., Simpson J.C., Salvati A., Dawson K.A. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale. 2013;5:10868–10876. doi: 10.1039/c3nr03249c. PubMed DOI
Langevin D., Lozano O., Salvati A., Kestens V., Monopoli M., Raspaud E., Mariot S., Salonen A., Thomas S., Driessen M., et al. Inter-laboratory comparison of nanoparticle size measurements uisng dynamic light scattering and differential centrifugal sedimentation. NanoImpact. 2018;10:97–107. doi: 10.1016/j.impact.2017.12.004. DOI
Bexiga M.G., Varela J.A., Wang F., Fenaroli F., Salvati A., Lynch I., Simpson J.C., Dawson K.A. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology. 2011;5:557–567. doi: 10.3109/17435390.2010.539713. PubMed DOI
Ruenraroengsak P., Novak P., Berhanu D., Thorley A.J., Valsami-Jones E., Gorelik J., Korchev Y.E., Tetley T.D. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology. 2012;6:94–108. doi: 10.3109/17435390.2011.558643. PubMed DOI
Deville S., Honrath B., Tran Q.T.D., Fejer G., Lambrichts I., Nelissen I., Dolga A.M., Salvati A. Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Arch. Toxicol. 2020;94:173–186. doi: 10.1007/s00204-019-02604-5. PubMed DOI
Bal-Price A., Coecke S. Guidance on Good Cell Culture Practice (GCCP) In: Aschner M., Suñol C., Bal-Price A., editors. Cell Culture Techniques, Neuromethods. Volume 56. Humana Press; Totowa, NJ, USA: 2011. pp. 1–25.
R Core Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. [(accessed on 1 October 2015)]; Available online: https://www.R-project.org/
Ritz C., Streibig J.C. Bioassay Analysis using R. J. Statist. Softw. 2005;12:1–22. doi: 10.18637/jss.v012.i05. DOI
International Standard ISO 13258:2005(E) Statistical Methods for Use in Proficiency Testing by Inter-Laboratory Comparisons. ISO; Geneva, Switzerland: 2005.
Landgraf L., Nordmeyer D., Schmiel P., Gao Q., Ritz S., Gebauer S., Graß S., Diabaté S., Treuel L., Graf C., et al. Validation of weak biological effects by round robin experiments: Cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells. Sci. Rep. 2017;7:4341. doi: 10.1038/s41598-017-02958-9. PubMed DOI PMC
Gao X., Lowry G.V. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact. 2018;9:14–30. doi: 10.1016/j.impact.2017.09.002. DOI
DeLoid G.M., Cohen J.M., Pyrgiotakis G., Demokritou P. An integrated dispersion preparation, characterization and in vitro dosimetry methodology for engineered nanomaterials. Nat. Protoc. 2017;12:355–371. doi: 10.1038/nprot.2016.172. PubMed DOI PMC
International Standard ISO/TR 16196:2016 . Nanotechnologies—Compilation and Description of Sample Preparation and Dosing Methods for Engineered and Manufactured Nanomaterials. ISO; Geneva, Switzerland: 2016.
Hole P., Sillence K., Hannell C., Maguire C.M., Roesslein M., Suarez G., Capracotta S., Magdolenova Z., Horev-Azaria L., Dybowska A., et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) J. Nanopart. Res. 2013;15:2101. doi: 10.1007/s11051-013-2101-8. PubMed DOI PMC