Genomic profile and immune contexture in colorectal cancer-relevance for prognosis and immunotherapy
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-16-0066
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
PubMed
32720224
DOI
10.1007/s10238-020-00649-w
PII: 10.1007/s10238-020-00649-w
Knihovny.cz E-zdroje
- Klíčová slova
- Colorectal cancer (CRC), Genomic profile, Immune cells, Immunotherapy,
- MeSH
- imunoterapie MeSH
- inhibitory kontrolních bodů terapeutické užití MeSH
- kolorektální nádory genetika imunologie patologie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- prognóza MeSH
- sekvenční analýza RNA MeSH
- staging nádorů MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- inhibitory kontrolních bodů MeSH
Colorectal cancer (CRC) is one of the leading cancers in both genders. TNM staging system is still the most commonly used tumor classification and prognostic system. The disadvantage of TNM is that the prognostic information it provides is incomplete, and patients with the same histological tumor stages may differ significantly in the clinical outcome. Therefore, the identification of new prognostic parameters is crucial. The carcinogenic process that gives rise to an individual tumor is unique and tumor microenviroment should be taken into consideration. In CRC, T-cell infiltration is not homogenous, and recent studies are mostly focusing on memory T-cells and CD8 cells in predicting disease-free survival (DFS) and overall survival (OS). It seems that DFS and OS are not only dependent on microsatellite instable or stable status but mostly on the levels of expression of the immune signatures. Also, patients with high infiltration of cytotoxic and memory cells have significantly better outcome. This review consolidates current knowledge and recent research about importance of immune-cell-associated proteins, specific gene profiles of immune cells and immunotherapy in CRC. We also discussed cell-specific signatures in cancer treatment.
Zobrazit více v PubMed
Turajlic S, Sottoriva A, Graham T, Swanton C. Resolving genetic heterogeneity in cancer. Nat Rev Genet. 2019;20:404–6. PubMed
Sottoriva A, Kang H, Ma Z, et al. A bing Bang model of human colorectal tumor growth. Nat Genet. 2015;47:209–16. PubMed PMC
Troiani T, Napolitano S, Della Corte CM, et al. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO Open. 2016;1(5):e000088. PubMed PMC
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunitys roles in cancer suppresion and promotion. Science. 2011;331:1565–70. PubMed
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67. PubMed
Cancer Genome Atlas network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.
Tougeron D, Fauquembergue E, Rouquette A, et al. Tumor-infiltrating lymphocytes in colorectal cancer with microsatellite instability are correlated with the number and spectrum of frameshift mutations. Mod Pathol. 2009;22:1186–95. PubMed
Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015;75:3446–555. PubMed
Lasabová Z, Kalman M, Holubeková V, et al. Mutation analysis of POLE gene in patients with early-onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clin Exp Med. 2019;19:393–400. PubMed
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. PubMed PMC
Ragulan C, Eason K, Fontana E, et al. Analytical validation of multiplex biomarker assay to stratify colorectal cancer into molecular subtypes. Sci Rep. 2019;9:7665. PubMed PMC
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and ingectious disease. Nat Rev Immunol. 2017;17:97–111. PubMed
Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity. 2013;39:11–26. PubMed
Venetsanou K, Kaldis V, Kouzanidis N, Papazacharias Ch, Paraskevopoulos J, Baltopoulos G. Measurement of tumour necrosis factor receptors for immune response in colon cancer patients. Clin Exp Med. 2012;12:225–31. PubMed
Choi SY, Jang JH, Kim KR. Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization. Clin Exp Med. 2011;11:219–26. PubMed
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4. PubMed
Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. In: Kalinski P, editor. Tumor immune microenvironment in cancer progression and cancer therapy. Advances in experimental medicine and biology, vol. 1036. New York: Springer; 2017. p. 19–31.
Church AH, Waclawski J. Designing and using organizational surveys, 1st ed. London: Taylor and Francis; 2017. p. 1998.
Ijsselsteijn ME, Brouwer TP, Abdulrahman Z, et al. Cancer immunophenotyping by seven-colour mutlispectral imaging without tyramide signal amplification. J Pathol Clin Res. 2019;5:3–11. PubMed
Parra ER, Francisco-Cruz A, Wistuba II. State-of—the art of profiling immune contexture in the era of mutliplexed staining and digital analysis to study paraffin tumor tissues. Cancers. 2019;11(2):E247. PubMed
Governa V, Trella E, Mele V, et al. The interplay between neutrophils and CD8+ T cells improves survival in human colorectal cancer. Clin Cancer Res. 2017;23:3847–58. PubMed
Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70:46–58. PubMed
Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4:648–55. PubMed
Mair F, Tyznik AJ. High-dimensional immunophenotyping with fluorescence-based cytometry: a practical guidebook. Methods Mol Biol. 2019;2032:1–29. PubMed
Leman JK, Sandford SK, Rhodes JL, Kemp RA. Multiparametric analysis of colorectal cancer immune responses. World J Gastroenterol. 2018;24:2995–3005. PubMed PMC
Spitzer MH, Nolan GP. Mass cytometry: single cells. Many Features Cell. 2016;165:780–91. PubMed
Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33:323–32. PubMed PMC
Bendall SC, Simonds EF, Qiu P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687–96. PubMed PMC
Polakova I, Pelak O, Thurner D, et al. Implementations of mass cytometry for immunoprofiling of patietns with solid tumors. J Immunol Res. 2019;019:6705949.
Petitprez F, Vano YA, Becht E, et al. Transcriptomic analysis of the tumor microenviroment to guide prognosis and immunotherapies. Cancer Immunol Immunother. 2018;67:981–8. PubMed
Chtanova T, Newton R, Liu SM, et al. Idetification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J Immunol. 2005;175:7837–47. PubMed
Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95. PubMed
Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–34. PubMed
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45. PubMed PMC
Mlecnik B, Tosolini M, Charoentong P, et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology. 2010;138:1429–40. PubMed
Becht E, de Reyniès A, Giraldo NA, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res. 2016;22:4057–66. PubMed
Hyde A, Fontaine D, Stuckless S, et al. A histology-based model for predicting microsatellite instability in colorectal cancers. Am J Surg Pathol. 2010;34:1820–9. PubMed
Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66. PubMed
Reissfelder C, Stamova S, Gossmann C, et al. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J Clin Invest. 2015;125:739–51. PubMed
Terme M, Pernot S, Marcheteau E, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73:539–49. PubMed
Scurr M, Ladell K, Besneux M, et al. Highly prevalent colorectal cancer-infiltrating LAP+ Foxp3- T cells exhibit more potent immunosuppressive activity than Foxp3+ regulatory T cells. Mucosal Immunol. 2014;7:428–39. PubMed
Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71. PubMed
Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29:610–8. PubMed
Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232:199–209. PubMed
Mlecnik B, Bindea G, Angell HK, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44:698–711. PubMed
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39. PubMed
Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–47. PubMed PMC
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18:197–21818. PubMed
Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–18. PubMed
Schwitalle Y, Kloor M, Eiermann S, et al. Immune response against frameshiftinduced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;134:988–97. PubMed
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. PubMed PMC
Maleki VS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6:157.
Bilusic M, Gulley JL. Local Immunotherapy: a way to convert tumors from “Cold” to “Hot”. J Natl Cancer Inst. 2017;109:12.
Marabelle A, Kohrt H, Caux C, Levy R. Intratumoral immunization: a new paradigm for cancer therapy. Clin Cancer Res. 2014;20:1747–56. PubMed PMC
van der Woude LL, Gorris MAJ, Halilovic A, Figdor CG, de Vries IJM. Migrating into the tumor: a roadmap for T cells. Trends Cancer. 2017;3:797–808. PubMed
Tang F, Zheng P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci. 2018;8:34. PubMed PMC
Kim HR, Ha SJ, Hong MH, et al. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep. 2016;2016(6):36956.
Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608. PubMed PMC
Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545:423–31. PubMed PMC
Germano G, Lamba S, Rospo G, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552:116–20. PubMed
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020;12:738.