Chromosome Pairing in Polyploid Grasses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
32733528
PubMed Central
PMC7363976
DOI
10.3389/fpls.2020.01056
Knihovny.cz E-resources
- Keywords
- Poaceae, chromosome pairing, homoeologous pairing, meiosis, polyploidy,
- Publication type
- Journal Article MeSH
- Review MeSH
Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.
See more in PubMed
Akhunov E. D., Sehgal S., Liang H., Wang S., Akhunova A. R., Kaur G., et al. (2013). Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol. 161, 252–265. 10.1104/pp.112.205161 PubMed DOI PMC
Al-Kaff N., Knight E., Bertin I., Foote T., Hart N., Griffiths S., et al. (2008). Detailed dissection of the chromosomal region containing the ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann. Bot. 101, 863–872. 10.1093/aob/mcm252 PubMed DOI PMC
Aragón-Alcaide L., Reader S., Beven A., Shaw P., Miller T., Moore G. (1997). Association of homologous chromosomes during floral development. Curr. Biol. 7, 905–908. 10.1016/S0960-9822(06)00383-6 PubMed DOI
Attia T., Ekingen H., Röbbelen G. (1979). Origin of 3D-suppressor of homoeologous pairing in hexaploid wheat. Z. Pflanzenzüchtg 83, 121–126.
Aung T., Evans G. M. (1985). The potential for diploidizing Lolium multiflorum × L. perenne tetraploids. Can. J. Genet. Cytol. 27, 506–509. 10.1139/g85-075 DOI
Ayala-Navarrete L., II, Mechanicos A. A., Gibson J. M., Singh D., Bariana H. S., Fletcher J., et al. (2013). The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum . Theor. Appl. Genet. 126, 2467–2475. 10.1007/s00122-013-2147-0 PubMed DOI
Balfourier F., Bouchet S., Robert S., DeOliveira R., Rimbert H., Kitt J., et al. (2019). Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 5 (5), eaav0536. 10.1126/sciadv.aav0536 PubMed DOI PMC
Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210, 391–398. 10.1111/nph.13698 PubMed DOI
Bass H. W., Riera-Lizarazu O., Ananiev E. V., Bordolo S. J., Rines H. W., Phillips R. L., et al. (2000). Evidence for the coincident initiation of homologue pairing and synapsis during the telomere clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042. PubMed
Bass H. W. (2003). Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell. Mol. Life Sci. 60, 2319–2324. 10.1007/s00018-003-3312-4 PubMed DOI PMC
Baumel A., Ainouche M. L., Levasseur J. E. (2001). Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol. Ecol. 10, 1689–1701. 10.1046/j.1365-294X.2001.01299.x PubMed DOI
Benavente E., Orellana J., Fernández-Calvín B. (1998). Comparative analysis of the meiotic effects of wheat ph1b and ph2b mutations in wheat×rye hybrids. Theor. Appl. Genet. 96, 1200–1204. 10.1007/s001220050857 DOI
Bhullar R., Nagarajan R., Bennypaul H., Sidhu G. K., Sidhu G., Rustgi S., et al. (2014). Silencing of a metaphase I-specific gene results in a phenotype similar to that of the pairing homeologous 1 (Ph1) gene mutations. Proc. Natl. Acad. Sci. U.S.A. 111, 14187–14192. 10.1073/pnas.1416241111 PubMed DOI PMC
Boden S. A., Langridge P., Spangenberg G., Able J. A. (2009). TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1. Plant J. 57, 487–497. 10.1111/j.1365-313X.2008.03701.x PubMed DOI
Brown W. V., Stack S. M. (1968). Somatic pairing as a regular preliminary to meiosis. Bull. Torrey Bot. Club 95, 369–378. 10.2307/2483872 DOI
Cai D. T., Chen D. L., Chen J. G., Liu Y. Q. (2004). A method of induction polyploidy rice with high frequency through tissue culture together with chemical agent induction. China Patent: ZL01133529.7.
Cai D. T., Chen J., Chen D., Dai B. C., Song Z. J., Yang Z. F., et al. (2007). The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci. China Ser. C. 50, 356–366. 10.1007/s11427-007-0049-6 PubMed DOI
Calderón M. C., Rey M. D., Martín A., Prieto P. (2018). Homoeologous Chromosomes From Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. Front. Plant Sci. 9, 585. 10.3389/fpls.2018.00585 PubMed DOI PMC
Carvalho A., Delgado M., Barão A., Frescatada M., Ribeiro E., Pikaard C. S., et al. (2010). Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa . Sex Plant Reprod. 23, 29–37. 10.1007/s00497-009-0115-2 PubMed DOI
Catalán P., Olmstead R. G. (2000). Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. Pl. Syst. Evol. 220, 1–19. 10.1007/BF00985367 DOI
Chelysheva L., Gendrot G., Vezon D., Doutriaux M. P., Mercier R., Grelon M. (2007). Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana . PloS Genet. 3, e83. 10.1371/journal.pgen.0030083 PubMed DOI PMC
Clausen J., Keck D. D., Hiesey W. M. (1945). Experimental studies on the nature of species, II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae (Washington, DC.: Carnegie Institute of Washington; ).
Comai L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846. 10.1038/nrg1711 PubMed DOI
Comings D. E. (1968). The rational for an ordered arrangement of chromatin in the prophase nucleus. Am. J. Hum. Genet. 20, 440–460. PubMed PMC
Crow J. F. (1994). Hitoshi Kihara, Japan’s pioneer geneticist. Genetics 137, 891–894. PubMed PMC
Dawe R. K. (1998). Meiotic chromosome organization and segregation in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 371–395. 10.1146/annurev.arplant.49.1.371 PubMed DOI
De Storme N., Copenhaver G. P., Geelen D. (2012). Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol. 160, 1808–1826. 10.1104/pp.112.208611 PubMed DOI PMC
Dong C., Whitford R., Langridge P. (2002). A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45, 116–124. 10.1139/g01-126 PubMed DOI
Dover G. A., Riley R. (1972). Prevention of pairing of homoeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes of Aegilops . Nature 240, 159–161. 10.1038/240159a0 DOI
Driscoll C. J. (1972). Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 14 (1), 39–42. 10.1139/g72-004 DOI
Dubcovsky J., Dvorak J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866. 10.1126/science.1143986 PubMed DOI PMC
Dvorak J., Chen K. C., Giorgi B. (1984). The C-banding pattern of a Ph-mutant of durum wheat. Can. J. Genet. Cytol. 26, 360–363. 10.1139/g84-056 DOI
Dvorak J., Akhunov E. D., Akhunov A. R., Deal K. R., Luo M. C. (2006. a). Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol. Biol. Evol. 23, 1386–1396. 10.1093/molbev/msl004 PubMed DOI
Dvorak J., Deal K. R., Luo M. C. (2006. b). Discovery and mapping of wheat Ph1 suppressors. Genetics 174, 17–27. 10.1534/genetics.106.058115 PubMed DOI PMC
Dvorak J. (1987). Chromosomal distribution of genes in diploid Elytrigia elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 29, 34–40. 10.1139/g87-006 DOI
Eber F., Chèvre A. M., Baranger A., Vallée P., Tanguy X., Renard M. (1994). Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theor. Appl. Genet. 88, 362–368. 10.1007/BF00223646 PubMed DOI
Ehrendorfer F. (1980). ““Polyploidy and Distribution,”,” in Polyploidy. Basic Life Sciences, vol. 13 . Ed. Lewis W. H. (Boston, MA: Springer; ), 45–60. 10.1007/978-1-4613-3069-1_3 PubMed DOI
Eilam T., Anikster Y., Millet E., Manisterski J., Feldman M. (2009). Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species. Genome 52, 275–285. 10.1139/G09-004 PubMed DOI
Eizenga G. C., Burner D. M., Buckner R. C. (1990). Meiotic and isozymic analyses of tall fescue × giant fescue hybrids and amphiploids. Plant Breed. 104, 202–211. 10.1111/j.1439-0523.1990.tb00424.x DOI
Evans G. M., Aung T. (1985). Identification of a diploidizing genotype of Lolium multiflorum . Can. J. Genet. Cytol. 27, 498–505. 10.1139/g85-074 DOI
Evans G. M., Aung T. (1986). The influence of the genotype of Lolium perenne on homoeologous chromosome association in hexaploid Festuca arundinacea . Heredity 56, 97–103. 10.1038/hdy.1986.13 DOI
Evans G. M., Macefield A. J. (1972). Suppression of homoeologous pairing by B chromosomes in a Lolium species hybrid. Nat. New Biol. 236, 110–111. 10.1038/newbio236110a0 PubMed DOI
Evans G. M., Macefield A. J. (1973). The effect of B chromosomes on homoeologous pairing in species hybrids. Chromosoma 41, 63–73. 10.1007/BF00284074 DOI
Ezquerro-López D., Kopecký D., Aramendía L. (2017). Cytogenetic relationships within the Maghrebian clade of Festuca subgen. Schedonorus (Poaceae), using flow cytometry and FISH. Anales del Jardín Botánico Madrid 74, 1. 10.3989/ajbm.2455 DOI
Fan C., Luo J., Zhang S., Liu M., Li Q., Li Y., et al. (2019). Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. Theor. Appl. Genet. 132, 2155–2166. 10.1007/s00122-019-03344-x PubMed DOI
Feldman M., Levy A. (2005). Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet. Genome. Res. 109, 250–258. 10.1159/000082407 PubMed DOI
Feldman M. (1966. a). The effect of chromosomes 5B, 5D and 5A on chromosomal pairing in Triticum aestivum . Proc. Natl. Acad. Sci. U.S.A. 55, 1447–1453. 10.1073/pnas.55.6.1447 PubMed DOI PMC
Feldman M. (1966. b). The mechanism regulating pairing in Triticum timopheevii . Wheat Inf. Serv. 21, 1–2.
Fussell C. P. (1987). “The Rabl orientation: a prelude to synapsis,” in Meiosis. Ed. Moens P. B. (Orlando: Academic Press; ), 275–299.
Gallo P. H., Micheletti P. L., Boldrini K. R., Risso-Pascotto C., Pagliarini M. S., do Valle C. B. (2007). 2n Gamete formation in the genus Brachiaria (Poaceae: Paniceae). Euphytica 154, 255–260. 10.1007/s10681-006-9294-1 DOI
Gauthier F. M., McGuinnis R. C. (1968). The meiotic behaviour of a nulli-haploid plant in Avena sativa L. Can. J. Genet. Cytol. 10, 186–189. 10.1139/g68-025 DOI
Ghesquière M., Humphreys M. W., Zwierzykowski Z. (2010). ““Festulolium,” in Fodder Crops and Amenity Grasses,” in Handbook of Plant Breeding, vol. 5 . Eds. Boller B., Posselt U., Veronesi F. (New York, NY: Springer; ), 288–311. 10.1007/978-1-4419-0760-8_12 DOI
Gill K. S., Gill B. S., Endo T. R., Mukai Y. (1993). Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134, 1231–1236. PubMed PMC
Gonzalo A., Lucas M., Charpentier C., Sandmann G., Lloyd A., Jenczewski E. (2019). Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus . Nat. Commun. 10, 2354. 10.1038/s41467-019-10010-9 PubMed DOI PMC
Gray A. J., Benham P. E. M., Raybould A. F. (1990). ““Spartina anglica — the evolutionary and ecological background,”,” in Spartina anglica — A Research Review. Eds. Gray A. J., Benham P. E. M. (London, UK: Institute of Terrestrial Ecology, Natural Environment Research Council; ), 5–10.
Griffiths S., Sharp R., Foote T. N., Bertin I., Wanous M., Reader S., et al. (2006). Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752. 10.1038/nature04434 PubMed DOI
Gupta P. K., Fedak G. (1985). Genetic control of meiotic chromosome pairing in polyploids in the genus Hordeum . Can. J. Genet. Cytol. 27, 515– 530. 10.1139/g85-077 DOI
Gyawali Y., Zhang W., Chao S., Xu S., Cai X. (2019). Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theor. Appl. Genet. 132, 195–204. 10.1007/s00122-018-3207-2 PubMed DOI
Ha M., Lu J., Tian L., Ramachandran V., Kasschau K. D., Chapman E. J. (2009). Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl. Acad. Sci. U.S.A. 106, 17835–17840. 10.1073/pnas.0907003106 PubMed DOI PMC
Hajjar R., Hodgkin T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13. 10.1007/s10681-007-9363-0 DOI
Han C., Zhang P., Ryan P. R., Rathjen T. M., Yan Z., Delhaize E. (2016). Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat. Theor. Appl. Genet. 129, 729–739. 10.1007/s00122-015-2661-3 PubMed DOI
Hand M. L., Cogan N. O., Stewart A. V., Forster J. W. (2010). Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol. Biol. 10, 303. 10.1186/1471-2148-10-303 PubMed DOI PMC
Hao M., Luo J. T., Yang M., Zhang L. Q., Yan Z. H., Yuan Z. W., et al. (2011). Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54, 959–964. 10.1139/g11-062 PubMed DOI
Harper L., Golubovskaya I., Cande W. Z. (2004). A bouquet of chromosomes. J. Cell Sci. 117, 4025–4032. 10.1242/jcs.01363 PubMed DOI
Holm P. B., Wang X. (1988). The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chin. spring. Carls. Res. Communs. 53, 191–208. 10.1007/BF02907179 DOI
Holm P. B. (1986). Chromosome pairing and chiasma formation in allohexaploid wheat, Triticum aestivum analyzed by spreading of meiotic nuclei. Carlsberg. Res. Commun. 51, 239. 10.1007/BF02906837 DOI
Huang S., Sirikhachornkit A., Su X., Faris J., Gill B., Haselkorn R., et al. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. U.S.A. 99, 8133–8138. 10.1073/pnas.072223799 PubMed DOI PMC
Hubbard J. C. E. (1968). Grasses. 2nd edn (London: Penguin Books; ).
Humphreys M. W., Thomas H. M., Morgan W. G., Meredith M. R., Harper J. A., Thomas A., et al. (1995). Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75, 171–174. 10.1038/hdy.1995.120 DOI
Husband B. C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc 82, 537–546. 10.1111/j.1095-8312.2004.00339.x DOI
Jacobs B. F., Kingston J. D., Jacobs L. L. (1999). The origin of grass-dominated ecosystems. Ann. Mo. Bot. Gard. 86, 590–643. 10.2307/2666186 DOI
Jauhar P. P., Almouslem A. B., Peterson T. S., Joppa L. R. (1999). Inter- and intra-genomic chromosome pairing in haploids of durum wheat. J. Hered. 90, 437–445. 10.1093/jhered/90.4.437 DOI
Jauhar P. P. (1975). Genetic regulation of diploid-like chromosome pairing in the hexaploid species, Festuca arundinacea Schreb. and F. rubra L. (Gramineae). Chromosoma 52, 363–382. 10.1007/BF00364020 DOI
Jauhar P. P. (1977). Genetic regulation of diploid-like chromosome pairing in Avena . Theor. Appl. Genet. 49, 287–295. 10.1007/BF00275135 PubMed DOI
Jauhar P. P. (1993). Cytogenetics of the Festuca-Lolium complex: relevance to breeding (Berlin: Springer; ).
Jauhar P. P. (2003). Formation of 2n gametes in durum wheat haploids: sexual polyploidization. Euphytica 133, 81–94. 10.1023/A:1025692422665 DOI
Jenczewski E., Alix K. (2004). From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Crit. Rev. Plant Sci. 23, 21–45. 10.1080/07352680490273239 DOI
Jeon J., Chung Y., Lee S., Yi G., Oh B., An G. (1999). Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. 39, 35–44. 10.1023/A:1006157603096 PubMed DOI
Ji L., Langridge P. (1994). An early meiosis cDNA clone from wheat. Molec. Gen. Genet. 243, 17–23. 10.1007/BF00283871 PubMed DOI
Jiao Y., Wickett N., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100. 10.1038/nature09916 PubMed DOI
Kang H. Y., Zhang H. Q., Wang Y., Jiang Y., Yuan H. J., Zhou Y. H. (2008). Comparative analysis of the homoeologous pairing effects of phKL gene in common wheat × Psathyrostachys huashanica . Keng Cereal Res. Commun. 36, 429–440. 10.1556/CRC.36.2008.3.7 DOI
Keeler K. H., Davis G. A. (1999). Comparison of common cytotypes of Andropogon gerardii (Andropogoneae: Poaceae). Am. J. Bot. 86, 974–979. 10.2307/2656614 PubMed DOI
Keeler K. H. (1998). “Population biology of intraspecific polyploidy in grasses,” in Population Biology of Grasses. Ed. Cheplick G. P. (Cambridge, UK: Cambridge University Press; ), 183–206.
Kellogg E. A. (2001). Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205. 10.1104/pp.125.3.1198 PubMed DOI PMC
King J., Grewal S., Yang C. Y., Hubbart S., Scholefield D., Ashling S., et al. (2016). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum . Plant Biotech. J. 15, 217–226. 10.1111/pbi.1206 PubMed DOI PMC
King J., Newell C., Grewal S., Hubbart-Edwards S., Yang C. Y., Scholefield D., et al. (2019). Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front. Plant Sci. 10, 34. 10.3389/fpls.2019.00034 PubMed DOI PMC
Kleijer G., Morel P. (1984). Cytogenetic studies of crosses between Lolium multiflorum Lam. and Festuca arundinacea Schreb. II. The amphidiploids. Z. Pflanzenzücht 93, 23–42.
Koo D., Liu W., Friebe B., Gill B. S. (2016). Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 126, 531–540. 10.1007/s00412-016-0622-5 PubMed DOI
Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquière M., Doležel J. (2006). Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 113, 731–742. 10.1007/s00122-006-0341-z PubMed DOI
Kopecký D., Lukaszewski A. J., Doležel J. (2008. a). Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum . Chromosome Res. 16, 987. 10.1007/s10577-008-1256-0 PubMed DOI
Kopecký D., Lukaszewski A. J., Doležel J. (2008. b). Cytogenetics of Festulolium (Festuca x Lolium hybrids). Cytogenet. Genome Res. 120, 370–383. 10.1159/000121086 PubMed DOI
Kopecký D., Bartoš J., Zwierzykowski Z., Doležel J. (2009). Chromosome pairing of individual genomes in tall fescue (Festuca arundinacea Schreb.), its progenitors, and hybrids with Italian ryegrass (Lolium multiflorum Lam.). Cytogenet. Genome Res. 124, 170–178. 10.1159/000207525 PubMed DOI
Kopecký D., Talukder S. K., Zwyrtková J., Trammell M., Doležel J., Saha M. C. (2019). Inter-morphotype hybridization in tall fescue (Festuca arundinacea Schreb.): exploration of meiotic irregularities and potential for breeding. Euphytica 215, 97. 10.1007/s10681-019-2419-0 DOI
Kreiner J. M., Kron P., Husband B. C. (2017). Evolutionary dynamics of unreduced gametes. Trends Genet. 33, 583–593. 10.1016/j.tig.2017.06.009 PubMed DOI
Ladizinsky G. (1973). Genetic control of bivalent pairing in the Avena strigosa polyploid complex. Chromosoma 42, 105–110. 10.1007/BF00326334 PubMed DOI
Leggett J. M., Thomas H. (1995). “Oat evolution and cytogenetics,” in The Oat Crop. World Crop Series. Ed. Welch R. W. (Dordrecht, DE: Springer; ), 120–149. 10.1007/978-94-011-0015-1_5 DOI
Li H., Deal K. R., Luo M. C., Ji W., Distelfeld A., Dvorak J. (2017). Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat. Front. Plant Sci. 8, 2163. 10.3389/fpls.2017.02163 PubMed DOI PMC
Liu D. C., Luo M. C., Yang J. L., Yen C., Lan X. J., Yang W. Y. (1997). Chromosome location of a new paring promoter in natural populations of common wheat. Xi Nan Nong Ye Xue Bao 10, 10–15. (in Chinese).
Liu D. C., Luo M. C., Yen C., Yang J. L., Yang W. Y. (1998). “The promotion of homoeologous pairing in hybrids of common wheat cv. Kaixianluohanmai with alien species,” in Proceedings of the 9th International Wheat Genetics Symposium, vol. 4 . Ed. Slinkard A. E. (Saskatoon, CA: University Extension Press, University of Saskatchewan; ), 377–378.
Liu D. C., Zheng Y. L., Yan Z. H., Zhou Y. H., Wei Y. M., Lan X. J. (2003). Combination of homoeologous pairing gene phKL and Ph2-deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot. Sin. 45, 1121–1128.
Liu W., Rouse M., Friebe B., Jin Y., Gill B. S., Pumphrey M. O. (2011). Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosom Res. 19, 669–682. 10.1007/s10577-011-9226-3 PubMed DOI
Lloyd A., Bomblies K. (2016). Meiosis in autopolyploid and allopolyploid Arabidopsis . Curr. Opin. Plant Biol. 30, 116–122. 10.1016/j.pbi.2016.02.004 PubMed DOI
Lloyd A., Ranoux M., Vautrin S., Glover N. M., Fourment J., Charif D., et al. (2014). Meiotic gene evolution: can you teach a new dog new tricks? Mol. Biol. Evol. 31, 1724–1727. 10.1093/molbev/msu119 PubMed DOI
Loidl J. (1990). The initiation of meiotic chromosome pairing: the cytological view. Genome 33, 759–778. 10.1139/g90-115 PubMed DOI
Loureiro J., Kopecký D., Castro S., Santos C., Silveira P. (2007). Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Plant Syst. Evol. 269, 89–105. 10.1007/s00606-007-0564-8 DOI
Lukaszewski A. J., Kopecký D. (2010). The ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye (Secale cereale L.). Cytogenet. Genome Res. 129, 117–123. 10.1159/000314279 PubMed DOI
Luo M. C., Yang Z. L., Yen C., Yang J. L. (1992). ““The cytogenetic investigation on F1 hybrid of Chinese wheat landrace,”,” in Exploration of Crop Breeding. Eds. Ren Z. L., Peng J. H. (Sichuan: Science and Technology Press; ), 169–176.
Maestra B., Naranjo T. (1997). Homoeologous relationships of Triticum sharonense chromosomes to T. aestivum . Theor. Appl. Genet. 94, 657–663. 10.1007/s001220050463 DOI
Maestra B., Naranjo T. (1998). Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor. Appl. Genet. 97, 181–186. 10.1007/s001220050883 DOI
Malik C. P., Thomas P. T. (1967). Cytological relationships and genome structure of some Festuca species. Caryologia 20, 1–39. 10.1080/00087114.1967.10796244 DOI
Marais G. F., Marais A. S., Eksteen A., Pretorius Z. A. (2010). Modification of the Aegilops neglecta-common wheat Lr62/Yr42 translocation through allosyndetic pairing induction. Crop Sci. 49, 871–879. 10.2135/cropsci2008.06.0317 DOI
Marcussen T., Sandve S. R., Heier L., Spannagl M., Pfeifer M., IWGSC (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 6194. 10.1126/science.1250092 PubMed DOI
Marques A. M., Tuler A. C., Carvalho C. R., Carrijo T. T., Ferreira M. F., Clarindo W. R. (2016). Refinement of the karyological aspects of Psidium guineense (Swartz 1788): a comparison with Psidium guajava (Linnaeus 1753). Comp. Cytogenet. 10, 117–128. 10.3897/CompCytogen.v10i1.6462 PubMed DOI PMC
Martín A. C., Shaw P., Phillips D., Reader S., Moore G. (2014). Licensing MLH1 sites for crossover during meiosis. Nat. Commun. 5, 1–5. 10.1038/ncomms5580 PubMed DOI PMC
Martín A. C., Rey M. D., Shaw P., Moore G. (2017). Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 126, 669–680. 10.1007/s00412-017-0630-0 PubMed DOI PMC
Martínez M., Cuñado N., Carcelén N., Romero C. (2001. a). The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum . Theor. Appl. Genet. 103, 398–405. 10.1007/s00122-001-0543-3 DOI
Martínez M., Naranjo T., Cuadrado C., Romero C. (2001. b). The synaptic behaviour of Triticum turgidum with variable doses of the Ph1 locus. Theor. Appl. Genet. 102, 751–758. 10.1007/s001220051706 DOI
Martínez-Pérez E., Shaw P., Reader S., Aragón-Alcaide L., Miller T., Moore G., et al. (1999). Homologous chromosome pairing in wheat. J. Cell Sci. 112, 1761–1769. PubMed
Mason A. S., Pires J. C. (2015). Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 31, 5–10. 10.1016/j.tig.2014.09.011 PubMed DOI
Mason A. S., Nelson M. N., Yan G., Cowling W. A. (2011). Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol. 11:, 103. 10.1186/1471-2229-11-103 PubMed DOI PMC
McGuire P. E., Dvořák J. (1982). Genetic regulation of heterogenetic chromosome pairing in polyploid species of the genus Triticum sensu lato. Can. J. Genet. Cytol. 24, 57–82. 10.1139/g82-007 DOI
Meister N., Tjumjakoff N. A. (1928). Rye–wheat hybrids from reciprocal crosses. J. Genet. 20, 233–245. 10.1007/BF02983142 DOI
Mello-Sampayo T., Canas A. P. (1973). “Suppression of meiotic chromosome pairing in common wheat,” in Proceedings of the 4th International Wheat Genetics Symposium. Eds. Sears E. R., ER L. M. S. (Columbia, MI: Agricultural Experiment Station, College of Agriculture, University of Missouri; ), 703–713.
Mello-Sampayo T. (1968). ““Homoeologous chromosome pairing in pentaploid hybrids of wheat,”,” in Third International Wheat Genetics Symposium. Eds. Finlay K. W., Shepherd K. W. (Canberra: Butterworth & Company; ), 179–184.
Mello-Sampayo T. (1971). Genetic regulation of meiotic chromosome pairing by chromosome-3D of Triticum aestivum . Nat. New Biol. 230, 22. 10.1038/newbio230022a0 PubMed DOI
Meyers L. A., Levin D. A. (2006). On the abundance of polyploids in flowering plants. Evolution 60, 1198–1206. 10.1111/j.0014-3820.2006.tb01198.x PubMed DOI
Mikhailova E. I., Naranjo T., Shepherd K., Wennekes-van E. J., Heyting C., de Jong H. (1998). The effect of the wheat Ph1 locus on chromatin organisation and meiotic pairing analysed by genome painting. Chromosoma 107, 339–350. 10.1007/s004120050316 PubMed DOI
Murat F., Zhang R., Guizard S., Flores R., Armero A., Pont C., et al. (2014). Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol. Evol. 6, 12–33. 10.1093/gbe/evt200 PubMed DOI PMC
Murray B. G., Sieber V. K., Jackson R. C. (1984). Further evidence for the presence of meiotic pairing control genes in Alopecurus L. (Gramineae). Genet. 63, 13–20. 10.1007/BF00137460 DOI
Naranjo T., Maestra B. (1995). The effect of ph mutations on homoeologous pairing in hybrids of wheat with Triticum longissimum . Theor. Appl. Genet. 91, 1265–1270. 10.1007/BF00220939 PubMed DOI
Naranjo T., Roca A., Goicoechea P. G., Giráldez R. (1987). Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882. 10.1139/g87-149 DOI
Naranjo T., Roca A., Goicoechea P. G., Giráldez R. (1988). “Chromosome structure of common wheat: genome reassignment of chromosomes 4A and 4B,” in Proceedings of the 7th International Wheat Genetics Symposium, eds. Eds. Miller T. E., Koebner R. M. D. (Cambridge, UK: Cambridge University; ), 115–120.
Naranjo T. (2015). Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet. Genome Res. 147, 55–69. 10.1159/000442219 PubMed DOI
Naranjo T. (2019). The effect of chromosome structure upon meiotic homologous and homoeologous recombinations in Triticeae . Agronomy 9, 552. 10.3390/agronomy9090552 DOI
Niu Z., Klindworth D. L., Friesen T. L., Chao S., Jin Y., Cai X., et al. (2011). Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187, 1011–1021. 10.1534/genetics.110.123588 PubMed DOI PMC
Ortega S., Prieto I., Odajima J., Martín A., Dubus P., Sotillo R., et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35, 25–31. 10.1038/ng1232 PubMed DOI
Osborn T. C., Pires J. C., Birchler J. A., Auger D. L., Chen Z. J., Lee H. S., et al. (2003). Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141–147. 10.1016/S0168-9525(03)00015-5 PubMed DOI
Otto S. P., Whitton J. (2000). Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI
Ozkan H., Feldman M. (2001). Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina . Genome 44, 1000–1006. 10.1139/g01-100 PubMed DOI
Pécrix Y., Rallo G., Folzer H., Cigna M., Gudin S., Le Bris M. (2011). Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J. Exp. Bot. 62, 3587–3597. 10.1093/jxb/err052 PubMed DOI
Pecinka A., Fang W., Rehmsmeier M., Levy A. A., Scheid O. M. (2011). Polyploidization increases meiotic recombination frequency in Arabidopsis . BMC Biol. 9, 24. 10.1186/1741-7007-9-24 PubMed DOI PMC
Pelé A., Rousseau-Gueutin M., Chèvre A. M. (2018). Speciation success of polyploid plants closely relates to the regulation of meiotic recombination. Front. Plant Sci. 9, 907. 10.3389/fpls.2018.00907 PubMed DOI PMC
Pernickova K., Linc G., Gaal E., Kopecký D., Šamajová O., Lukaszewski A. (2019). Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L.). Chromosoma 128, 31–39. 10.1007/s00412-018-0686-5 PubMed DOI
Petersen G., Seberg O., Yde M., Berthelsen K. (2006). Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70–82. 10.1016/j.ympev.2006.01.023 PubMed DOI
Prieto P., Moore G., Reader S. (2005). Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 111, 505–510. 10.1007/s00122-005-2040-6 PubMed DOI
Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501. 10.1146/annurev.ecolsys.29.1.467 DOI
Ramsey J., Schemske D. W. (2002). Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639. 10.1146/annurev.ecolsys.33.010802.150437 DOI
Renny-Byfield S., Rodgers-Melnick E., Ross-Ibara J. (2017). Gene fractionation and function in the ancient subgenomes of maize. Mol. Biol. Evol. 34, 1825–1832. 10.1093/molbev/msx121 PubMed DOI
Rey M. D., Calderón M. C., Prieto P. (2015. a). The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front. Plant Sci. 6, 160. 10.3389/fpls.2015.00160 PubMed DOI PMC
Rey M. D., Calderón M. C., Rodrigo M. J., Zacarías L., Alós E., Prieto P. (2015. b). Novel Bread Wheat Lines Enriched in Carotenoids Carrying Hordeum chilense Chromosome Arms in the ph1b Background. PloS One 10 (8), e0134598. 10.1371/journal.pone.0134598 PubMed DOI PMC
Rey M., Martín A. C., Higgins J., Swarbreck D., Uauy C., Shaw P., et al. (2017). Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 37, 95. 10.1007/s11032-017-0700-2 PubMed DOI PMC
Rey M. D., Martin A. C., Smedley M., Hayta S., Harwood W., Shaw P., et al. (2018). Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front. Plant Sci. 9, 509. 10.3389/fpls.2018.00509 PubMed DOI PMC
Riley R., Chapman V. (1958). Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature 182, 713–715. . 10.1038/182713a0 DOI
Riley R., Kempanna C. (1963). The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V. Heredity 18, 287–306. 10.1038/hdy.1963.31 DOI
Riley R., Law C. N. (1965). Genetic variation in chromosome pairing. Adv. Genet. 13, 57–114. 10.1016/S0065-2660(08)60047-4 DOI
Riley R., Chapman V., Miller T. E. (1973). “The determination of meiotic chromosome pairing,” in Proceedings of the 4th International Wheat Genetics Symposium. Eds. Sears E. R., ER L. M. S. (Columbia, MI: Agricultural Experiment Station, College of Agriculture, University of Missouri; ), 731–738.
Riley R. (1960). The diploidization of polyploid wheat. Heredity 15, 407–429. 10.1038/hdy.1960.106 DOI
Roberts M. A., Reader S. M., Dalgliesh C., Miller T. E., Foote T. N., Fish L. J., et al. (1999). Induction and characterisation of the Ph1 wheat mutants. Genetics 153, 1909–1918. PubMed PMC
Salmon A., Ainouche M. L., Wendel J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14, 1163–1175. 10.1111/j.1365-294X.2005.02488.x PubMed DOI
Sánchez-Morán E., Benavente E., Orellana J. (2001). Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110, 371–377 (2001). 10.1007/s004120100156 PubMed DOI
Sattler M. C., Carvalho C. R., Clarindo W. R. (2016). The polyploidy and its key role in plant breeding. Planta 243, 281–296. 10.1007/s00425-015-2450-x PubMed DOI
Scherthan H. (2001). A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2, 621–627. 10.1038/35085086 PubMed DOI
Scherthan H. (2007). Telomere attachment and clustering during meiosis. Cell Mol. Life Sci. 64, 117–124. 10.1007/s00018-006-6463-2 PubMed DOI PMC
Schwarzacher T. (1997). Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis. Sex- Plant Reprod. 10, 324–331. 10.1007/s004970050106 DOI
Sears E. R., Okamoto M. (1958). “Intergenomic chromosome relationship in hexaploid wheat,” in Proceedings of 10th International Congress of Genetics (Toronto, CA: University of Toronto Press; ), 258–259.
Sears E. R. (1976). Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31–51. 10.1146/annurev.ge.10.120176.000335 PubMed DOI
Sears E. R. (1977). An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19, 585–593. 10.1139/g77-063 DOI
Sears E. R. (1982). A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can. J. Genet. Cytol. 24, 715–719. 10.1139/g82-076 DOI
Sears E. R. (1984). “Mutations in wheat that raise the level of meiotic chromosome pairing,” in Gene Manipulation in Plant Improvement. Proc. 16th Stadler Genet. Symp. Ed. Gustafson J. P. (New York, NY: Plenum Press; ), 295–300.
Shang X. M., Jackson R. C., NGuyen H. T., Huang H. T. (1989). Chromosome pairing in the Triticum monococcum complex: evidence for pairing control genes. Genome 32, 213–226. 10.1139/g89-432 DOI
Shen Y., Tang D., Wang K., Wang M., Huang J., Luo W., et al. (2012). ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J. Cell Sci. 125, 2581–2591. 10.1242/jcs.090993 PubMed DOI
Soltis D. E., Soltis P. S., Schemske D. W., Hancock J. F., Thompson J. N., Husband B. C., et al. (2007). Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56, 13–30. 10.2307/25065732 DOI
Soreng R. J., Peterson P. M., Romaschenko K., Davidse G., Zuloaga F. O., Judziewicz E. J., et al. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 53, 117–137. 10.1111/jse.12150 DOI
Stebbins G. L. (1950). Variation and Evolution in Plants (New York: Columbia University Press; ).
Stebbins G. L. (1971). Chromosomal Evolution in Higher Plants (London: Addison-Wesley; ).
Sun Y., Wu Y., Yang C., Sun S., Lin X., Liu L., et al. (2017). Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol. Ecol. 26, 5451–5466. 10.1111/mec.14297 PubMed DOI
Sutton T., Whitford R., Baumann U., Dong C. M., Able J. A., Langridge P. (2003). The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J. 36, 443–456. 10.1046/j.1365-313X.2003.01891.x PubMed DOI
Svačina R., Karafiátová M., Malurová M., Serra H., Vítek D., Endo T. R., et al. (2020). Development of deletion lines for chromosome 3D of bread wheat. Front. Plant Sci. 10, 1756. 10.3389/fpls.2019.01756 PubMed DOI PMC
Tamayo-Ordóñez M. C., Espinosa-Barrera L. A., Tamayo-Ordóñez Y. J., Ayil-Gutiérrez B., Sánchez-Teyer L. F. (2016). Advances and perspectives in the generation of polyploid plant species. Euphytica 209, 1–22. 10.1007/s10681-016-1646-x DOI
Thomas H. M., Morgan W. G., Meredith M. R., Humphreys M. W., Leggett J. M. (1994). Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridization. Theor. Appl. Genet. 88, 909–913. 10.1007/BF00220795 PubMed DOI
Thomas H. (1992). “Cytogenetics of Avena,” in Oat Science and Technology. Monograph 33, Agronomy Series. Eds. Marshall H. G., Sorrells M. E. (Madison, WI: ASA and CSSA; ), 473–507.
Thomas S. W. (1997). Molecular studies of homologous chromosome pairing in Triticum aestivum . [dissertation]. [Adelaide]: University of Adelaide.
Thompson J. D., McNeilly T., Gray A. J. (1991). Population variation in Spartina anglica C.E. Hubbard. I. Evidence from a common garden experiment. New Phytol. 117, 115–128. 10.1111/j.1469-8137.1991.tb00951.x DOI
Van de Peer Y., Maere S., Meyer A. (2009). The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–732. 10.1038/nrg2600 PubMed DOI
Van de Peer Y., Mizrachi E., Marchal K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424. 10.1038/nrg.2017.26 PubMed DOI
Vanneste K., Baele G., Maere S., Van de Peer Y. (2014). Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res. 24, 1334–1347. 10.1101/gr.168997.113 PubMed DOI PMC
Viegas W. S., Mello-Sampayo T., Feldman M., Avivi L. (1980). Reduction of chromosome pairing by a spontaneous mutation on chromosomal arm 5DL of Triticum aestivum . Can. J. Genet. Cytol. 22, 569–575. 10.1139/g80-062 DOI
Viera A., Rufas J. S., Martinez I., Barbero J. L., Ortega S., Suja J. (2009). CDK2 is required for proper homologous pairing, recombination and sex-body formation during male meiosis. J. Cell Sci. 122, 2149–2159. 10.1242/jcs.046706 PubMed DOI
Villar R., Veneklaas E. J., Jordano P., Lambers H. (1998). Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. N. Phytol. 140, 425–437. 10.1046/j.1469-8137.1998.00286.x PubMed DOI
von Well E., Fossey A. (1998). A comparative investigation of seed germination, metabolism and seedling growth between two polyploid Triticum species. Euphytica 101, 83–89. 10.1023/A:1018320230154 DOI
Waines J. G. (1976). A model for the origin of diploidizing mechanisms in poly-ploid species. Am. Nat. 110, 415– 430. 10.1086/283077 DOI
Wall A. M., Riley R., Chapman V. (1971). Wheat mutants permitting homoeologous meiotic chromosomes pairing. Genet. Res. 18, 311–328. 10.1017/S0016672300012714 DOI
Wang A., Xia Q., Xie W., Datla R., Selvaraj G. (2003). The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc. Natl. Acad. Sci. U.S.A. 100, 14487–14492. 10.1073/pnas.2231254100 PubMed DOI PMC
Wang J., Roe B., Macmil S., Yu Q., Murray J. E., Tang H., et al. (2010). Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11, 261. 10.1186/1471-2164-11-261 PubMed DOI PMC
Whitford R. (2002). From intimate chromosome associations to wild sex in wheat (Triticum aestivum). [dissertation]. [Adelaide]: University of Adelaide.
Winterfeld G., Schneider J., Perner K., Röser M. (2012). Origin of highly polyploids: different pathways of auto- and allopolyploidy in 12–18x species of Avenula (Poaceae). Int. J. Pl. Sci. 173, 1–14. 10.1086/664710 DOI
Wulff B. B. H., Moscou M. J. (2014). Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692. 10.3389/fpls.2014.00692 PubMed DOI PMC
Xiang Z. G., Liu D. C., Zheng Y. L., Zhang L. Q., Yan Z. H. (2005). The effect of phKL gene on homoeologous pairing of wheat-alien hybrids is situated between gene mutants of Ph1 and Ph2 . Hereditas 27, 935–940. PubMed
Xiong Y. G., Gan L., Hu Y. P., Sun W. C., Zhou X., Song Z. J., et al. (2019). OsMND1 regulates early meiosis and improves the seed set rate in polyploid rice. Plant Growth Regul. 87, 341–356. 10.1007/s10725-019-00476-4 DOI
Yant L., Hollister J. D., Wright K. M., Arnold B. J., Higgins J. D., Franklin F. C. H., et al. (2013). Meiotic adaptation to genome duplication in Arabidopsis arenosa . Curr. Biol. 23, 2151–2156. 10.1016/j.cub.2013.08.059 PubMed DOI PMC