The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Excellence project
UHK
CEP - Centrální evidence projektů
PubMed
32752020
PubMed Central
PMC7466546
DOI
10.3390/nano10081508
PII: nano10081508
Knihovny.cz E-zdroje
- Klíčová slova
- carbon dots, carbon nanomaterials, carbon nanotubes, fullerene, graphene, in vitro and in vivo research, nanodiamonds, toxicity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Zobrazit více v PubMed
Lin P.C., Lin S., Wang P.C., Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014;32:711–726. doi: 10.1016/j.biotechadv.2013.11.006. PubMed DOI PMC
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Colvin V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003;21:1166–1170. doi: 10.1038/nbt875. PubMed DOI
Djordjevic A., Injac R., Jovic D., Mrdjanovic J., Seke M. Bioimpact of Carbon Nanomaterials. In: Tiwari A., Shukla S.K., editors. Advanced Carbon Materials and Technology. 1st ed. John Wiley & Sons Ltd.; Xoboken, NJ, USA: 2014. pp. 193–271. Chapter 6. DOI
Zhang Q., Wang M., Gu C., Zhang C. Water disinfection processes change the cytotoxicity of C60 fullerene: Reactions at the nano-bio interface. Water Res. 2019;163:114867. doi: 10.1016/j.watres.2019.114867. PubMed DOI
Du T., Adeleye A.S., Keller A.A., Wu Z., Han W., Wang Y., Zhang C., Li Y. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate. Water Res. 2017;124:372–380. doi: 10.1016/j.watres.2017.07.054. PubMed DOI
Dong Z., Zhang W., Qiu Y., Yang Z., Wang J., Zhang Y. Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60 ratio and seawater salinity. Water Res. 2019;148:469–478. doi: 10.1016/j.watres.2018.10.071. PubMed DOI
Solís-Fernández P., Bissett M., Ago H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017;46:4572–4613. doi: 10.1039/C7CS00160F. PubMed DOI
Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersman M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013;42:2824–2860. doi: 10.1039/C2CS35335K. PubMed DOI
Greil P. Perspectives of Nano-Carbon Based Engineering Materials. Adv. Eng. Mater. 2015;17:124–137. doi: 10.1002/adem.201400110. DOI
Sheka E., editor. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. 1st ed. CRC Press; Boca Raton, FL, USA: 2011. pp. 1–291.
Bourassa D.J., Kerna N.A., Desantis M. Will Nanocarbon Onion-Like Fullerenes (NOLFs) Play a Decisive Role in the Future of Molecular Medicine. J. Nanomed. Nanosci. 2019;3:JNAN-152. doi: 10.29011/2577-1477.10005. DOI
Shoji M., Takahashi E., Hatakeyama D., Iwai Y., Morita Y., Shirayama R., Echigo N., Kido H., Nakamura S., Mashino T., et al. Anti-Influenza Activity of C60 Fullerene Derivatives. PLoS ONE. 2013;8:e66337. doi: 10.1371/annotation/3e6e3fb0-e52f-4a6d-8ea2-34de4147b64f. PubMed DOI PMC
Djordjevic A., Srdjenovic B., Seke M., Petrovic D., Injac R., Mrdjanovic J. Review of synthesis and antioxidant potential of fullerenol nanoparticles. J. Nanomater. 2015:567073. doi: 10.1155/2015/567073. DOI
Rašović I. Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 2017;33:777–794. doi: 10.1080/02670836.2016.1198114. DOI
Grebowski J., Kazmierska P., Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine. Biomed. Res. Int. 2013:751913. doi: 10.1155/2013/751913. PubMed DOI PMC
Bogdanovic G., Djordjevic A. Carbon nanomaterials: Biologically active fullerene derivatives. Srp. Arh. Celok. Lek. 2016;144:222–231. doi: 10.2298/SARH1604222B. PubMed DOI
Semenov K.N., Charykov N.A., Postnov V.N., Sharoyko V.V., Vorotyntsev I.V., Galagudza M.M., Murin I.V. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 2016;44:59–74. doi: 10.1016/j.progsolidstchem.2016.04.002. DOI
Vileno B., Marcoux P.R., Lekka M., Sienkiewicz A., Fehér T., Forró L. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv. Funct. Mater. 2006;16:120–128. doi: 10.1002/adfm.200500425. DOI
Assemi S., Tadjiki S., Donose B.C., Nguyen A.V., Miller J.D. Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir. 2010;26:16063–16070. doi: 10.1021/la102942b. PubMed DOI
Vraneš M., Borišev I., Tot A., Armaković S., Armaković S., Jović D., Gadžurić S., Djordjevic A. Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles. Phys. Chem. Chem. Phys. 2017;19:135–144. doi: 10.1039/C6CP06847B. PubMed DOI
Petrovic D., Seke M., Srdjenovic B., Djordjevic A. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System. J. Nanomater. 2015:565638. doi: 10.1155/2015/565638. DOI
Seke M., Petrovic D., Djordjevic A., Jovic D., Labudovic Borovic M., Kanacki Z., Jankovic M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. Nanotechnology. 2016;27:485101. doi: 10.1088/0957-4484/27/48/485101. PubMed DOI
Knezevic N., Milenković S., Jović D., Lazarevic S., Mrdjanović J., Djordjevic A. Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery. Adv. Mater. Sci. Eng. 2015;2015:567350. doi: 10.1155/2015/567350. DOI
Jović D.S., Seke M.N., Djordjevic A.N., Mrđanović J.Ž., Aleksić L.D., Bogdanović G.M., Pavić A.M., Plavec J. Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC Adv. 2016;6:38563–38578. doi: 10.1039/C6RA03879D. DOI
Afandi A., Howkins A., Boyd I.W., Jackman R.B. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018;8:3270. doi: 10.1038/s41598-018-21670-w. PubMed DOI PMC
Hack R., Correia C.H.G., Zanon R.A.D.S., Pezzin S.H. Characterization of graphene nanosheets obtained by a modified Hummer’s method. Matéria. 2018;23:1–11. doi: 10.1590/s1517-707620170001.0324. DOI
Semeniuk M., Yi Z., Poursorkhabi V., Tjong J., Jaffer S., Lu Z.H., Sain M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano. 2019;13:6224–6255. doi: 10.1021/acsnano.9b00688. PubMed DOI
Baker S., Baker G. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Li H., Kang Z., Liu Y., Lee S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g. DOI
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015;8:355–381. doi: 10.1007/s12274-014-0644-3. DOI
Zheng X.T., Ananthanarayanan A., Luo K.Q., Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small. 2015;11:1620–1636. doi: 10.1002/smll.201402648. PubMed DOI
Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI
Ray S.C., Saha A., Jana N.R., Sarkar R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C. 2009;113:18546–18551. doi: 10.1021/jp905912n. DOI
Liu R., Wu D., Feng X., Mullen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011;133:15221–15223. doi: 10.1021/ja204953k. PubMed DOI
Lin L., Zhang S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 2012;48:10177–10179. doi: 10.1039/c2cc35559k. PubMed DOI
Tao S., Zhu S., Feng T., Xia C., Song Y., Yang B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017;6:13–25. doi: 10.1016/j.mtchem.2017.09.001. DOI
Wang Y., Hu A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F. DOI
Wang Y., Zhu Y., Yu S., Jiang C. Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Adv. 2017;7:40973–40989. doi: 10.1039/C7RA07573A. DOI
Xiao L., Sun H. Novel properties and applications of carbon nanodots. Nanoscale Horiz. 2018;3:565–597. doi: 10.1039/C8NH00106E. PubMed DOI
Anwar S., Ding H., Xu M., Hu X., Li Z., Wang J., Liu L., Jiang L., Wang D., Dong C. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2019;2:2317–2338. doi: 10.1021/acsabm.9b00112. PubMed DOI
Wu X., Tian F., Wang W., Chen J., Wu M., Zhao J.X. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C. 2013;1:4676–4684. doi: 10.1039/c3tc30820k. PubMed DOI PMC
Yuan F., Li S., Fan Z., Meng X., Fan L., Yang S. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today. 2016;11:565–586. doi: 10.1016/j.nantod.2016.08.006. DOI
Pirsaheb M., Mohammadi S., Salimi A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC Trends Anal. Chem. 2019;115:83–99. doi: 10.1016/j.trac.2019.04.003. DOI
Karakoçak B.B., Liang J., Kavadiya S., Berezin M.Y., Biswas P., Ravi N. Optimizing the synthesis of red-emissive nitrogen-doped carbon dots for use in bioimaging. ACS Appl. Nano Mater. 2018;1:3682–3692. doi: 10.1021/acsanm.8b00799. DOI
Li X., Wang H., Shimizu Y., Pyatenko A., Kawaguchi K., Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 2010;47:932–934. doi: 10.1039/C0CC03552A. PubMed DOI
Zheng M., Ruan S., Liu S., Sun T., Qu D., Zhao H., Xie Z., Gao H., Jing X., Sun Z. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano. 2015;9:11455–11461. doi: 10.1021/acsnano.5b05575. PubMed DOI
Yao B., Huang H., Liu Y., Kang Z. Carbon dots: A small conundrum. Trends Chem. 2019;1:235–246. doi: 10.1016/j.trechm.2019.02.003. DOI
Kim T.H., Sirdaarta J.P., Zhang Q., Eftekhari E., John J.S., Kennedy D., Cock I.E., Li Q. Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Res. 2018;11:2204–2216. doi: 10.1007/s12274-017-1838-2. DOI
Jia Q., Ge J., Liu W., Zheng X., Chen S., Wen Y., Zhang H., Wang P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2-Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Adv. Mater. 2018;30:1706090. doi: 10.1002/adma.201706090. PubMed DOI
Yu P., Wen X., Toh Y.R., Tang J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C. 2012;116:25552–25557. doi: 10.1021/jp307308z. DOI
Zhang X., Ming H., Liu R., Han X., Kang Z., Liu Y., Zhang Y. Highly sensitive humidity sensing properties of carbon quantum dots films. Mater. Res. Bull. 2013;48:790–794. doi: 10.1016/j.materresbull.2012.11.056. DOI
Nie H., Li M., Li Q., Liang S., Tan Y., Sheng L., Shi W., Zhang S.X.A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014;26:3104–3112. doi: 10.1021/cm5003669. DOI
Yoo D., Park Y., Cheon B., Park M.H. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res. Lett. 2019;14:1–13. doi: 10.1186/s11671-019-3088-6. PubMed DOI PMC
Devi P., Rajput P., Thakur A., Kim K.H., Kumar P. Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends Anal. Chem. 2019;114:171–195. doi: 10.1016/j.trac.2019.03.003. DOI
Da Silva J.C.E., Gonçalves H.M. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011;30:1327–1336. doi: 10.1016/j.trac.2011.04.009. DOI
Nurunnabi M., Khatun Z., Huh K.M., Park S.Y., Lee D.Y., Cho K.J., Lee Y.K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7:6858–6867. doi: 10.1021/nn402043c. PubMed DOI
Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinos A.B., Zboril R. Toxicity of carbon dots–Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI
Yang S.T., Wang X., Wang H., Lu F., Luo P.G., Cao L., Meziani M.J., Liu J.H., Liu Y., Chen M. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C. 2009;113:18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC
Chen Z., Ma L., Liu Y., Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2:238–250. doi: 10.7150/thno.3509. PubMed DOI PMC
Luo P.G., Yang F., Yang S.T., Sonkar S.K., Yang L., Broglie J.J., Liu Y., Sun Y.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014;4:10791–10807. doi: 10.1039/c3ra47683a. DOI
Gao A., Lu N., Wang Y., Dai P., Li T., Gao X., Wang Y., Fan C. Enhanced Sensing of Nucleic Acids with Silicon Nanowire Field Effect Transistor Biosensors. Nano Lett. 2012;12:5262–5268. doi: 10.1021/nl302476h. PubMed DOI
Hao J., Liu F., Liu N., Zeng M., Song Y., Wang L. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks. Sens. Actuators B Chem. 2017;245:641–647. doi: 10.1016/j.snb.2017.02.029. DOI
Pardo J., Peng Z., Leblanc R.M. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018;23:378. doi: 10.3390/molecules23020378. PubMed DOI PMC
Danilenko V.V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State. 2004;46:595–599. doi: 10.1134/1.1711431. DOI
Tinwala H., Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073. PubMed DOI
Pichot V., Risse B., Schnell F., Mory J., Spitzer D. Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 2013;3:2159. doi: 10.1038/srep02159. PubMed DOI PMC
Mochalin V.N., Shenderova O.H.D., Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012;7:11. doi: 10.1038/nnano.2011.209. PubMed DOI
Osswald S., Yushin G., Mochalin V., Kucheyev S.O., Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006;128:11635–11642. doi: 10.1021/ja063303n. PubMed DOI
Schrand A.M., Hens S.A.C., Shenderova O.A. Nanodiamond particles: Properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 2009;34:18–74. doi: 10.1080/10408430902831987. DOI
Shenderova O., Koscheev A., Zaripov N., Petrov I., Skryabin Y., Detkov P., Turner S., Van Tendeloo G. Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C. 2011;115:9827–9837. doi: 10.1021/jp1102466. DOI
Ōsawa E. Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 2007;16:2018–2022. doi: 10.1016/j.diamond.2007.08.008. DOI
Krüger A., Liang Y., Jarre G., Stegk J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 2006;16:2322–2328. doi: 10.1039/B601325B. DOI
Meinhardt T., Lang D., Dill H., Krueger A. Pushing the functionality of diamond nanoparticles to new horizons: Orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 2011;21:494–500. doi: 10.1002/adfm.201001219. DOI
Xing Y., Dai L. Nanodiamonds for nanomedicine. Nanomedicine. 2009;4:207–218. doi: 10.2217/17435889.4.2.207. PubMed DOI
McGuinness L.P., Yan Y., Stacey A., Simpson D.A., Hall L.T., Maclaurin D., Prawer S., Mulvaney P., Wrachtrup J., Caruso F. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 2011;6:358. doi: 10.1038/nnano.2011.64. PubMed DOI
Nagl A., Hemelaar S.R., Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes-a review. Anal. Bioanal. Chem. 2015;407:7521–7536. doi: 10.1007/s00216-015-8849-1. PubMed DOI PMC
Sharma R., Sharma A.K., Sharma V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng. 2015;2:1094017. doi: 10.1080/23311916.2015.1094017. DOI
Mahajan S., Patharkar A., Kuche K., Maheshwari R., Kishore D.R., Kalia K., Tekade R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm. 2018;548:540–558. doi: 10.1016/j.ijpharm.2018.07.027. PubMed DOI
Meng L., Fu C., Lu Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 2009;19:801–810. doi: 10.1016/j.pnsc.2008.08.011. DOI
Merum S., Veluru J.B., Seeram R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Mater. Sci. Eng. B. 2017;223:43–63. doi: 10.1016/j.mseb.2017.06.002. DOI
Spinato C., Giust D., Vacchi I.A., Ménard-Moyon C., Kostarelos K., Bianco A. Different chemical strategies to aminate oxidised multi-walled carbon nanotubes for siRNA complexation and delivery. J. Mater. Chem. B. 2016;4:431–441. doi: 10.1039/C5TB02088C. PubMed DOI
Rodríguez-Jiménez R., Alonso-Núñez G., Paraguay-Delgado F., Espinoza-Gómez H., Vélez-López E., Rogel-Hernández E. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups. J. Nanosci. Nanotechnol. 2016;16:1022–1027. doi: 10.1166/jnn.2016.10826. PubMed DOI
Balas M., Constanda S., Duma-Voiculet A., Prodana M., Hermenean A., Pop S., Demetrescu I., Dinischiotu A. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol. Vitro. 2016;37:189–200. doi: 10.1016/j.tiv.2016.09.011. PubMed DOI
Sharma P., Mehra K.N., Jain K., Jain N.K. Biomedical Applications of Carbon Nanotubes: A Critical Review. Curr. Drug Deliv. 2016;13:796–817. doi: 10.2174/1567201813666160623091814. PubMed DOI
Ünlü A., Meran M., Dinc B., Karatepe N., Bektaş M., Güner F.S. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes. Mol. Biol. Rep. 2018;45:523–531. doi: 10.1007/s11033-018-4189-5. PubMed DOI
Bollella P., Katz E. Bioelectrocatalysis at carbon nanotubes. In: Kumar C.V., editor. Methods in Enzymology. 1st ed. Academic Press; London, UK: 2020. pp. 215–247. PubMed DOI
Guerra J., Herrero M.A., Vázquez E. Carbon nanohorns as alternative gene delivery vectors. RSC Adv. 2014;4:27315. doi: 10.1039/c4ra03251a. DOI
Dellinger A., Zhou Z., Connor J., Madhankumar A.B., Pamujula S., Sayes C.M., Kepley K.L. Application of fullerenes in nanomedicine: An update. Nanomedicine. 2013;8:1191–1208. doi: 10.2217/nnm.13.99. PubMed DOI
Novoselov K.S., Fal V.I., Colombo L., Gillbert P.P., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI
Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Kostarelos K., Novoselov K.S. Exploring the interface of graphene and biology. Science. 2014;344:261–263. doi: 10.1126/science.1246736. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Priyadarsini S., Mohanty S., Mukherjee S., Basu S., Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 2018;8:123–137. doi: 10.1007/s40097-018-0265-6. DOI
Domínguez C., Behan J.A., Colavita P.E. Electrocatalysis at Nanocarbons: Model Systems and Applications in Energy Conversion. In: Yang N., Zhao G., Foord J., editors. Nanocarbon Electrochemistry. 1st ed. John Wiley & Sons Ltd.; Xoboken, NJ, USA: 2020. pp. 201–249. DOI
Hummers W.S., Jr., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Shukla V. Observation of critical magnetic behavior in 2D carbon based composites. Nanoscale Adv. 2020;2:962–990. doi: 10.1039/C9NA00663J. PubMed DOI PMC
Singh S., Sharma R., Khanuja M. Carbon Based Electrocatalysts. In: Inamuddin , Boddula R., Asiri A.M., editors. Methods for Electrocatalysis. 1st ed. Springer Nature Switzerland AD; Basel, Switzerland: 2020. pp. 301–309.
Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI
Singh N., Manshian B., Jenkins G.J.S., Griffithsa S.M., Williams P.M., Maffeis T.G.G., Wright C.J., Doaka S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009. PubMed DOI
Magdolenova Z., Collins A., Kumar A., Dhawan A., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–278. doi: 10.3109/17435390.2013.773464. PubMed DOI
Folkmann J.K., Risom L., Jacobsen N.R., Wallin H., Loft S., Møller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect. 2009;117:703–708. doi: 10.1289/ehp.11922. PubMed DOI PMC
Mrđanović J., Šolajić S., Bogdanović V., Stankov K., Bogdanović G., Djordjevic A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res. 2009;680:25–30. doi: 10.1016/j.mrgentox.2009.08.008. PubMed DOI
Mrđanovic J., Šolajić S., Bogdanović V., Djordjevic A., Bogdanović G., Injac R., Rakočević Z. Effects of fullerenol nano particles C60(OH)24 on micronuclei and chromosomal aberrations’ frequency in peripheral blood lymphocytes. Dig. J. Nanomater. Biostruct. 2012;7:673–686.
Sumi N., Chitra K.C. Cytogenotoxic effects of fullerene C60 in the freshwater teleostean fish, Anabas testudineus (Bloch, 1792) Mutat. Res. 2019;847:503104. doi: 10.1016/j.mrgentox.2019.503104. PubMed DOI
Samadian H., Salami M.S., Jaymand M., Azarnezhad A., Najafi M., Hamed Barabadi H., Ahmadi A. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords? Mutat. Res. 2020;783:108296. doi: 10.1016/j.mrrev.2020.108296. PubMed DOI
Totsuka Y., Higuchi T., Imai T., Nishikawa A., Nohmi T., Kato T., Masuda S., Kinae N., Hiyoshi K., Ogo S., et al. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part. Fibre Toxicol. 2009;6:23. doi: 10.1186/1743-8977-6-23. PubMed DOI PMC
Karpeta-Kaczmarek J., Kędziorski A., Augustyniak-Jabłokow M.A., Dziewięcka M., Augustyniak M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ. Res. 2018;166:602–609. doi: 10.1016/j.envres.2018.05.027. PubMed DOI
Dworak N., Wnuk M., Zebrowski J., Bartosz G., Lewinska A. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon. 2014;68:763–776. doi: 10.1016/j.carbon.2013.11.067. DOI
Xing Y., Xiong W., Zhu L., Osawa E., Hussin S., Dai L. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011;5:2376–2384. doi: 10.1021/nn200279k. PubMed DOI
Lindberg H.K., Falck G.C., Suhonen S., Vippola M., Vanhala E., Catalán J., Savolainen K., Norppa H. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 2009;186:166–173. doi: 10.1016/j.toxlet.2008.11.019. PubMed DOI
Kisin E.R., Murray A.R., Keane M.J., Shi X.C., Schwegler-Berry D., Gorelik O., Arepalli S., Castranova V., Wallace W.E., Kagan V.E., et al. Single-walled carbon nanotubes: Geno-and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health A. 2007;70:2071–2079. doi: 10.1080/15287390701601251. PubMed DOI
Sargent L.M., Hubbs A.F., Young S.H., Kashona M.L., Dinu C.Z., Salisbury J.L., Benkovic S.A., Lowry D.T., Murray A.R., Kisin E.R., et al. Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res. 2012;745:28–37. doi: 10.1016/j.mrgentox.2011.11.017. PubMed DOI PMC
Siegrist K.J., Reynolds S.H., Kashon M.L., Lowry D.T., Dong C., Hubbs A.F., Young S.H., Salisbury J.L., Porter D.W., Benkovic S.A., et al. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part. Fibre Toxicol. 2014;11:6. doi: 10.1186/1743-8977-11-6. PubMed DOI PMC
Srivastava R.K., Rahman Q., Kashyap M.P., Lohani M., Pant A.B. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS ONE. 2011;6:e25767. doi: 10.1371/journal.pone.0025767. PubMed DOI PMC
Kim J.K., Shin J.H., Lee J.S., Hwang J.H., Lee J.H., Baek J.E., Kim T.G., Kim B.W., Kim J.S., Lee G.H., et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10:891–901. doi: 10.3109/17435390.2015.1133865. PubMed DOI
Mendonça M.C.P., Soares E.S., de Jesus M.B., Ceragioli H.J., Irazusta S.P., Batista A.G., Vinolo M.A.R., Maróstica M.R., Jr., da Cruz-Höfling M.A. Reduced graphene oxide: Nanotoxicological profile in rats. J. Nanobiotechnol. 2016;14:53. doi: 10.1186/s12951-016-0206-9. PubMed DOI PMC
Donaldson K., Poland C.A. Inhaled nanoparticles and lung cancer-what we can learn from conventional particle toxicology. Swiss Med. Wkly. 2012;142:13547. doi: 10.4414/smw.2012.13547. PubMed DOI
Liu Y., Luo Y., Wu J., Wang Y., Yang X., Yang R., Wang B., Yang J., Zhang N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep. 2013;3:3469. doi: 10.1038/srep03469. PubMed DOI PMC
Wang H., Wu F., Meng W., White J.C., Holden P.A., Xing B. Engineered nanoparticles may induce genotoxicity. Environ. Sci. Technol. 2013;47:13212–13214. doi: 10.1021/es404527d. PubMed DOI
An H., Liu Q., Ji Q., Jin B. DNA binding and aggregation by carbon nanoparticles. Biochem. Biophys. Res. Commun. 2010;393:571–576. doi: 10.1016/j.bbrc.2010.02.006. PubMed DOI
Baweja L., Gurbani D., Shanker R., Pandey A.K., Subramanian V., Dhawan A. C60-fullerene binds with the ATP binding domain of human DNA topoiosmerase II alpha. J. Biomed. Nanotechnol. 2011;7:177–178. doi: 10.1166/jbn.2011.1257. PubMed DOI
Gupta S.K., Baweja L., Gurbani D., Pandey A.K., Dhawan A. Interaction of C60 fullerene with the proteins involved in DNA mismatch repair pathway. J. Biomed. Nanotechnol. 2011;7:179–180. doi: 10.1166/jbn.2011.1258. PubMed DOI
Barillet S., Jugan M.L., Laye M., Leconte Y., Herlin-Boime N., Reynaud C., Carrièrea M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicol. Lett. 2010;198:324–330. doi: 10.1016/j.toxlet.2010.07.009. PubMed DOI
Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB. 2003;17:1195–1214. doi: 10.1096/fj.02-0752rev. PubMed DOI
Stone V., Johnston H., Schins R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations in vitro methods for nanotoxicology Vicki Stone et al. Crit. Rev. Toxicol. 2009;39:613–626. doi: 10.1080/10408440903120975. PubMed DOI
Bardhan N.M. 30 Years of Advances in Functionalization of Carbon Nanomaterials for Biomedical Applications: A Practical Review. J. Mater. Res. 2017;32:107–127. doi: 10.1557/jmr.2016.449. DOI
Chen G.Y., Yang H.J., Lu C.H., Chao Y.C., Hwang S.M., Chen C.L., Lo K.W., Sung L.Y., Luo W.Y., Tuan H.Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;27:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. PubMed DOI
Mullick Chowdhury S., Manepalli P., Sitharaman B. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater. 2014;10:4494–4504. doi: 10.1016/j.actbio.2014.06.030. PubMed DOI PMC
Sydlik U., Bierhals K., Soufi M., Abel J., Schins R.P.F., Unfried K. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am. J. Physiol. Cell. Mol. Physiol. 2006;291:L725–L733. doi: 10.1152/ajplung.00131.2006. PubMed DOI
Feng T., Hongchi Y., Qing X., Yunlong M., Hongmei Y., Yang S., Xiaoheng L. Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget. 2017;8:69577. doi: 10.18632/oncotarget.18632. PubMed DOI PMC
Fan M., Sun J., Wang W., Fan J., Wang L., Zhang X., Yang A., Wang W., Zhang R., Li J. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis. 2014;19:860–870. doi: 10.1007/s10495-014-0968-1. PubMed DOI
Lu L.H., Lee Y.T., Chen H.W., Chiang L.Y., Huang H.C. The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Br. J. Pharm. 1998;123:1097–1102. doi: 10.1038/sj.bjp.0701722. PubMed DOI PMC
Ye S., Chen M., Jiang Y., Zhou T., Wang Y., Hou Z., Ren L. Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int. J. Nanomed. 2014;9:2073–2087. doi: 10.2147/IJN.S56973. PubMed DOI PMC
Bonner J.C. Lung fibrotic responses to particle exposure. Toxicol. Pathol. 2007;35:148–153. doi: 10.1080/01926230601060009. PubMed DOI
Murphy F.A., Schinwald A., Poland C.A., Donaldson K. The mechanism of pleural inflammation by long carbon nanotubes: Interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part. Fibre Toxicol. 2012;9:8. doi: 10.1186/1743-8977-9-8. PubMed DOI PMC
Palomaki J., Valimaki E., Sund J., Vippola M., Clausen P.A., Jensen K.A., Savolainen K., Matikainen S., Alenius H. Long, Needle-like Carbon Nanotubes and Asbestos Activate the NLRP3 Inflammasome through a Similar Mechanism. ACS Nano. 2011;5:6861–6870. doi: 10.1021/nn200595c. PubMed DOI
Pacurari M., Yin X.J., Zhao J., Ding M., Leonard S.S., Schwegler-Berry D., Ducatman B.S., Sbarra D., Hoover M.D., Castranova V., et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 2008;116:1211–1217. doi: 10.1289/ehp.10924. PubMed DOI PMC
He X., Young S.H., Fernback J.E., Ma Q. Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-κB signaling. J. Clin. Toxicol. 2012;S5:1–8. doi: 10.4172/2161-0495.S5-005. PubMed DOI PMC
Azad N., Iyer A.K.V., Wang L., Liu Y., Lu Y., Rojanasakul Y. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology. 2013;7:157–168. doi: 10.3109/17435390.2011.647929. PubMed DOI PMC
Pandey R.K., Prajapati V.K. Molecular and immunological toxic effects of nanoparticles. Int. J. Biol. Macromol. 2018;107:1278–1293. doi: 10.1016/j.ijbiomac.2017.09.110. PubMed DOI
Bagheri Z., Ehtesabi H., Hallaji Z., Latific H., Behroodic E. Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicol. Environ. Saf. 2018;161:245–250. doi: 10.1016/j.ecoenv.2018.05.071. PubMed DOI
Chong Y., Ge C., Fang G., Tian X., Ma X., Wen T., Wamer W.G., Chen C., Chai Z., Yin J.J. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano. 2016;10:8690–8699. doi: 10.1021/acsnano.6b04061. PubMed DOI
Qin Y., Zhou Z.W., Pan S.T., Hed Z.H., Zhang X., Qiuc J.X., Duan W., Yang T., Zhou S.F. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology. 2015;327:62–76. doi: 10.1016/j.tox.2014.10.011. PubMed DOI
Paget V., Sergent J.A., Grall R., Altmeyer-Morel S., Girard H.A., Petit T., Gesset C., Mermoux M., Bergonzo P., Arnault J.C., et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology. 2014;8:46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI
Balek L., Buchtova M., Bosakova M.K., Varecha M., Foldynova-Trantirkova S., Gudernova I., Vesela I., Havlik J., Neburkova J., Turner S., et al. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials. 2018;176:106–121. doi: 10.1016/j.biomaterials.2018.05.030. PubMed DOI
Venkatakrishnan A.J., Deupi X., Lebon G., Tate C.G., Schertler G.F., Babu M.M. Molecular signatures of G-protein-coupled receptors. Nature. 2013;494:185–194. doi: 10.1038/nature11896. PubMed DOI
Yin S., Liu J., Kang Y., Lin Y., Li D., Shao L. Interactions of nanomaterials with ion channels and related mechanisms. Br. J. Pharm. 2019;176:3754–3774. doi: 10.1111/bph.14792. PubMed DOI PMC
Weir C.J. Ion channels, receptors, agonists and antagonists. Anaesth. Intensive Care Med. 2020;21:62–68. doi: 10.1016/j.mpaic.2019.10.022. DOI
Álvarez C.A., Ramírez-Cepeda F., Santana P., Torres E., Cortés J., Guzmán F., Schmitt P., Mercado L. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol. Immunol. 2017;87:102–113. doi: 10.1016/j.molimm.2017.03.010. PubMed DOI
Levin E.R., Hammes S.R. Nuclear receptors outside the nucleus: Extranuclear signalling by steroid receptors. Nat. Rev. Mol. Cell Biol. 2016;17:783. doi: 10.1038/nrm.2016.122. PubMed DOI PMC
Opaliński Ł., Song J., Priesnitz C., Wenz L.S., Oeljeklaus S., Warscheid B., Pfanner N., Becker T. Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 2018;25:2036–2043. doi: 10.1016/j.celrep.2018.10.083. PubMed DOI PMC
Chakraborty A., Jana N.R. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett. 2015;6:3688–3697. doi: 10.1021/acs.jpclett.5b01739. PubMed DOI
Stöckmann D., Spannbrucker T., Ale-Agha N., Jakobs P., Goy C., Dyballa-Rukes N., Hornstein T., Kümper A., Kraegeloh A., Haendeler J., et al. Non-Canonical activation of the epidermal growth factor receptor by carbon nanoparticles. Nanomaterials. 2018;8:267. doi: 10.3390/nano8040267. PubMed DOI PMC
Wee P., Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9:52. doi: 10.3390/cancers9050052. PubMed DOI PMC
Alanko J., Mai A., Jacquemet G., Schauer K., Kaukonen R., Saari M., Goud B., Ivaska J. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 2015;17:1412–1421. doi: 10.1038/ncb3250. PubMed DOI PMC
Martin K., Pritchett J., Llewellyn J., Mullan A.F., Athwal V.S., Dobie R., Harvey E., Zeef L., Farrow S., Streuli C., et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 2016;7:1–11. doi: 10.1038/ncomms12502. PubMed DOI PMC
Hayden M.S., Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344–362. doi: 10.1016/j.cell.2008.01.020. PubMed DOI
Lingappan K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018;7:81–86. doi: 10.1016/j.cotox.2017.11.002. PubMed DOI PMC
Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones. 2007;39:86–93. PubMed
Wu K.C., McDonald P.R., Liu J.J., Chaguturu R., Klaassen C.D. Implementation of a high-throughput screen for identifying small molecules to activate the Keap1-Nrf2-ARE pathway. PLoS ONE. 2012;7:e44686. doi: 10.1371/journal.pone.0044686. PubMed DOI PMC
Rodríguez-Ramiro I., Ramos S., Bravo L., Goya L., Martin M.A. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. Eur. J. Nutr. 2012;51:881–892. doi: 10.1007/s00394-011-0269-1. PubMed DOI
Chen Y., Liu K., Zhang J., Hai Y., Wang P., Wang H., Liu Q., Wong C.C., Yao J., Gao Y., et al. c-Jun NH2-Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2–Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice. Hepatology. 2020;71:1787–1801. doi: 10.1002/hep.31116. PubMed DOI PMC
Ray S.C., Jana N.R. Toxicology and Biosafety of Carbon Nanomaterials. In: Ray S.C., Jana N.R., editors. Carbon Nanomaterials for Biological and Medical Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 205–229. DOI
Zhao Q.L., Zhang Z.L., Huang B.H., Peng J., Zhang M., Pang D.W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008;41:5116–5118. doi: 10.1039/b812420e. PubMed DOI
Tao H., Yang K., Ma Z., Wan J., Zhang Y., Kang Z., Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8:281–290. doi: 10.1002/smll.201101706. PubMed DOI
Esfandiari N., Bagheri Z., Ehtesabi H., Fatahi Z., Tavana H., Latifi H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon. 2019;5:e02940. doi: 10.1016/j.heliyon.2019.e02940. PubMed DOI PMC
Wang Y., Anilkumar P., Cao P.L., Liu J.-H., Luo P.G., Tackett K.N., II, Sahu S., Wang P., Wang X., Sunet Y.P. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Exp. Biol. Med. 2011;236:1231–1238. doi: 10.1258/ebm.2011.011132. PubMed DOI
Qian Z., Ma J., Shan X., Shao L., Zhou J., Chen J., Feng H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 2013;3:14571–14579. doi: 10.1039/c3ra42066c. DOI
Feng T., Ai X., An G., Yang P., Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 2016;10:4410–4420. doi: 10.1021/acsnano.6b00043. PubMed DOI
Liu W., Li C., Ren Y., Sun X., Pan W., Li Y., Wang J., Wang W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B. 2016;21:5772–5788. doi: 10.1039/C6TB00976J. PubMed DOI
Ibrahim M., Xue Y., Ostermann M., Sauter A., Steinmueller-Nethl D., Schweeberg S., Krueger A., Cimpan M.R., Mustafa K. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential. J. Biomed. Mater. Res. A. 2018;106:1697–1707. doi: 10.1002/jbm.a.36369. PubMed DOI
Alawdi S.H., El-Denshary E.S., Safar M.M., Eidi H., David M.O., Abdel-Wahhab M.A. Neuroprotective Effect of Nanodiamond in Alzheimer’s Disease Rat Model: A Pivotal Role for Modulating NF-κB and STAT3 Signaling. Mol. Neurobiol. 2017;54:1906–1918. doi: 10.1007/s12035-016-9762-0. PubMed DOI
Liu Z., Liang X.J. Nano-carbons as theranostics. Theranostics. 2012;2:235–237. doi: 10.7150/thno.4156. PubMed DOI PMC
Zhu M.T., Feng W.Y., Wang B., Wang T., Gu Y.Q., Wang M., Wang Y., Ouyang H., Zhao Y.L., Chai Z.F. Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology. 2008;247:102–111. doi: 10.1016/j.tox.2008.02.011. PubMed DOI
Kumar A., Banerjee K., Liljeroth P. Molecular assembly on two-dimensional materials. Nanotechnology. 2017;28:082001. doi: 10.1088/1361-6528/aa564f. PubMed DOI
Dragojević-Simić V., Jaćević V., Dobrić S., Djordjevic A., Bokonjić D., Bajčetić M., Injac R. Anti-inflammatory activity of fullerenol C60(OH)24 nanoparticles in a model of acute inflammation in rats. Dig. J. Nanomater. Biostruct. 2011;6:819–827.
Jaćević V., Jović D., Kuča K., Dragojević-Simić V., Dobrić S., Trajković S., Borišev I., Šegrt Z., Milovanović Z., Bokonjić D., et al. Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. J. Appl. Biomed. 2016;14:285–297. doi: 10.1016/j.jab.2016.05.004. DOI
Baker G.L., Gupta A., Clark M.L., Valenzuela B.R., Staska L.M., Harbo S.J., Pierce J.T., Dill J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci. 2008;101:122–131. doi: 10.1093/toxsci/kfm243. PubMed DOI
Johnston H.J., Hutchison G.R., Christensen F.M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010;114:162–182. doi: 10.1093/toxsci/kfp265. PubMed DOI
Kim S.C., Kim D.W., Shim Y.H., Shim Y.H., Bang J.S., Oh H.S., Kim S.W., Seo M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release. 2001;72:191–202. doi: 10.1016/S0168-3659(01)00275-9. PubMed DOI
Li Y.P., Pei Y., Zhang X., Gu Z.G., Zhou Z.H., Yuan W.F., Zhou J.J., Zhu J.H., Gao X.J. PEGylatedPLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J. Control. Release. 2001;71:203–211. doi: 10.1016/S0168-3659(01)00218-8. PubMed DOI
Nielsen G.D., Roursgaard M., Jensen K.A., Poulsen S.S., Larsen S.T. In vivo biology and toxicology of fullerenes and their derivates. Basic Clin. Pharm. Toxicol. 2008;103:197–208. doi: 10.1111/j.1742-7843.2008.00266.x. PubMed DOI
Aschberger K., Johnson H.J., Stone V., Aitken R.J., Tran C.L., Hankin S.M., Peters S.A.K., Christensen F.M. Review of fullerene toxicity and exposure—Appraisal of a human health risk assesment, based on open literature. Regul. Toxicol. Pharm. 2010;58:455–473. doi: 10.1016/j.yrtph.2010.08.017. PubMed DOI
Ueng T.H., Kang J.H., Wang H.W., Cheng Y.W., Chiang L.Y. Suppresion of microsomal cytochrome P450-dependent monooxygenase and mitochondrial oxidative phosphorylation by fullerenol, polyhydroxylated fullerene C60. Toxicol. Lett. 1997;93:29–37. doi: 10.1016/S0378-4274(97)00071-4. PubMed DOI
Cai X., Hao J., Zhang X., Yu B., Ren J., Luo C., Li Q., Huang Q., Shi X., Li W., et al. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial disfynction. Toxicol. Appl. Pharm. 2010;243:27–34. doi: 10.1016/j.taap.2009.11.009. PubMed DOI
Jaćević V., Djordjevic A., Srdjenović B., Milić-Tores V., Šegrt Z., Dragojević-Simić V., Kuča K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Pathol. 2017;102:360–369. doi: 10.1016/j.yexmp.2017.03.005. PubMed DOI