The Identification of Metabolites and Effects of Albendazole in Alfalfa (Medicago sativa)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07724S
Grantová Agentura České Republiky
UNCE 18/SCI/012; SVV 260 550
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841;CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32824876
PubMed Central
PMC7460629
DOI
10.3390/ijms21165943
PII: ijms21165943
Knihovny.cz E-zdroje
- Klíčová slova
- UHPLC-MS/MS, anthelmintics, drug metabolism, drug phytotoxicity, drugs in the environment,
- MeSH
- albendazol farmakologie MeSH
- anthelmintika farmakologie MeSH
- klíčení MeSH
- krmivo pro zvířata MeSH
- Medicago sativa účinky léků růst a vývoj metabolismus MeSH
- metabolom * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- albendazol MeSH
- anthelmintika MeSH
Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.
Zobrazit více v PubMed
Bártíková H., Podlipna R., Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere. 2016;144:2290–2301. doi: 10.1016/j.chemosphere.2015.10.137. PubMed DOI
Ramel F., Sulmon C., Serra A.-A., Gouesbet G., Couée I. Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. 2012;63:3999–4014. doi: 10.1093/jxb/ers102. PubMed DOI
Wagil M., Białk-Bielińska A., Puckowski A., Wychodnik K., Maszkowska J., Mulkiewicz E., Kumirska J., Stepnowski P., Stolte S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ. Sci. Pollut. Res. 2014;22:2566–2573. doi: 10.1007/s11356-014-3497-0. PubMed DOI PMC
Vokřál I., Michaela Š., Radka P., Jiří L., Lukáš P., Dominika S., Kateřina L., Barbora S., Lenka S. Ivermectin environmental impact: Excretion profile in sheep and phytotoxic effect in Sinapis alba. Ecotoxicol. Environ. Saf. 2019;169:944–949. doi: 10.1016/j.ecoenv.2018.11.097. PubMed DOI
Syslová E., Landa P., Navrátilová M., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Vaněk T., Podlipna R. Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere. 2019;234:528–535. doi: 10.1016/j.chemosphere.2019.06.102. PubMed DOI
Syslová E., Landa P., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Navrátilová M., Vaněk T., Podlipna R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Chemosphere. 2019;218:662–669. doi: 10.1016/j.chemosphere.2018.11.135. PubMed DOI
Prchal L., Podlipná R., Lamka J., Dědková T., Skálová L., Vokřál I., Lecová L., Vaněk T., Szotáková B. Albendazole in environment: Faecal concentrations in lambs and impact on lower development stages of helminths and seed germination. Environ. Sci. Pollut. Res. 2016;23:13015–13022. doi: 10.1007/s11356-016-6472-0. PubMed DOI
Stuchlíková L.R., Jakubec P., Langhansová L., Podlipna R., Navrátilová M., Szotáková B., Skálová L. The uptake, effects and biotransformation of monepantel in meadow plants used as a livestock feed. Chemosphere. 2019;237:124434. doi: 10.1016/j.chemosphere.2019.124434. PubMed DOI
Bártíková H., Skálová L., Stuchlíková L.R., Vokřál I., Vaněk T., Podlipna R. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 2015;47:374–387. PubMed
Podlipna R., Skálová L., Seidlová H., Szotáková B., Kubíček V., Stuchlíková L.R., Jirásko R., Vaněk T., Vokřál I. Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour. Technol. 2013;144:216–224. doi: 10.1016/j.biortech.2013.06.105. PubMed DOI
Raisová L.S., Podlipna R., Szotáková B., Syslová E., Skálová L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol. Environ. Saf. 2017;141:37–42. doi: 10.1016/j.ecoenv.2017.03.014. PubMed DOI
Stuchlíková L.R., Jirásko R., Skálová L., Pavlík F., Szotáková B., Holcapek M., Vaněk T., Podlipna R. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia) Chemosphere. 2016;157:10–17. doi: 10.1016/j.chemosphere.2016.05.015. PubMed DOI
Horvat A., Babic S., Pavlović D.M., Ašperger D., Pelko S., Kaštelan-Macan M., Petrovic M., Mance A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012;31:61–84. doi: 10.1016/j.trac.2011.06.023. DOI
Jaeger L.H., Carvalho-Costa F.A. Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: A systematic review. BMC Veter. Res. 2017;13:358. doi: 10.1186/s12917-017-1282-2. PubMed DOI PMC
McKellar Q. Ecotoxicology and residues of anthelmintic compounds. Veter. Parasitol. 1997;72:413–435. doi: 10.1016/S0304-4017(97)00108-8. PubMed DOI
Porto R., Rodrigues-Silva C., Schneider J., Rath S. Benzimidazoles in wastewater: Analytical method development, monitoring and degradation by photolysis and ozonation. J. Environ. Manag. 2019;232:729–737. doi: 10.1016/j.jenvman.2018.11.121. PubMed DOI
Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Boil. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI
Szabados L., Savoure A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Navrátilová M., Stuchlíková L.R., Skálová L., Szotáková B., Langhansová L., Podlipná R. Pharmaceuticals in environment: The effect of ivermectin on ribwort plantain (Plantago lanceolata L.) Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-09442-4. PubMed DOI
Feng Y., Wang F., Zhang X.-W., Bhutani H., Ye B. Characterizations and bioactivities of abendazole sulfoxide-loaded thermo-sensitive hydrogel. Parasitol. Res. 2016;116:921–928. doi: 10.1007/s00436-016-5365-y. PubMed DOI
Sahin A., Gul A., Karaca M., Akkan H.A., Keles I. The Efficacy of Ricobendazole and Ivermectin on Naturally Infected Sheep with Trichostrongylidae sp in the Region of Van. J. Anim. Vet. Adv. 2009;8:2756–2759.
Arnold K.E., Boxall A.B.A., Brown A.R., Cuthbert R.J., Gaw S., Hutchinson T.H., Jobling S., Madden J.C., Metcalfe C.D., Naidoo V., et al. Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Boil. Lett. 2013;9:20130492. doi: 10.1098/rsbl.2013.0492. PubMed DOI PMC
Murashige T., Skoog F. A revised medium for rapid growth and bio assay with tabacco cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Máchová J., Svobodová Z., Vykusová B. Ekotoxikologické hodnocení výluhů tuhých průmyslových odpadů. Výzkumný ústav rybářský a hydrobiologický; Vodňany, Czech Republic: 1994.
Sánchez-Martín J., Heald J., Kingston-Smith A., Winters A., Rubiales D., Sanz M., Mur L., Prats E. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38:1434–1452. doi: 10.1111/pce.12501. PubMed DOI
Vokřál I., Jirásko R., Stuchlíková L.R., Bártíková H., Szotáková B., Lamka J., Várady M., Skálová L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Veter. Parasitol. 2013;196:373–381. doi: 10.1016/j.vetpar.2013.03.018. PubMed DOI