The Identification of Metabolites and Effects of Albendazole in Alfalfa (Medicago sativa)

. 2020 Aug 18 ; 21 (16) : . [epub] 20200818

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32824876

Grantová podpora
18-07724S Grantová Agentura České Republiky
UNCE 18/SCI/012; SVV 260 550 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841;CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy

Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.

Zobrazit více v PubMed

Bártíková H., Podlipna R., Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere. 2016;144:2290–2301. doi: 10.1016/j.chemosphere.2015.10.137. PubMed DOI

Ramel F., Sulmon C., Serra A.-A., Gouesbet G., Couée I. Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. 2012;63:3999–4014. doi: 10.1093/jxb/ers102. PubMed DOI

Wagil M., Białk-Bielińska A., Puckowski A., Wychodnik K., Maszkowska J., Mulkiewicz E., Kumirska J., Stepnowski P., Stolte S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ. Sci. Pollut. Res. 2014;22:2566–2573. doi: 10.1007/s11356-014-3497-0. PubMed DOI PMC

Vokřál I., Michaela Š., Radka P., Jiří L., Lukáš P., Dominika S., Kateřina L., Barbora S., Lenka S. Ivermectin environmental impact: Excretion profile in sheep and phytotoxic effect in Sinapis alba. Ecotoxicol. Environ. Saf. 2019;169:944–949. doi: 10.1016/j.ecoenv.2018.11.097. PubMed DOI

Syslová E., Landa P., Navrátilová M., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Vaněk T., Podlipna R. Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere. 2019;234:528–535. doi: 10.1016/j.chemosphere.2019.06.102. PubMed DOI

Syslová E., Landa P., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Navrátilová M., Vaněk T., Podlipna R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Chemosphere. 2019;218:662–669. doi: 10.1016/j.chemosphere.2018.11.135. PubMed DOI

Prchal L., Podlipná R., Lamka J., Dědková T., Skálová L., Vokřál I., Lecová L., Vaněk T., Szotáková B. Albendazole in environment: Faecal concentrations in lambs and impact on lower development stages of helminths and seed germination. Environ. Sci. Pollut. Res. 2016;23:13015–13022. doi: 10.1007/s11356-016-6472-0. PubMed DOI

Stuchlíková L.R., Jakubec P., Langhansová L., Podlipna R., Navrátilová M., Szotáková B., Skálová L. The uptake, effects and biotransformation of monepantel in meadow plants used as a livestock feed. Chemosphere. 2019;237:124434. doi: 10.1016/j.chemosphere.2019.124434. PubMed DOI

Bártíková H., Skálová L., Stuchlíková L.R., Vokřál I., Vaněk T., Podlipna R. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 2015;47:374–387. PubMed

Podlipna R., Skálová L., Seidlová H., Szotáková B., Kubíček V., Stuchlíková L.R., Jirásko R., Vaněk T., Vokřál I. Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour. Technol. 2013;144:216–224. doi: 10.1016/j.biortech.2013.06.105. PubMed DOI

Raisová L.S., Podlipna R., Szotáková B., Syslová E., Skálová L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol. Environ. Saf. 2017;141:37–42. doi: 10.1016/j.ecoenv.2017.03.014. PubMed DOI

Stuchlíková L.R., Jirásko R., Skálová L., Pavlík F., Szotáková B., Holcapek M., Vaněk T., Podlipna R. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia) Chemosphere. 2016;157:10–17. doi: 10.1016/j.chemosphere.2016.05.015. PubMed DOI

Horvat A., Babic S., Pavlović D.M., Ašperger D., Pelko S., Kaštelan-Macan M., Petrovic M., Mance A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012;31:61–84. doi: 10.1016/j.trac.2011.06.023. DOI

Jaeger L.H., Carvalho-Costa F.A. Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: A systematic review. BMC Veter. Res. 2017;13:358. doi: 10.1186/s12917-017-1282-2. PubMed DOI PMC

McKellar Q. Ecotoxicology and residues of anthelmintic compounds. Veter. Parasitol. 1997;72:413–435. doi: 10.1016/S0304-4017(97)00108-8. PubMed DOI

Porto R., Rodrigues-Silva C., Schneider J., Rath S. Benzimidazoles in wastewater: Analytical method development, monitoring and degradation by photolysis and ozonation. J. Environ. Manag. 2019;232:729–737. doi: 10.1016/j.jenvman.2018.11.121. PubMed DOI

Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Boil. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI

Szabados L., Savoure A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI

Navrátilová M., Stuchlíková L.R., Skálová L., Szotáková B., Langhansová L., Podlipná R. Pharmaceuticals in environment: The effect of ivermectin on ribwort plantain (Plantago lanceolata L.) Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-09442-4. PubMed DOI

Feng Y., Wang F., Zhang X.-W., Bhutani H., Ye B. Characterizations and bioactivities of abendazole sulfoxide-loaded thermo-sensitive hydrogel. Parasitol. Res. 2016;116:921–928. doi: 10.1007/s00436-016-5365-y. PubMed DOI

Sahin A., Gul A., Karaca M., Akkan H.A., Keles I. The Efficacy of Ricobendazole and Ivermectin on Naturally Infected Sheep with Trichostrongylidae sp in the Region of Van. J. Anim. Vet. Adv. 2009;8:2756–2759.

Arnold K.E., Boxall A.B.A., Brown A.R., Cuthbert R.J., Gaw S., Hutchinson T.H., Jobling S., Madden J.C., Metcalfe C.D., Naidoo V., et al. Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Boil. Lett. 2013;9:20130492. doi: 10.1098/rsbl.2013.0492. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bio assay with tabacco cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Máchová J., Svobodová Z., Vykusová B. Ekotoxikologické hodnocení výluhů tuhých průmyslových odpadů. Výzkumný ústav rybářský a hydrobiologický; Vodňany, Czech Republic: 1994.

Sánchez-Martín J., Heald J., Kingston-Smith A., Winters A., Rubiales D., Sanz M., Mur L., Prats E. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38:1434–1452. doi: 10.1111/pce.12501. PubMed DOI

Vokřál I., Jirásko R., Stuchlíková L.R., Bártíková H., Szotáková B., Lamka J., Várady M., Skálová L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Veter. Parasitol. 2013;196:373–381. doi: 10.1016/j.vetpar.2013.03.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...