The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Dr1013/1-1
Deutsche Forschungsgemeinschaft
OP RDI CZ.1.05/2.1.00/19.0395
Ministry of Education, Youth and Science
OP RDI CZ.1.05/2.1.00/19.0395
European Regional Development Fund
Lu869/8-1
Deutsche Forschungsgemeinschaft
PubMed
32825187
PubMed Central
PMC7503280
DOI
10.3390/ijms21175978
PII: ijms21175978
Knihovny.cz E-zdroje
- Klíčová slova
- ADAM17, bacterial phagocytosis, chemokines, iRhom2, infection, inflammation, metalloproteinase, phagocytes, shedding,
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- Escherichia coli patogenita MeSH
- fagocytóza MeSH
- fagocyty metabolismus mikrobiologie MeSH
- interleukin-8 metabolismus MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- protein ADAM17 genetika metabolismus MeSH
- RAW 264.7 buňky MeSH
- receptory TNF - typ I genetika metabolismus MeSH
- Staphylococcus aureus patogenita MeSH
- THP-1 buňky MeSH
- toll-like receptor 6 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ADAM17 protein, human MeSH Prohlížeč
- antigeny CD36 MeSH
- CD36 protein, human MeSH Prohlížeč
- interleukin-8 MeSH
- intracelulární signální peptidy a proteiny MeSH
- protein ADAM17 MeSH
- receptory TNF - typ I MeSH
- RHBDF2 protein, human MeSH Prohlížeč
- TLR6 protein, human MeSH Prohlížeč
- toll-like receptor 6 MeSH
Uptake of bacteria by phagocytes is a crucial step in innate immune defence. Members of the disintegrin and metalloproteinase (ADAM) family critically control the immune response by limited proteolysis of surface expressed mediator molecules. Here, we investigated the significance of ADAM17 and its regulatory adapter molecule iRhom2 for bacterial uptake by phagocytes. Inhibition of metalloproteinase activity led to increased phagocytosis of pHrodo labelled Gram-negative and -positive bacteria (E. coli and S. aureus, respectively) by human and murine monocytic cell lines or primary phagocytes. Bone marrow-derived macrophages showed enhanced uptake of heat-inactivated and living E. coli when they lacked either ADAM17 or iRhom2 but not upon ADAM10-deficiency. In monocytic THP-1 cells, corresponding short hairpin RNA (shRNA)-mediated knockdown confirmed that ADAM17, but not ADAM10, promoted phagocytosis of E. coli. The augmented bacterial uptake occurred in a cell autonomous manner and was accompanied by increased release of the chemokine CXCL8, less TNFα release and only minimal changes in the surface expression of the receptors TNFR1, TLR6 and CD36. Inhibition experiments indicated that the enhanced bacterial phagocytosis after ADAM17 knockdown was partially dependent on TNFα-activity but not on CXCL8. This novel role of ADAM17 in bacterial uptake needs to be considered in the development of ADAM17 inhibitors as therapeutics.
Department of Neonatology University Children's Hospital 52074 Aachen Germany
Institute of Molecular Pharmacology Medical Faculty RWTH Aachen University 52074 Aachen Germany
Zobrazit více v PubMed
Dreymueller D., Uhlig S., Ludwig A. Adam-family metalloproteinases in lung inflammation: Potential therapeutic targets. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;308:325–343. doi: 10.1152/ajplung.00294.2014. PubMed DOI
Pruessmeyer J., Ludwig A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin. Cell Dev. Biol. 2009;20:164–174. doi: 10.1016/j.semcdb.2008.09.005. PubMed DOI
Düsterhöft S., Babendreyer A., Giese A.A., Flasshove C., Ludwig A. Status update on iRhom and ADAM17: It’s still complicated. Biochim. Biophys. Acta-Mol. Cell Res. 2019;1866:1567–1583. doi: 10.1016/j.bbamcr.2019.06.017. PubMed DOI
Chalaris A., Adam N., Sina C., Rosenstiel P., Lehmann-Koch J., Schirmacher P., Hartmann D., Cichy J., Gavrilova O., Schreiber S., et al. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J. Exp. Med. 2010;207:1617–1624. doi: 10.1084/jem.20092366. PubMed DOI PMC
Peschon J.J., Slack J.L., Reddy P., Stocking K.L., Sunnarborg S.W., Lee D.C., Russell W.E., Castner B.J., Johnson R.S., Fitzner J.N., et al. An essential role for ectodomain shedding in mammalian development. Science (80-) 1998;282:1281–1284. doi: 10.1126/science.282.5392.1281. PubMed DOI
Adrain C., Zettl M., Christova Y., Taylor N., Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science (80-) 2012;335:225–228. doi: 10.1126/science.1214400. PubMed DOI PMC
McIlwain D.R., Lang P.A., Maretzky T., Hamada K., Ohishi K., Maney S.K., Berger T., Murthy A., Duncan G., Xu H.C., et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science (80-) 2012;335:229–232. doi: 10.1126/science.1214448. PubMed DOI PMC
Li X., Maretzky T., Weskamp G., Monette S., Qing X., Issuree P.D.A., Crawford H.C., McIlwain D.R., Mak T.W., Salmon J.E., et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. USA. 2015;112:6080–6085. doi: 10.1073/pnas.1505649112. PubMed DOI PMC
Christova Y., Adrain C., Bambrough P., Ibrahim A., Freeman M. Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 2013;14:884–890. doi: 10.1038/embor.2013.128. PubMed DOI PMC
Issuree P.D.A., Maretzky T., McIlwain D.R., Monette S., Qing X., Lang P.A., Swendeman S.L., Park-Min K.H., Binder N., Kalliolias G.D., et al. iRHOM2 is a critical pathogenic mediator of infammatory arthritis. J. Clin. Investig. 2013;123:928–932. doi: 10.1172/JCI66168. PubMed DOI PMC
Blaydon D.C., Etheridge S.L., Risk J.M., Hennies H.C., Gay L.J., Carroll R., Plagnol V., McRonald F.E., Stevens H.P., Spurr N.K., et al. RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet. 2012;90:340–346. doi: 10.1016/j.ajhg.2011.12.008. PubMed DOI PMC
Tsukerman P., Eisenstein E.M., Chavkin M., Schmiedel D., Wong E., Werner M., Yaacov B., Averbuch D., Molho-Pessach V., Stepensky P., et al. Cytokine secretion and NK cell activity in human ADAM17 deficiency. Oncotarget. 2015;6:44151. doi: 10.18632/oncotarget.6629. PubMed DOI PMC
Blaydon D.C., Biancheri P., Di W.L., Plagnol V., Cabral R.M., Brooke M.A., Van Heel D.A., Ruschendorf F., Toynbee M., Walne A., et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 2011;365:1502–1508. doi: 10.1056/NEJMoa1100721. PubMed DOI
Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y., Blobel C.P. Cutting Edge: TNF-α-Converting Enzyme (TACE/ADAM17) Inactivation in Mouse Myeloid Cells Prevents Lethality from Endotoxin Shock. J. Immunol. 2007;179:2686–2689. doi: 10.4049/jimmunol.179.5.2686. PubMed DOI
Dreymueller D., Martin C., Kogel T., Pruessmeyer J., Hess F.M., Horiuchi K., Uhlig S., Ludwig A. Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. EMBO Mol. Med. 2012;4:412–423. doi: 10.1002/emmm.201200217. PubMed DOI PMC
Arndt P.G., Strahan B., Wang Y., Long C., Horiuchi K., Walcheck B. Leukocyte adam17 regulates acute pulmonary inflammation. PLoS ONE. 2011;6:e19938. doi: 10.1371/journal.pone.0019938. PubMed DOI PMC
Schulz B., Pruessmeyer J., Maretzky T., Ludwig A., Blobel C.P., Saftig P., Reiss K. ADAMIO regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 2008;102:1192–1201. doi: 10.1161/CIRCRESAHA.107.169805. PubMed DOI PMC
Hundhausen C., Schulte A., Schulz B., Andrzejewski M.G., Schwarz N., von Hundelshausen P., Winter U., Paliga K., Reiss K., Saftig P., et al. Regulated Shedding of Transmembrane Chemokines by the Disintegrin and Metalloproteinase 10 Facilitates Detachment of Adherent Leukocytes. J. Immunol. 2007;178:8064–8072. doi: 10.4049/jimmunol.178.12.8064. PubMed DOI
Dreymueller D., Martin C., Schumacher J., Groth E., Boehm J.K., Reiss L.K., Uhlig S., Ludwig A. Smooth Muscle Cells Relay Acute Pulmonary Inflammation via Distinct ADAM17/ErbB Axes. J. Immunol. 2014;192:722–731. doi: 10.4049/jimmunol.1302496. PubMed DOI
Bell J.H., Herrera A.H., Li Y., Walcheck B. Role of ADAM17 in the ectodomain shedding of TNF- and its receptors by neutrophils and macrophages. J. Leukoc. Biol. 2007;82:173–176. doi: 10.1189/jlb.0307193. PubMed DOI
Li Y., Brazzell J., Herrera A., Walcheck B. ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding. Blood. 2006;108:2275–2279. doi: 10.1182/blood-2006-02-005827. PubMed DOI PMC
Etzerodt A., Maniecki M.B., Møller K., Møller H.J., Moestrup S.K. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J. Leukoc. Biol. 2010;88:1201–1205. doi: 10.1189/jlb.0410235. PubMed DOI
Kneidl J., Löffler B., Erat M.C., Kalinka J., Peters G., Roth J., Barczyk K. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell. Microbiol. 2012;14:914–936. doi: 10.1111/j.1462-5822.2012.01766.x. PubMed DOI
Driscoll W.S., Vaisar T., Tang J., Wilson C.L., Raines E.W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res. 2013;113:52–61. doi: 10.1161/CIRCRESAHA.112.300683. PubMed DOI PMC
Gough P.J., Garton K.J., Wille P.T., Rychlewski M., Dempsey P.J., Raines E.W. A Disintegrin and Metalloproteinase 10-Mediated Cleavage and Shedding Regulates the Cell Surface Expression of CXC Chemokine Ligand 16. J. Immunol. 2004;172:3678–3685. doi: 10.4049/jimmunol.172.6.3678. PubMed DOI
Langjahr P., Díaz-Jiménez D., De La Fuente M., Rubio E., Golenbock D., Bronfman F.C., Quera R., Lez M.J.G., Hermoso M.A., Benjamim C.F. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS ONE. 2014;9:e104624. doi: 10.1371/journal.pone.0104624. PubMed DOI PMC
Richmond J.M., Duffy E.R., Lee J., Kaboli K., Remick D.G., Kornfeld H., Cruikshank W.W. Mannose-capped lipoarabinomannan from Mycobacterium tuberculosis induces soluble tumor necrosis factor receptor production through tumor necrosis factor alpha-converting enzyme activation. Infect. Immun. 2012;80:3858–3868. doi: 10.1128/IAI.00060-12. PubMed DOI PMC
Long C., Wang Y., Herrera A.H., Horiuchi K., Walcheck B. In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli -mediated peritonitis. J. Leukoc. Biol. 2010;87:1097–1101. doi: 10.1189/jlb.1109763. PubMed DOI PMC
Long C., Hosseinkhani M.R., Wang Y., Sriramarao P., Walcheck B. ADAM17 activation in circulating neutrophils following bacterial challenge impairs their recruitment. J. Leukoc. Biol. 2012;92:667–672. doi: 10.1189/jlb.0312112. PubMed DOI PMC
Sommer D., Corstjens I., Sanchez S., Dooley D., Lemmens S., Van Broeckhoven J., Bogie J., Vanmierlo T., Vidal P.M., Rose-John S., et al. ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and functional recovery after spinal cord injury. Brain. Behav. Immun. 2019;80:129–145. doi: 10.1016/j.bbi.2019.02.032. PubMed DOI
Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., Castner B.J., Stocking K.L., Reddy P., Srinivasan S., et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-∅ from cells. Nature. 1997;385:729–733. doi: 10.1038/385729a0. PubMed DOI
Schwarz M., Taubitz A., Eltrich N., Mulay S.R., Allam R., Vielhauer V. Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry. Kidney Int. 2013;84:116–129. doi: 10.1038/ki.2013.46. PubMed DOI
Matthews V., Schuster B., Schütze S., Bussmeyer I., Ludwig A., Hundhausen C., Sadowski T., Saftig P., Hartmann D., Kallen K.J., et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE) J. Biol. Chem. 2003;278:38829–38839. doi: 10.1074/jbc.M210584200. PubMed DOI
Chalaris A., Gewiese J., Paliga K., Fleig L., Schneede A., Krieger K., Rose-John S., Scheller J. ADAM17-mediated shedding of the IL6R induces cleavage of the membrane stub by γ-secretase. Biochim. Biophys. Acta-Mol. Cell Res. 2010;1803:234–245. doi: 10.1016/j.bbamcr.2009.12.001. PubMed DOI
Friedland J.S., Constantin D., Shaw T.C., Stylianou E. Regulation of interleukin-8 gene expression after phagocytosis of zymosan by human monocytic cells. J. Leukoc. Biol. 2001;70:447–454. doi: 10.1189/jlb.70.3.447. PubMed DOI
Friedland J.S., Remick D.G., Shattock R., Griffin G.E. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur. J. Immunol. 1992;22:1373–1378. doi: 10.1002/eji.1830220607. PubMed DOI
Kang H.J., Ha J.M., Kim H.S., Lee H., Kurokawa K., Lee B.L. The role of phagocytosis in IL-8 production by human monocytes in response to lipoproteins on Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2011;406:449–453. doi: 10.1016/j.bbrc.2011.02.069. PubMed DOI
Zhang J., Li H., Wang J., Dong Z., Mian S., Yu F.S.X. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2004;45:2569–2576. doi: 10.1167/iovs.03-1323. PubMed DOI PMC
Yang W.S., Kim J.J., Lee M.J., Lee E.K., Park S.K. ADAM17-Mediated Ectodomain Shedding of Toll-Like Receptor 4 as a Negative Feedback Regulation in Lipopolysaccharide-Activated Aortic Endothelial Cells. Cell. Physiol. Biochem. 2018;45:1851–1862. doi: 10.1159/000487876. PubMed DOI
Xu P., Liu J., Sakaki-Yumoto M., Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci. Signal. 2012;5:ra34. doi: 10.1126/scisignal.2002689. PubMed DOI PMC
Yoda M., Kimura T., Tohmonda T., Morioka H., Matsumoto M., Okada Y., Toyama Y., Horiuchi K. Systemic Overexpression of TNFα-converting Enzyme Does Not Lead to Enhanced Shedding Activity In Vivo. PLoS ONE. 2013;8:e54412. doi: 10.1371/journal.pone.0054412. PubMed DOI PMC
Düsterhöft S., Michalek M., Kordowski F., Oldefest M., Sommer A., Röseler J., Reiss K., Grötzinger J., Lorenzen I. Extracellular Juxtamembrane Segment of ADAM17 Interacts with Membranes and Is Essential for Its Shedding Activity. Biochemistry. 2015;54:5791–5801. doi: 10.1021/acs.biochem.5b00497. PubMed DOI
Pruessmeyer J., Hess F.M., Alert H., Groth E., Pasqualon T., Schwarz N., Nyamoya S., Kollert J., Van Der Vorst E., Donners M., et al. Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood. 2014;123:4077–4088. doi: 10.1182/blood-2013-09-511543. PubMed DOI
Koenen R.R., Pruessmeyer J., Soehnlein O., Fraemohs L., Zernecke A., Schwarz N., Reiss K., Sarabi A., Lindbom L., Hackeng T.M., et al. Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood. 2009;113:4799–4809. doi: 10.1182/blood-2008-04-152330. PubMed DOI
Pruessmeyer J., Martin C., Hess F.M., Schwarz N., Schmidt S., Kogel T., Hoettecke N., Schmidt B., Sechi A., Uhlig S., et al. A Disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 2010;285:555–564. doi: 10.1074/jbc.M109.059394. PubMed DOI PMC
Babendreyer A., Molls L., Simons I.M., Dreymueller D., Biller K., Jahr H., Denecke B., Boon R.A., Bette S., Schnakenberg U., et al. The metalloproteinase ADAM15 is upregulated by shear stress and promotes survival of endothelial cells. J. Mol. Cell. Cardiol. 2019;134:51–61. doi: 10.1016/j.yjmcc.2019.06.017. PubMed DOI
The iRhom homology domain is indispensable for ADAM17-mediated TNFα and EGF receptor ligand release