Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work?

. 2020 Aug 24 ; 25 (17) : . [epub] 20200824

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32847100

Grantová podpora
LM2018100 METROFOOD-CZ
CZ.02.1.01/0.0/0.0/16_019/0000845 NutRisk
CZ.02.1.01/0.0/0.0/16_025/0007397 CEREBIT
A1_FPBT_2020_004 Internal grant from the budget for the implementation of the activities of the Institutional Plan of the UCT Prague in 2020

Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.

Zobrazit více v PubMed

Verpoorte R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development. Drug Discov. Today. 1998;3:232–238. doi: 10.1016/S1359-6446(97)01167-7. DOI

Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI

Thirumurugan D., Cholarajan A., Raja S.S.S., Vijayakumar R. An Introductory Chapter: Secondary Metabolites. In: Vijayakumar R., Raja S.S.S., editors. Secondary Metabolites. Sources and Applications. IntechOpen; London, UK: 2018. pp. 3–21.

Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. Wiley & Sons; Chichester, UK: 2009.

Vogiatzoglou A., Mulligan A.A., Lentjes M.A.H., Luben R.N., Spencer J.P.E., Schroeter H., Khaw K.-T., Kuhnle G.G.C. Flavonoid intake in European adults (18 to 64 years) PLoS ONE. 2015;10:e0128132. doi: 10.1371/journal.pone.0128132. PubMed DOI PMC

Dewick P.M. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 1995;12:579–607. doi: 10.1039/np9951200579. PubMed DOI

Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126:485–493. doi: 10.1104/pp.126.2.485. PubMed DOI PMC

Ayabe S.-I., Akashi T. Cytochrome P450s in flavonoid metabolism. Phytochem. Rev. 2006;5:271–282. doi: 10.1007/s11101-006-9007-3. DOI

Springob K., Nakajima J.-I., Yamazaki M., Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 2003;20:288–303. doi: 10.1039/b109542k. PubMed DOI

Martens S., Mithöfer A. Flavones and flavone synthases. Phytochemistry. 2005;66:2399–2407. doi: 10.1016/j.phytochem.2005.07.013. PubMed DOI

Xie D.-Y., Dixon R.A. Proanthocyanidin biosynthesis - Still more questions than answers? Phytochemistry. 2005;66:2127–2144. doi: 10.1016/j.phytochem.2005.01.008. PubMed DOI

Harborne J.B. The Flavonoids: Advances in Research since 1986. 1st ed. Chapman & Hall; London, UK: 1994.

Boumendjel A., Di Pietro A., Dumontet C., Barron D. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev. 2002;22:512–529. doi: 10.1002/med.10015. PubMed DOI

Martins B.T., Correia da Silva M., Pinto M., Cidade H., Kijjoa A. Marine natural flavonoids: Chemistry and biological activities. Nat. Prod. Res. 2019;33:3260–3272. doi: 10.1080/14786419.2018.1470514. PubMed DOI

Harborne J.B. Introduction to Ecological Biochemistry. 4th ed. Academic Press; London, UK: 2014.

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Buer C.S., Imin N., Djordjevic M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010;52:98–111. doi: 10.1111/j.1744-7909.2010.00905.x. PubMed DOI

Simmonds M.S.J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry. 2003;64:21–30. doi: 10.1016/S0031-9422(03)00293-0. PubMed DOI

Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004;136:4159–4168. doi: 10.1104/pp.104.052142. PubMed DOI PMC

Grotewold E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006;57:761–780. doi: 10.1146/annurev.arplant.57.032905.105248. PubMed DOI

Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.

Halliwell B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012;70:257–265. doi: 10.1111/j.1753-4887.2012.00476.x. PubMed DOI

Jaklová Dytrtová J., Straka M., Bělonožníková K., Jakl M., Ryšlavá H. Does resveratrol retain its antioxidative properties in wine? Redox behaviour of resveratrol in the presence of Cu(II) and tebuconazole. Food Chem. 2018;262:221–225. doi: 10.1016/j.foodchem.2018.04.096. PubMed DOI

Halliwell B., Cheah I.K., Tang R.M.Y. Ergothioneine–a diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018;592:3357–3366. doi: 10.1002/1873-3468.13123. PubMed DOI

Russo G.L., Russo M., Spagnuolo C., Tedesco I., Bilotto S., Iannitti R., Palumbo R. Quercetin: A pleiotropic kinase inhibitor against cancer. Cancer Treat. Res. 2014;159 doi: 10.1007/978-3-642-38007-5_11. PubMed DOI

Van Der Woude H., Ter Veld M.G.R., Jacobs N., Van Der Saag P.T., Murk A.J., Rietjens I.M.C.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol. Nutr. Food Res. 2005;49:763–771. doi: 10.1002/mnfr.200500036. PubMed DOI

Miles S.L., Mcfarland M., Niles R.M. Molecular and physiological actions of quercetin: Need for clinical trials to assess its benefits in human disease. Nutr. Rev. 2014;72:720–734. doi: 10.1111/nure.12152. PubMed DOI

Zambrana I.A. Warning Letter to Cape Fear Naturals. [(accessed on 20 September 2019)];Food and Drug Administration. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/cape-fear-naturals-512768-03022017.

Kim S.-H., Choi K.-C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res. 2013;29:229–234. doi: 10.5487/TR.2013.29.4.229. PubMed DOI PMC

Thors L., Belghiti M., Fowler C.J. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br. J. Pharmacol. 2008;155:244–252. doi: 10.1038/bjp.2008.237. PubMed DOI PMC

Veeresham C., Rama Rao A., Asres K. Aldose reductase inhibitors of plant origin. Phytother. Res. 2014;28:317–333. doi: 10.1002/ptr.5000. PubMed DOI

Calderón-Montaño J.M., Burgos-Morón E., Pérez-Guerrero C., López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini-Rev. Med. Chem. 2011;11:298–344. doi: 10.2174/138955711795305335. PubMed DOI

Luo H., Rankin G.O., Liu L., Daddysman M.K., Jiang B.-H., Chen Y.C. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer. 2009;61:554–563. doi: 10.1080/01635580802666281. PubMed DOI PMC

Brusselmans K., Vrolix R., Verhoeven G., Swinnen J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005;280:5636–5645. doi: 10.1074/jbc.M408177200. PubMed DOI

Kim Y.A., Tarahovsky Y.S., Gaidin S.G., Yagolnik E.A., Muzafarov E.N. Flavonoids determine the rate of fibrillogenesis and structure of collagen type I fibrils in vitro. Int. J. Biol. Macromol. 2017;104:631–637. doi: 10.1016/j.ijbiomac.2017.06.070. PubMed DOI

Anu S.M., Kim H.J., Kim J.-E., Boo Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008;22:1200–1207. doi: 10.1002/ptr.2435. PubMed DOI

Katavic P.L., Lamb K., Navarro H., Prisinzano T.E. Flavonoids as opioid receptor ligands: Identification and preliminary structure-activity relationships. J. Nat. Prod. 2007;70:1278–1282. doi: 10.1021/np070194x. PubMed DOI PMC

Yang Z., Kuboyama T., Tohda C. A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Front. Pharmacol. 2017;8 doi: 10.3389/fphar.2017.00340. PubMed DOI PMC

Spencer J.P.E., Vauzour D., Rendeiro C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys. 2009;492:1–9. doi: 10.1016/j.abb.2009.10.003. PubMed DOI

Mani S., Sekar S., Barathidasan R., Manivasagam T., Thenmozhi A.J., Sevanan M., Chidambaram S.B., Essa M.M., Guillemin G.J., Sakharkar M.K. Naringenin Decreases α-Synuclein Expression and Neuroinflammation in MPTP-Induced Parkinson’s Disease Model in Mice. Neurotox. Res. 2018;33:656–670. doi: 10.1007/s12640-018-9869-3. PubMed DOI

Shukla S., Gupta S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010;27:962–978. doi: 10.1007/s11095-010-0089-7. PubMed DOI PMC

Venigalla M., Gyengesi E., Münch G. Curcumin and apigenin–Novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res. 2015;10:1181–1185. PubMed PMC

Salehi B., Venditti A., Sharifi-Rad M., Kręgiel D., Sharifi-Rad J., Durazzo A., Lucarini M., Santini A., Souto E.B., Novellino E., et al. The therapeutic potential of Apigenin. Int. J. Mol. Sci. 2019;20:1305. doi: 10.3390/ijms20061305. PubMed DOI PMC

Si D., Wang Y., Zhou Y.-H., Guo Y., Wang J., Zhou H., Li Z.-S., Fawcett J.P. Mechanism of CYP2C9 inhibition by flavones and flavonols. Drug Metab. Dispos. 2009;37:629–634. doi: 10.1124/dmd.108.023416. PubMed DOI

Ong K.C., Khoo H.-E. Biological effects of myricetin. Gen. Pharmacol. 1997;29:121–126. doi: 10.1016/S0306-3623(96)00421-1. PubMed DOI

Li Y., Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci. Hum. Wellness. 2012;1:19–25. doi: 10.1016/j.fshw.2012.08.002. DOI

Strobel P., Allard C., Perez-Acle T., Calderon R., Aldunate R., Leighton F. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem. J. 2005;386:471–478. doi: 10.1042/BJ20040703. PubMed DOI PMC

Li Y., Zheng X., Yi X., Liu C., Kong D., Zhang J., Gong M. Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017;31:2603–2611. doi: 10.1096/fj.201601339R. PubMed DOI PMC

Shen Y., Lindemeyer K., Gonzalez C., Shao X.M., Spigelman I., Olsen R.W., Liang J. Dihydromyricetin as a novel anti-alcohol intoxication medication. J. Neurosci. 2012;32:390–401. doi: 10.1523/JNEUROSCI.4639-11.2012. PubMed DOI PMC

Hooper L., Kay C., Abdelhamid A., Kroon P.A., Cohn J.S., Rimm E.B., Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012;95:740–751. doi: 10.3945/ajcn.111.023457. PubMed DOI

Ellinger S., Reusch A., Stehle P., Helfrich H.-P. Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a Bayesian approach. Am. J. Clin. Nutr. 2012;95:1365–1377. doi: 10.3945/ajcn.111.029330. PubMed DOI

EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific Opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2012;10:2809–2830. doi: 10.2903/j.efsa.2012.2809. DOI

Vogiatzoglou A., Mulligan A.A., Bhaniani A., Lentjes M.A.H., McTaggart A., Luben R.N., Heiss C., Kelm M., Merx M.W., Spencer J.P.E., et al. Associations between flavan-3-ol intake and CVD risk in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk) Free Radic. Biol. Med. 2015;84:1–10. doi: 10.1016/j.freeradbiomed.2015.03.005. PubMed DOI PMC

Schroeter H., Heiss C., Balzer J., Kleinbongard P., Keen C.L., Hollenberg N.K., Sies H., Kwik-Uribe C., Schmitz H.H., Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA. 2006;103:1024–1029. doi: 10.1073/pnas.0510168103. PubMed DOI PMC

Zięba K., Makarewicz-Wujec M., Kozłowska-Wojciechowska M. Cardioprotective Mechanisms of Cocoa. J. Am. Coll. Nutr. 2019;38:564–575. doi: 10.1080/07315724.2018.1557087. PubMed DOI

Martinez S.E., Davies N.M., Reynolds J.K. Toxicology and Safety of Flavonoids. In: Davies N.M., Yáñez J.A., editors. Flavonoid Pharmacokinetics: Methods of Analysis, Preclinical and Clinical Pharmacokinetics, Safety, and Toxicology. Wiley & Sons; Hoboken, NJ, USA: 2013. pp. 249–280.

Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1361779. doi: 10.1080/16546628.2017.1361779. PubMed DOI PMC

EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010;8:1489–1551. doi: 10.2903/j.efsa.2010.1489. DOI

Schoonees A., Visser J., Musekiwa A., Volmink J. Pycnogenol(®) for the treatment of chronic disorders. Cochrane Database Syst. Rev. Online. 2012;2:CD008294. PubMed

Riegsecker S., Wiczynski D., Kaplan M.J., Ahmed S. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sci. 2013;93:307–312. doi: 10.1016/j.lfs.2013.07.006. PubMed DOI PMC

Vignes M. Anxiolytic Properties of the Green Tea Polyphenol (-)-Epigallocatechin Gallate. In: Preedy V.R., editor. Tea in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2013. pp. 1399–1409.

Momose Y., Maeda-Yamamoto M., Nabetani H. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans. Int. J. Food Sci. Nutr. 2016;67:606–613. doi: 10.1080/09637486.2016.1196655. PubMed DOI

Hu J., Webster D., Cao J., Shao A. The safety of green tea and green tea extract consumption in adults–Results of a systematic review. Regul. Toxicol. Pharmacol. 2018;95:412–433. doi: 10.1016/j.yrtph.2018.03.019. PubMed DOI

Chen S.T., Dou J., Temple R., Agarwal R., Wu K.-M., Walker S. New therapies from old medicines. Nat. Biotechnol. 2008;26:1077–1083. doi: 10.1038/nbt1008-1077. PubMed DOI

Masuda S., Maeda-Yamamoto M., Usui S., Fujisawa T. “Benifuuki” green tea containing O-methylated catechin reduces symptoms of Japanese cedar pollinosis: A randomized, double- blind, placebo-controlled trial. Allergol. Int. 2014;63:211–217. doi: 10.2332/allergolint.13-OA-0620. PubMed DOI

Maron D.J., Lu G.P., Cai N.S., Wu Z.G., Li Y.H., Chen H., Zhu J.Q., Jin X.J., Wouters B.C., Zhao J. Cholesterol-lowering effect of a theaflavin-enriched green tea extract: A randomized controlled trial. Arch. Intern. Med. 2003;163:1448–1453. doi: 10.1001/archinte.163.12.1448. PubMed DOI

Trautwein E.A., Du Y., Meynen E., Yan X., Wen Y., Wang H., Molhuizen H.O.F. Purified black tea theaflavins and theaflavins/catechin supplements did not affect serum lipids in healthy individuals with mildly to moderately elevated cholesterol concentrations. Eur. J. Nutr. 2010;49:27–35. doi: 10.1007/s00394-009-0045-7. PubMed DOI

Steptoe A., Gibson E.L., Vounonvirta R., Williams E.D., Hamer M., Rycroft J.A., Erusalimsky J.D., Wardle J. The effects of tea on psychophysiological stress responsivity and post-stress recovery: A randomised double-blind trial. Psychopharmacology. 2007;190:81–89. doi: 10.1007/s00213-006-0573-2. PubMed DOI

Saito A., Nakazato R., Suhara Y., Shibata M., Fukui T., Ishii T., Asanuma T., Mochizuki K., Nakayama T., Osakabe N. The impact of theaflavins on systemic-and microcirculation alterations: The murine and randomized feasibility trials. J. Nutr. Biochem. 2016;32:107–114. doi: 10.1016/j.jnutbio.2016.01.012. PubMed DOI

Liu S., Lu H., Zhao Q., He Y., Niu J., Debnath A.K., Wu S., Jiang S. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim. Biophys. Acta Gen. Subj. 2005;1723:270–281. doi: 10.1016/j.bbagen.2005.02.012. PubMed DOI

Martinez-Zapata M.J., Vernooij R.W., Uriona Tuma S.M., Stein A.T., Moreno R.M., Vargas E., Capellà D., Bonfill Cosp X. Phlebotonics for venous insufficiency. Cochrane Database Syst. Rev. 2016;2016 doi: 10.1002/14651858.CD003229.pub3. PubMed DOI PMC

Morling J.R., Broderick C., Yeoh S.E., Kolbach D.N. Rutosides for treatment of post-thrombotic syndrome. Cochrane Database Syst. Rev. 2018;2018 doi: 10.1002/14651858.CD005625.pub4. PubMed DOI PMC

Mohammadi M., Ramezani-Jolfaie N., Lorzadeh E., Khoshbakht Y., Salehi-Abargouei A. Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother. Res. 2019;33:534–545. doi: 10.1002/ptr.6264. PubMed DOI

Lyseng-Williamson K.A., Perry C.M. Micronised purified flavonoid fraction: A review of its use in chronic venous insufficiency, venous ulcers and haemorrhoids. Drugs. 2003;63:71–100. doi: 10.2165/00003495-200363010-00005. PubMed DOI

Astashov V., Timchenko D. Benefits of micronized purified flavonoid fraction in the reduction of symptoms after operation for hemorrhoidal disease. Phlebolymphology. 2014;21:95–99.

Edwards D.J., Bernier S.M. Naringin and naringenin are not the primary CYP3A inhibitors in grapefruit juice. Life Sci. 1996;59:1025–1030. doi: 10.1016/0024-3205(96)00417-1. PubMed DOI

Pirmohamed M. Drug-grapefruit juice interactions. BMJ Online. 2013;346 doi: 10.1136/bmj.f1. PubMed DOI

Yang W., Zhou K., Zhou Y., An Y., Hu T., Lu J., Huang S., Pei G. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front. Aging Neurosci. 2018;10 doi: 10.3389/fnagi.2018.00169. PubMed DOI PMC

Kashani-Amin E., Larijani B., Ebrahim-Habibi A. Neohesperidin dihydrochalcone: Presentation of a small molecule activator of mammalian alpha-amylase as an allosteric effector. FEBS Lett. 2013;587:652–658. doi: 10.1016/j.febslet.2013.01.022. PubMed DOI

Waalkens-Berendsen D.H., Kuilman-Wahls M.E.M., Bär A. Embryotoxicity and teratogenicity study with neohesperidin dihydrochalcone in rats. Regul. Toxicol. Pharmacol. 2004;40:74–79. doi: 10.1016/j.yrtph.2004.05.007. PubMed DOI

Neuhouser M.L. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr. Cancer. 2004;50:1–7. doi: 10.1207/s15327914nc5001_1. PubMed DOI

Salehi B., Fokou P.V.T., Sharifi-Rad M., Zucca P., Pezzani R., Martins N., Sharifi-Rad J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals. 2019;12:11. doi: 10.3390/ph12010011. PubMed DOI PMC

Aziz N., Kim M.-Y., Cho J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018;225:342–358. doi: 10.1016/j.jep.2018.05.019. PubMed DOI

Khalesi S., Sun J., Buys N., Jamshidi A., Nikbakht-Nasrabadi E., Khosravi-Boroujeni H. Green tea catechins and blood pressure: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Nutr. 2014;53:1299–1311. doi: 10.1007/s00394-014-0720-1. PubMed DOI

Azzini E., Giacometti J., Russo G.L. Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies. Oxid. Med. Cell. Longev. 2017;2017 doi: 10.1155/2017/2740364. PubMed DOI PMC

Cragg G.M., Newman D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005;100:72–79. doi: 10.1016/j.jep.2005.05.011. PubMed DOI

Blachly J.S., Byrd J.C. Emerging drug profile: Cyclin-dependent kinase inhibitors. Leuk. Lymphoma. 2013;54:2133–2143. doi: 10.3109/10428194.2013.783911. PubMed DOI PMC

Buhrmann C., Yazdi M., Popper B., Shayan P., Goel A., Aggarwal B.B., Shakibaei M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients. 2018;10:888. doi: 10.3390/nu10070888. PubMed DOI PMC

Buhrmann C., Yazdi M., Popper B., Kunnumakkara A.B., Aggarwal B.B., Shakibaei M. Induction of the epithelial-to-mesenchymal transition of human colorectal cancer by human TNF-β (Lymphotoxin) and its reversal by resveratrol. Nutrients. 2019;11:704. doi: 10.3390/nu11030704. PubMed DOI PMC

Shakibaei M., Buhrmann C., Kraehe P., Shayan P., Lueders C., Goel A. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS ONE. 2014;9:e85397. doi: 10.1371/journal.pone.0085397. PubMed DOI PMC

Poulsen M.M., Jørgensen J.O.L., Jessen N., Richelsen B., Pedersen S.B. Resveratrol in metabolic health: An overview of the current evidence and perspectives. Ann. N. Y. Acad. Sci. 2013;1290:74–82. doi: 10.1111/nyas.12141. PubMed DOI

Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., García-Conesa M.T., Espín J.C. Resveratrol in primary and secondary prevention of cardiovascular disease: A dietary and clinical perspective. Ann. N. Y. Acad. Sci. 2013;1290:37–51. doi: 10.1111/nyas.12150. PubMed DOI

Carter L.G., D’Orazio J.A., Pearson K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer. 2014;21:R209–R225. doi: 10.1530/ERC-13-0171. PubMed DOI PMC

Hausenblas H.A., Schoulda J.A., Smoliga J.M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol. Nutr. Food Res. 2015;59:147–159. doi: 10.1002/mnfr.201400173. PubMed DOI

Alarcón De La Lastra C., Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007;35:1156–1160. doi: 10.1042/BST0351156. PubMed DOI

Santos A.C., Veiga F., Ribeiro A.J. New delivery systems to improve the bioavailability of resveratrol. Expert Opin. Drug Deliv. 2011;8:973–990. doi: 10.1517/17425247.2011.581655. PubMed DOI

Ahmed T., Javed S., Javed S., Tariq A., Šamec D., Tejada S., Nabavi S.F., Braidy N., Nabavi S.M. Resveratrol and Alzheimer’s Disease: Mechanistic Insights. Mol. Neurobiol. 2017;54:2622–2635. doi: 10.1007/s12035-016-9839-9. PubMed DOI

Fogacci F., Tocci G., Presta V., Fratter A., Borghi C., Cicero A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr. 2019;59:1605–1618. doi: 10.1080/10408398.2017.1422480. PubMed DOI

Baell J., Walters M.A. Chemistry: Chemical con artists foil drug discovery. Nature. 2014;513:481–483. doi: 10.1038/513481a. PubMed DOI

Pangeni R., Sahni J.K., Ali J., Sharma S., Baboota S. Resveratrol: Review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 2014;11:1285–1298. doi: 10.1517/17425247.2014.919253. PubMed DOI

Lopez M.S., Dempsey R.J., Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem. Int. 2015;89:75–82. doi: 10.1016/j.neuint.2015.08.009. PubMed DOI PMC

Pal H.C., Hunt K.M., Diamond A., Elmets C.A., Afaq F. Phytochemicals for the management of melanoma. Mini-Rev. Med. Chem. 2016;16:953–979. PubMed PMC

Gambini J., Inglés M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K.M., Gomez-Cabrera M.C., Vina J., et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015;2015 doi: 10.1155/2015/837042. PubMed DOI PMC

Pettit G.R., Singh S.B., Niven M.L., Hamei E., Schmidt J.M. Isolation, structure, and synthesis of combretastatins A-l and B-l, potent new inhibitors of microtubule assembly, derived from combretum caffrum. J. Nat. Prod. 1987;50:119–131. doi: 10.1021/np50049a016. PubMed DOI

Cirla A., Mann J. Combretastatins: From natural products to drug discovery. Nat. Prod. Rep. 2003;20:558–564. doi: 10.1039/b306797c. PubMed DOI

Tron G.C., Pirali T., Sorba G., Pagliai F., Busacca S., Genazzani A.A. Medicinal chemistry of combretastatin A4: Present and future directions. J. Med. Chem. 2006;49:3033–3044. doi: 10.1021/jm0512903. PubMed DOI

Nam N.-H. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr. Med. Chem. 2003;10:1697–1722. doi: 10.2174/0929867033457151. PubMed DOI

Nagaiah G., Remick S.C. Combretastatin A4 phosphate: A novel vascular disrupting agent. Future Oncol. 2010;6:1219–1228. doi: 10.2217/fon.10.90. PubMed DOI

Young S.L., Chaplin D.J. Combretastatin A4 phosphate: Background and current clinical status. Expert Opin. Investig. Drugs. 2004;13:1171–1182. doi: 10.1517/13543784.13.9.1171. PubMed DOI

Grisham R., Ky B., Tewari K.S., Chaplin D.J., Walker J. Clinical trial experience with CA4P anticancer therapy: Focus on efficacy, cardiovascular adverse events, and hypertension management. Gynecol. Oncol. Res. Pract. 2018;5 doi: 10.1186/s40661-017-0058-5. PubMed DOI PMC

Hori K., Saito S., Kubota K. A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. Br. J. Cancer. 2002;86:1604–1614. doi: 10.1038/sj.bjc.6600296. PubMed DOI PMC

O’Boyle N.M., Carr M., Greene L.M., Bergin O., Nathwani S.M., McCabe T., Lloyd D.G., Zisterer D.M., Meegan M.J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem. 2010;53:8569–8584. doi: 10.1021/jm101115u. PubMed DOI

Ma M., Sun L., Lou H., Ji M. Synthesis and biological evaluation of Combretastatin A-4 derivatives containing a 3′-O-substituted carbonic ether moiety as potential antitumor agents. Chem. Cent. J. 2013;7 doi: 10.1186/1752-153X-7-179. PubMed DOI PMC

Tauchen J. Natural products and their (semi-)synthetic forms in treatment of migraine: History and current status. Curr. Med. Chem. 2019;27:3784–3808. doi: 10.2174/0929867326666190125155947. PubMed DOI

Sarris J., Stough C., Bousman C.A., Wahid Z.T., Murray G., Teschke R., Savage K.M., Dowell A., Ng C., Schweitzer I. Kava in the treatment of generalized anxiety disorder: A double-blind, randomized, placebo-controlled study. J. Clin. Psychopharmacol. 2013;33:643–648. doi: 10.1097/JCP.0b013e318291be67. PubMed DOI

Ooi S.L., Henderson P., Pak S.C. Kava for generalized anxiety disorder: A review of current evidence. J. Altern. Complement. Med. 2018;24:770–780. doi: 10.1089/acm.2018.0001. PubMed DOI

Ligresti A., Villano R., Allarà M., Ujváry I., Di Marzo V. Kavalactones and the endocannabinoid system: The plant-derived yangonin is a novel CB 1 receptor ligand. Pharmacol. Res. 2012;66:163–169. doi: 10.1016/j.phrs.2012.04.003. PubMed DOI

Whitton P.A., Lau A., Salisbury A., Whitehouse J., Evans C.S. Kava lactones and the kava-kava controversy. Phytochemistry. 2003;64:673–679. doi: 10.1016/S0031-9422(03)00381-9. PubMed DOI

Dasgupta A. Effect of Herbal Remedies on Clinical Laboratory Tests. In: Dasgupta A., Sepulveda J.L., editors. Accurate Results in the Clinical Laboratory: A Guide to Error Detection and Correction. Elsevier; London, UK: 2013. pp. 75–92.

Teschke R., Sarris J., Schweitzer I. Kava hepatotoxicity in traditional and modern use: The presumed Pacific kava paradox hypothesis revisited. Br. J. Clin. Pharmacol. 2012;73:170–174. doi: 10.1111/j.1365-2125.2011.04070.x. PubMed DOI PMC

Teschke R. Kava hepatotoxicity: Pathogenetic aspects and prospective considerations. Liver Int. 2010;30:1270–1279. doi: 10.1111/j.1478-3231.2010.02308.x. PubMed DOI

Singh Y.N. Potential for interaction of kava and St. John’s wort with drugs. J. Ethnopharmacol. 2005;100:108–113. doi: 10.1016/j.jep.2005.05.014. PubMed DOI

Buhrmann C., Kraehe P., Lueders C., Shayan P., Goel A., Shakibaei M. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: Potential role of EMT. PLoS ONE. 2014;9:e107514. doi: 10.1371/journal.pone.0107514. PubMed DOI PMC

Toden S., Okugawa Y., Buhrmann C., Nattamai D., Anguiano E., Baldwin N., Shakibaei M., Boland C.R., Goel A. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev. Res. 2015;8:431–443. doi: 10.1158/1940-6207.CAPR-14-0354. PubMed DOI PMC

Nelson K.M., Dahlin J.L., Bisson J., Graham J., Pauli G.F., Walters M.A. Curcumin May (Not) Defy Science. ACS Med. Chem. Lett. 2017;8:467–470. doi: 10.1021/acsmedchemlett.7b00139. PubMed DOI PMC

Bisson J., McAlpine J.B., Friesen J.B., Chen S.-N., Graham J., Pauli G.F. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery? J. Med. Chem. 2016;59:1671–1690. doi: 10.1021/acs.jmedchem.5b01009. PubMed DOI PMC

Baker M. Deceptive curcumin offers cautionary tale for chemists. Nature. 2017;541:144–145. doi: 10.1038/541144a. PubMed DOI

Hsu C.-H., Cheng A.-L. Clinical studies with curcumin. Adv. Exp. Med. Biol. 2007;595:471–480. doi: 10.1007/978-0-387-46401-5_21. PubMed DOI

Schiborr C., Kocher A., Behnam D., Jandasek J., Toelstede S., Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res. 2014;58:516–527. doi: 10.1002/mnfr.201300724. PubMed DOI

Lasoff D.R., Cantrell F.L., Ly B.T. Death associated with intravenous turmeric (Curcumin) preparation. Clin. Toxicol. 2018;56:384–385. doi: 10.1080/15563650.2017.1388387. PubMed DOI

Funk J.L., Frye J.B., Oyarzo J.N., Timmermann B.N. Comparative effects of two gingerol-containing zingiber officinale extracts on experimental Rheumatoid arthritis. J. Nat. Prod. 2009;72:403–407. doi: 10.1021/np8006183. PubMed DOI PMC

Yarnell E. Herbal medicine and migraine. Altern. Complement. Ther. 2017;23:1–10. doi: 10.1089/act.2017.29131.eya. DOI

Hitomi S., Ono K., Terawaki K., Matsumoto C., Mizuno K., Yamaguchi K., Imai R., Omiya Y., Hattori T., Kase Y., et al. [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na+ channels. Pharmacol. Res. 2017;117:288–302. doi: 10.1016/j.phrs.2016.12.026. PubMed DOI

Funk J.L., Frye J.B., Oyarzo J.N., Chen J., Zhang H., Timmermann B.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition. 2016;4:123–131. doi: 10.1016/j.phanu.2016.02.004. PubMed DOI PMC

Gažák R., Walterová D., Křen V. Silybin and silymarin - New and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Poppe L., Petersen M. Variation in the flavonolignan composition of fruits from different Silybum marianum chemotypes and suspension cultures derived therefrom. Phytochemistry. 2016;131:68–75. doi: 10.1016/j.phytochem.2016.09.003. PubMed DOI

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Ferenci P. Silymarin in the treatment of liver diseases: What is the clinical evidence? Clin. Liver Dis. 2016;7:8–10. doi: 10.1002/cld.522. PubMed DOI PMC

Mengs U., Pohl R.-T., Mitchell T. Legalon® SIL: The antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr. Pharm. Biotechnol. 2012;13:1964–1970. doi: 10.2174/138920112802273353. PubMed DOI PMC

Loguercio C., Andreone P., Brisc C., Brisc M.C., Bugianesi E., Chiaramonte M., Cursaro C., Danila M., De Sio I., Floreani A., et al. Silybin combined with phosphatidylcholine and vitamin e in patients with nonalcoholic fatty liver disease: A randomized controlled trial. Free Radic. Biol. Med. 2012;52:1658–1665. doi: 10.1016/j.freeradbiomed.2012.02.008. PubMed DOI

Lapčík O. Isoflavonoids in non-leguminous taxa: A rarity or a rule? Phytochemistry. 2007;68:2909–2916. doi: 10.1016/j.phytochem.2007.08.006. PubMed DOI

Mikšátková P., Lanková P., Huml L., Lapčík O. Isoflavonoids in the Amaryllidaceae family. Nat. Prod. Res. 2014;28:690–697. doi: 10.1080/14786419.2013.873432. PubMed DOI

Botta B., Menendez P., Zappia G., De Lima R.A., Torge R., Delle Monache G. Prenylated isoflavonoids: Botanical distribution, structures, biological activities and biotechnological studies. An update (1995–2006) Curr. Med. Chem. 2009;16:3414–3468. doi: 10.2174/092986709789057662. PubMed DOI

Miadoková E. Isoflavonoids—An overview of their biological activities and potential health benefits. Interdiscip. Toxicol. 2009;2:211–218. doi: 10.2478/v10102-009-0021-3. PubMed DOI PMC

Tit D.M., Bungau S., Iovan C., Nistor Cseppento D.C., Endres L., Sava C., Sabau A.M., Furau G., Furau C. Effects of the Hormone Replacement Therapy and of Soy Isoflavones on Bone Resorption in Postmenopause. J. Clin. Med. 2018;7:297. doi: 10.3390/jcm7100297. PubMed DOI PMC

Lethaby A., Marjoribanks J., Kronenberg F., Roberts H., Eden J., Brown J. Phytoestrogens for menopausal vasomotor symptoms. Cochrane Database Syst. Rev. 2013;2013 doi: 10.1002/14651858.CD001395.pub4. PubMed DOI PMC

Tempfer C.B., Bentz E.-K., Leodolter S., Tscherne G., Reuss F., Cross H.S., Huber J.C. Phytoestrogens in clinical practice: A review of the literature. Fertil. Steril. 2007;87:1243–1249. doi: 10.1016/j.fertnstert.2007.01.120. PubMed DOI

Wuttke W., Jarry H., Seidlová-Wuttke D. Isoflavones-Safe food additives or dangerous drugs? Ageing Res. Rev. 2007;6:150–188. doi: 10.1016/j.arr.2007.05.001. PubMed DOI

Gil-Izquierdo A., Peñalvo J.L., Gil J.I., Medina S., Horcajada M.N., Lafay S., Silberberg M., Llorach R., Zafrilla P., García-Mora P., et al. Soy isoflavones and cardiovascular disease epidemiological, clinical and-omics perspectives. Curr. Pharm. Biotechnol. 2012;13:624–631. doi: 10.2174/138920112799857585. PubMed DOI

Bilal I., Chowdhury A., Davidson J., Whitehead S. Phytoestrogens and prevention of breast cancer: The contentious debate. World J. Clin. Oncol. 2014;5:705–712. doi: 10.5306/wjco.v5.i4.705. PubMed DOI PMC

Mitchell J.H., Cawood E., Kinniburgh D., Provan A., Collins A.R., Irvine D.S. Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. 2001;100:613–618. doi: 10.1042/cs1000613. PubMed DOI

Hamilton-Reeves J.M., Vazquez G., Duval S.J., Phipps W.R., Kurzer M.S., Messina M.J. Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: Results of a meta-analysis. Fertil. Steril. 2010;94:997–1007. doi: 10.1016/j.fertnstert.2009.04.038. PubMed DOI

Patisaul H.B., Jefferson W. The pros and cons of phytoestrogens. Front. Neuroendocrinol. 2010;31:400–419. doi: 10.1016/j.yfrne.2010.03.003. PubMed DOI PMC

Strom B.L., Schinnar R., Ziegler E.E., Barnhart K.T., Sammel M.D., Macones G.A., Stallings V.A., Drulis J.M., Nelson S.E., Hanson S.A., et al. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. J. Am. Med. Assoc. 2001;286:807–814. doi: 10.1001/jama.286.7.807. PubMed DOI

Merritt R.J., Jenks B.H. Safety of Soy-Based Infant Formulas Containing Isoflavones: The Clinical Evidence. J. Nutr. 2004;134:1220S–1224S. doi: 10.1093/jn/134.5.1220S. PubMed DOI

Sarkar F.H., Li Y., Wang Z., Padhye S. Lesson learned from nature for the development of novel anti-cancer agents: Implication of isoflavone, curcumin, and their synthetic analogs. Curr. Pharm. Des. 2010;16:1801–1812. doi: 10.2174/138161210791208956. PubMed DOI PMC

Li W.-W., Johnson-Ajinwo O.R., Uche F.I. Advances of plant-derived natural products in ovarian cancer therapy. Int. J. Cancer Res. Prev. 2016;9:81–105.

Zhang L., Zhang J., Ye Z., Townsend D.M., Tew K.D. Pharmacology of ME-344, a novel cytotoxic isoflavone. Adv. Cancer Res. 2019;142:187–207. doi: 10.1016/bs.acr.2019.01.005. PubMed DOI PMC

Wrangel C.V., Schwabe K., John N., Krauss J.K., Alam M. The rotenone-induced rat model of Parkinson’s disease: Behavioral and electrophysiological findings. Behav. Brain Res. 2015;279:52–61. doi: 10.1016/j.bbr.2014.11.002. PubMed DOI

Jones J.A., Rupert A.S., Poi M., Phelps M.A., Andritsos L., Baiocchi R., Benson D.M., Blum K.A., Christian B., Flynn J., et al. Flavopiridol can be safely administered using a pharmacologically derived schedule and demonstrates activity in relapsed and refractory non-Hodgkin’s lymphoma. Am. J. Hematol. 2014;89:19–24. doi: 10.1002/ajh.23568. PubMed DOI PMC

Siemann D.W., Chaplin D.J., Walicke P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P) Expert Opin. Investig. Drugs. 2009;18:189–197. doi: 10.1517/13543780802691068. PubMed DOI PMC

Choueiri T.K., Mekhail T., Hutson T.E., Ganapathi R., Kelly G.E., Bukowski R.M. Phase I trial of phenoxodiol delivered by continuous intravenous infusion in patients with solid cancer. Ann. Oncol. 2006;17:860–865. doi: 10.1093/annonc/mdl010. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant

. 2023 May 23 ; () : 1-47. [epub] 20230523

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...