Epidemiological insights from a large-scale investigation of intestinal helminths in Medieval Europe

. 2020 Aug ; 14 (8) : e0008600. [epub] 20200827

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32853225

Grantová podpora
BB/K004468/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/K001388/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Helminth infections are among the World Health Organization's top neglected diseases with significant impact in many Less Economically Developed Countries. Despite no longer being endemic in Europe, the widespread presence of helminth eggs in archaeological deposits indicates that helminths represented a considerable burden in past European populations. Prevalence of infection is a key epidemiological feature that would influence the elimination of endemic intestinal helminths, for example, low prevalence rates may have made it easier to eliminate these infections in Europe without the use of modern anthelminthic drugs. To determine historical prevalence rates we analysed 589 grave samples from 7 European sites dated between 680 and 1700 CE, identifying two soil transmitted nematodes (Ascaris spp. and Trichuris trichiura) at all locations, and two food derived cestodes (Diphyllobothrium latum and Taenia spp.) at 4 sites. The rates of nematode infection in the medieval populations (1.5 to 25.6% for T. trichiura; 9.3-42.9% for Ascaris spp.) were comparable to those reported within modern endemically infected populations. There was some evidence of higher levels of nematode infection in younger individuals but not at all sites. The genetic diversity of T. trichiura ITS-1 in single graves was variable but much lower than with communal medieval latrine deposits. The prevalence of food derived cestodes was much lower (1.0-9.9%) than the prevalence of nematodes. Interestingly, sites that contained Taenia spp. eggs also contained D. latum which may reflect local culinary practices. These data demonstrate the importance of helminth infections in Medieval Europe and provide a baseline for studies on the epidemiology of infection in historical and modern contexts. Since the prevalence of medieval STH infections mirror those in modern endemic countries the factors affecting STH decline in Europe may also inform modern intervention campaigns.

Zobrazit více v PubMed

Loreille O, Roumat E, Verneau O, Bouchet F, Hanni C, Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int J Parasitol, 2001. 31(10): p. 1101–6. 10.1016/s0020-7519(01)00214-4 PubMed DOI

Mitchell PD, Yeh HY, Appleby J, Buckley R, The intestinal parasites of King Richard III. Lancet, 2013. 382(9895): p. 888 10.1016/S0140-6736(13)61757-2 PubMed DOI

Le Bailly M, Landolt M, Mauchamp L, Dufour B, Intestinal parasites in First World War German soldiers from "Kilianstollen", Carspach, France. PLoS One, 2014. 9(10): p. e109543 10.1371/journal.pone.0109543 PubMed DOI PMC

Soe MJ, Nejsum P, Fredensborg BL, Kapel CM, DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J Parasitol, 2015. 101(1): p. 57–63. 10.1645/14-650.1 PubMed DOI

Nezamabadi M, Mashkour M, Aali A, Stollner T, Le Bailly M, Identification of Taenia sp. in a natural human mummy (third century BC) from the Chehrabad salt mine in Iran. J Parasitol, 2013. 99(3): p. 570–2. 10.1645/12-113.1 PubMed DOI

Jones AKG. A coprolite from 6–8 Pavement, in Environment and Living Conditions at Two Anglo-Scandinavian Sites, Hall A.R., et al., Editors. 1983, Council for British Archaeology for the York Archaeological Trust: The Archaeology of York; p. 225–229.

Flammer PG, Dellicour S, Preston SG, Rieger D, Warren S, Tan CKW, et al., Molecular archaeoparasitology identifies cultural changes in the Medieval Hanseatic trading centre of Lubeck. Proc Biol Sci, 2018. 285(1888). PubMed PMC

Chan MS, Medley GF, Jamison D, Bundy DA, The evaluation of potential global morbidity attributable to intestinal nematode infections. Parasitology, 1994. 109 (Pt 3): p. 373–87. PubMed

de Silva N.R., Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L, Soil-transmitted helminth infections: updating the global picture. Trends Parasitol, 2003. 19(12): p. 547–51. 10.1016/j.pt.2003.10.002 PubMed DOI

Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors, 2014. 7: p. 37 10.1186/1756-3305-7-37 PubMed DOI PMC

Parajuli RP, Fujiwara T, Umezaki M, Konishi S, Takane E, Maharjan M, Prevalence and risk factors of soil-transmitted helminth infection in Nepal. Trans R Soc Trop Med Hyg, 2014. 108(4): p. 228–36. 10.1093/trstmh/tru013 PubMed DOI

Faria CP, Zanini GM, Dias GS, da Silva S, de Freitas MB, Almendra R, et al., Geospatial distribution of intestinal parasitic infections in Rio de Janeiro (Brazil) and its association with social determinants. PLoS Negl Trop Dis, 2017. 11(3): p. e0005445 10.1371/journal.pntd.0005445 PubMed DOI PMC

Anuar TS, Salleh FM, Moktar N, Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Sci Rep, 2014. 4: p. 4101 10.1038/srep04101 PubMed DOI PMC

Jourdan PM, Montresor A, Walson JL, Building on the success of soil-transmitted helminth control—The future of deworming. PLoS Negl Trop Dis, 2017. 11(4): p. e0005497 10.1371/journal.pntd.0005497 PubMed DOI PMC

Anderson RM, Turner HC, Truscott JE, Hollingsworth TD, Brooker SJ. Should the Goal for the Treatment of Soil Transmitted Helminth (STH) Infections Be Changed from Morbidity Control in Children to Community-Wide Transmission Elimination? PLoS Negl Trop Dis, 2015. 9(8): p. e0003897 10.1371/journal.pntd.0003897 PubMed DOI PMC

Becker SL, Liwanag HJ, Snyder JS, Akogun O, Belizario V Jr., Freeman MC, et al. Toward the 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS Negl Trop Dis, 2018. 12(8): p. e0006606 10.1371/journal.pntd.0006606 PubMed DOI PMC

Ziegelbauer K, Speich B, Mausezahl D, Bos R, Keiser J, Utzinger J., Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med, 2012. 9(1): p. e1001162 10.1371/journal.pmed.1001162 PubMed DOI PMC

Strunz EC, Addiss DG, Stocks ME, Ogden S, Utzinger J, Freeman MC. Water, sanitation, hygiene, and soil-transmitted helminth infection: a systematic review and meta-analysis. PLoS Med, 2014. 11(3): p. e1001620 10.1371/journal.pmed.1001620 PubMed DOI PMC

Bieri FA, Gray DJ, Williams GM, Raso G, Li YS, Yuan L, et al., Health-education package to prevent worm infections in Chinese schoolchildren. N Engl J Med, 2013. 368(17): p. 1603–12. 10.1056/NEJMoa1204885 PubMed DOI

Gyorkos TW, Maheu-Giroux M, Blouin B, Casapia M. Impact of health education on soil-transmitted helminth infections in schoolchildren of the Peruvian Amazon: a cluster-randomized controlled trial. PLoS Negl Trop Dis, 2013. 7(9): p. e2397 10.1371/journal.pntd.0002397 PubMed DOI PMC

Hong ST, Chai JY, Choi MH, Huh S, Rim HJ, Lee SH. A successful experience of soil-transmitted helminth control in the Republic of Korea. Korean J Parasitol, 2006. 44(3): p. 177–85. 10.3347/kjp.2006.44.3.177 PubMed DOI PMC

Komiya Y, Kobayashi A, Techniques Applied in Japan for the Control of Ascaris and Hookworm Infections—a Review. Jpn J Med Sci Biol, 1965. 18: p. 1–17. PubMed

Kobayashi A, Hara T, Kajima J, Historical aspects for the control of soil-transmitted helminthiases. Parasitol Int, 2006. 55 Suppl: p. S289–91. PubMed

Mitchell PD, Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment. Adv Parasitol, 2015. 90: p. 389–420. 10.1016/bs.apar.2015.05.001 PubMed DOI

Goncalves MLC, Araujo A, Ferreira LF, Human intestinal parasites in the past: New findings and a review. Memorias Do Instituto Oswaldo Cruz, 2003. 98: p. 103–118. PubMed

Seo M, Guk SM, Kim J, Chai JY, Bok GD, Park SS, et al. Paleoparasitological report on the stool from a medieval child mummy in Yangju, Korea. Journal of Parasitology, 2007. 93(3): p. 589–592. 10.1645/GE-905R3.1 PubMed DOI

Szidat L, Über die Erhaltungsfähigkeit von Helmintheneiern in vor- und frühgeschichtlichen Moorleichen. Zeitschrift für Parasitenkunde, 1944. 13(3): p. 265–274.

Cote NM, Daligault J, Pruvost M, Bennett EA, Gorge O, Guimaraes S, et al. A New High-Throughput Approach to Genotype Ancient Human Gastrointestinal Parasites. PLoS One, 2016. 11(1): p. e0146230 10.1371/journal.pone.0146230 PubMed DOI PMC

Hong JH, Seo M, Oh CS, Shin DH, Genetic Analysis of Small-Subunit Ribosomal RNA, Internal Transcribed Spacer 2, and ATP Synthase Subunit 8 of Trichuris trichiura Ancient DNA Retrieved from the 15th to 18th Century Joseon Dynasty Mummies' Coprolites from Korea. J Parasitol, 2019. 105(4): p. 539–545. PubMed

da Rocha GC, Harter-Lailheugue S, Le Bailly M, Araujo A, Ferreira LF, da Serra-Freire NM, et al. Paleoparasitological remains revealed by seven historic contexts from "Place d'Armes", Namur, Belgium. Mem Inst Oswaldo Cruz, 2006. 101 Suppl 2: p. 43–52. PubMed

Bouchet F, Guidon N, Dittmar K, Harter S, Ferreira LF, Chaves SM, et al. Parasite remains in archaeological sites. Mem Inst Oswaldo Cruz, 2003. 98 Suppl 1: p. 47–52. PubMed

Macháček J, Dresler P, Přichystalová R, Sládek V. Břeclav–Pohansko VII. Kostelní pohřebiště na Severovýchodním předhradí. 2016: Masaryk University; 506.

Ade D, Aderbauer H, Boschert S, Cukrowicz A, Fellgiebel K, Flammer PG, et al. Die Sülchenkirche bei Rottenburg. 2018: Kunstverlag Josef Fink; 552.

Cooper A, Poinar HN, Ancient DNA: do it right or not at all. Science, 2000. 289(5482): p. 1139 10.1126/science.289.5482.1139b PubMed DOI

Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S., Ancient DNA. Nat Rev Genet, 2001. 2(5): p. 353–9. 10.1038/35072071 PubMed DOI

Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. Annu Rev Genet, 2004. 38: p. 645–79. 10.1146/annurev.genet.37.110801.143214 PubMed DOI

Kumar S, Stecher G, Tamura K, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 2016. 33(7): p. 1870–4. 10.1093/molbev/msw054 PubMed DOI PMC

Edgar RC, Flyvbjerg H, Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics, 2015. 31(21): p. 3476–82. 10.1093/bioinformatics/btv401 PubMed DOI

Hsieh TC, Ma KH, Chao A, iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 2016. 7(12): p. 1451–1456.

Team R, R: A language and environment for statistical computing. 2017, R Foundation for Statistical Computing, Vienna, Austria.

Team R., RStudio: Integrated Development for R. 2015, RStudio Inc, Boston, MA.

White TD, Folkens PA, The human bone manual 2005, Burlington, Mass.; London: Elsevier; xx, 464 p.

Bundy DAP, Appleby LJ, Bradley M, Croke K, Hollingsworth TD, Pullan R, et al., 100 Years of Mass Deworming Programmes: A Policy Perspective From the World Bank's Disease Control Priorities Analyses. Adv Parasitol, 2018. 100: p. 127–154. 10.1016/bs.apar.2018.03.005 PubMed DOI

WHO. Soil-transmitted helminth infections. 2019 14 March 2019 20 December 2019]; Available from: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections.

Asbjornsdottir KH, Means AR, Werkman M, Walson JL. Prospects for elimination of soil-transmitted helminths. Curr Opin Infect Dis, 2017. 30(5): p. 482–488. 10.1097/QCO.0000000000000395 PubMed DOI PMC

Truscott JE, Hollingsworth TD, Brooker SJ, Anderson RM. Can chemotherapy alone eliminate the transmission of soil transmitted helminths? Parasit Vectors, 2014. 7: p. 266. PubMed PMC

Mitchell PD, The importance of research into ancient parasites. Int J Paleopathol, 2013. 3(3): p. 189–190. 10.1016/j.ijpp.2013.08.002 PubMed DOI

Araujo A, Reinhard K, Ferreira LF, Palaeoparasitology—Human Parasites in Ancient Material. Adv Parasitol, 2015. 90: p. 349–87. 10.1016/bs.apar.2015.03.003 PubMed DOI

Reinhard K., Reestablishing rigor in archaeological parasitology. Int J Paleopathol, 2017. 19: p. 124–134. 10.1016/j.ijpp.2017.06.002 PubMed DOI

Leles D, Reinhard KJ, Fugassa M, Ferreira LF, Inigueza AM, Araujo A, A parasitological paradox: Why is ascarid infection so rare in the prehistoric Americas? Journal of Archaeological Science, 2010. 37(7): p. 1510–1520.

Aspock H, Auer H, Picher O, Trichuris trichiura eggs in the neolithic glacier mummy from the Alps. Parasitology Today, 1996. 12(7): p. 255–256.

Anastasiou E, Mitchell PB, Human intestinal parasites from a latrine in the 12th century Frankish castle of Saranda Kolones in Cyprus. Int J Paleopathol, 2013. 3(3): p. 218–223. 10.1016/j.ijpp.2013.04.003 PubMed DOI

Camacho M, Araujo A, Morrow J, Buikstra J, Reinhard K, Recovering parasites from mummies and coprolites: an epidemiological approach. Parasit Vectors, 2018. 11(1): p. 248 10.1186/s13071-018-2729-4 PubMed DOI PMC

Brooker S, Clements ACA, Bundy DAP, Global epidemiology, ecology and control of soil-transmitted helminth infections. Advances in Parasitology, Vol 62, 2006. 62: p. 221–261. 10.1016/S0065-308X(05)62007-6 PubMed DOI PMC

Sayasone S, Mak TK, Vanmany M, Rasphone O, Vounatsou P, Utzinger J, et al., Helminth and intestinal protozoa infections, multiparasitism and risk factors in Champasack province, Lao People's Democratic Republic. PLoS Negl Trop Dis, 2011. 5(4): p. e1037 10.1371/journal.pntd.0001037 PubMed DOI PMC

Aspock H, Flamm H, Picher O, [Intestinal parasites in human excrements from prehistoric salt-mines of the Hallstatt period (800–350 B.C.)]. Zentralbl Bakteriol Orig A, 1973. 223(4): p. 549–58. PubMed

Le Bailly M, Leuzinger U, Schlichtherle H, Bouchet F. Diphyllobothrium: Neolithic parasite? J Parasitol, 2005. 91(4): p. 957–9. 10.1645/GE-3456RN.1 PubMed DOI

Le Bailly M, Landolt M, Bouchet F, First World War German soldier intestinal worms: an original study of a trench latrine in France. J Parasitol, 2012. 98(6): p. 1273–5. 10.1645/GE-3200.1 PubMed DOI

Stoll NR, This wormy world. J Parasitol, 1947. 33(1): p. 1–18. PubMed

Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How effective is school-based deworming for the community-wide control of soil-transmitted helminths? PLoS Negl Trop Dis, 2013. 7(2): p. e2027 10.1371/journal.pntd.0002027 PubMed DOI PMC

Freeman MC, Clasen T, Brooker SJ, Akoko DO, Rheingans R. The impact of a school-based hygiene, water quality and sanitation intervention on soil-transmitted helminth reinfection: a cluster-randomized trial. Am J Trop Med Hyg, 2013. 89(5): p. 875–83. 10.4269/ajtmh.13-0237 PubMed DOI PMC

Hara T, Large-scale control against intestinal helminthic infections in Japan, with special reference to the activities of Japan Association of Parasite Control. Icopa Ix - 9th International Congress of Parasitology, 1998: p. 139–143.

Horton J, Global anthelmintic chemotherapy programs: learning from history. Trends Parasitol, 2003. 19(9): p. 405–9. 10.1016/s1471-4922(03)00171-5 PubMed DOI

Kasai T, Nakatani H, Takeuchi T, Crump A. Research and control of parasitic diseases in Japan: current position and future perspectives. Trends Parasitol, 2007. 23(5): p. 230–5. 10.1016/j.pt.2007.02.011 PubMed DOI PMC

Kobayashi J, Jimba M, Okabayashi H, Singhasivanon P, Waikagul J, Beyond deworming: the promotion of school-health-based interventions by Japan. Trends Parasitol, 2007. 23(1): p. 25–9. 10.1016/j.pt.2006.11.006 PubMed DOI

Jia TW, Melville S, Utzinger J, King CH, Zhou XN. Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Negl Trop Dis, 2012. 6(5): p. e1621 10.1371/journal.pntd.0001621 PubMed DOI PMC

Bopda J, Nana-Djeunga H, Tenaguem J, Kamtchum-Tatuene J, Gounoue-Kamkumo R, Assob-Nguedia C, et al. Prevalence and intensity of human soil transmitted helminth infections in the Akonolinga health district (Centre Region, Cameroon): Are adult hosts contributing in the persistence of the transmission? Parasite Epidemiology and Control, 2016. 1(2): p. 199–204. 10.1016/j.parepi.2016.03.001 PubMed DOI PMC

Florenzano A, Mercuri AM, Pederzoli A, Torri P, Bosi G, Olmi L, et al. The Significance of Intestinal Parasite Remains in Pollen Samples from Medieval Pits in the Piazza Garibaldi of Parma, Emilia Romagna, Northern Italy. Geoarchaeology-an International Journal, 2012. 27(1): p. 34–47.

Jaeger LH, Taglioretti V, Fugassa MH, Dias O, Neto J, Iniguez AM., Paleoparasitological results from XVIII century human remains from Rio de Janeiro, Brazil. Acta Trop, 2013. 125(3): p. 282–6. 10.1016/j.actatropica.2012.11.007 PubMed DOI

Tams KW, Jensen Soe M, Merkyte I, Valeur Seersholm F, Henriksen PS, Klingenberg S, et al. Parasitic infections and resource economy of Danish Iron Age settlement through ancient DNA sequencing. PLoS One, 2018. 13(6): p. e0197399 10.1371/journal.pone.0197399 PubMed DOI PMC

Yeh HY, Pluskowski A, Kalejs U, Mitchell PD. Intestinal parasites in a mid-14th century latrine from Riga, Latvia: fish tapeworm and the consumption of uncooked fish in the medieval eastern Baltic region. Journal of Archaeological Science, 2014. 49: p. 83–89.

Shoemaker EA, Dale K, Cohn DA, Kelly MP, Zoerhoff KL, Batcho WE, et al. Gender and neglected tropical disease front-line workers: Data from 16 countries. PLoS One, 2019. 14(12): p. e0224925 10.1371/journal.pone.0224925 PubMed DOI PMC

Gildner TE, Cepon-Robins TJ, Liebert MA, Urlacher SS, Madimenos FC, Snodgrass JJ, et al., Regional variation in Ascaris lumbricoides and Trichuris trichiura infections by age cohort and sex: effects of market integration among the indigenous Shuar of Amazonian Ecuador. J Physiol Anthropol, 2016. 35(1): p. 28 10.1186/s40101-016-0118-2 PubMed DOI PMC

Trang DT, Molbak K, Cam PD, Dalsgaard A. Helminth infections among people using wastewater and human excreta in peri-urban agriculture and aquaculture in Hanoi, Vietnam. Tropical Medicine & International Health, 2007. 12: p. 82–90. PubMed

Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet, 2006. 367(9521): p. 1521–32. 10.1016/S0140-6736(06)68653-4 PubMed DOI

Martins-Melo FR, Ramos AN, Alencar CH, Lima MS, Heukelbach J. Epidemiology of soil-transmitted helminthiases-related mortality in Brazil. Parasitology, 2017. 144(5): p. 669–679. 10.1017/S0031182016002341 PubMed DOI

Bundy DAP, Cooper ES, Thompson DE, Didier JM, Simmons I. Epidemiology and Population-Dynamics of Ascaris-Lumbricoides and Trichuris-Trichiura Infection in the Same Community. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1987. 81(6): p. 987–993. 10.1016/0035-9203(87)90372-5 PubMed DOI

Farrell SH, Coffeng LE, Truscott JE, Werkman M, Toor J, de Vlas SJ, et al. Investigating the Effectiveness of Current and Modified World Health Organization Guidelines for the Control of Soil-Transmitted Helminth Infections. Clin Infect Dis, 2018. 66(suppl_4): p. S253–S259. 10.1093/cid/ciy002 PubMed DOI PMC

Ross AG, Rahman M, Alam M, Zaman K, Qadri F. Can we 'WaSH' infectious diseases out of slums? Int J Infect Dis, 2020. PubMed

Ercumen A, Benjamin-Chung J, Arnold BF, Lin A, Hubbard AE, Stewart C, et al. Effects of water, sanitation, handwashing and nutritional interventions on soil-transmitted helminth infections in young children: A cluster-randomized controlled trial in rural Bangladesh. PLoS Negl Trop Dis, 2019. 13(5): p. e0007323 10.1371/journal.pntd.0007323 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...