Molecular archaeoparasitology identifies cultural changes in the Medieval Hanseatic trading centre of Lübeck
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
Grantová podpora
204311/Z/16/Z
Wellcome Trust - United Kingdom
BB/K004468/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/K001388/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30282648
PubMed Central
PMC6191690
DOI
10.1098/rspb.2018.0991
PII: rspb.2018.0991
Knihovny.cz E-zdroje
- Klíčová slova
- ancient DNA, archaeology, diet, genetics, parasitology, trade,
- MeSH
- archeologie MeSH
- cizopasní červi klasifikace fyziologie MeSH
- dějiny 15. století MeSH
- dějiny 16. století MeSH
- dějiny 17. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- feces parazitologie MeSH
- genetická variace MeSH
- kulturní evoluce * MeSH
- lidé MeSH
- parazitologie MeSH
- počet parazitárních vajíček MeSH
- starobylá DNA analýza MeSH
- trichurióza epidemiologie dějiny parazitologie MeSH
- Trichuris genetika fyziologie MeSH
- velkoměsta epidemiologie MeSH
- zvířata MeSH
- Check Tag
- dějiny 15. století MeSH
- dějiny 16. století MeSH
- dějiny 17. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo epidemiologie MeSH
- velkoměsta epidemiologie MeSH
- Názvy látek
- starobylá DNA MeSH
Throughout history, humans have been afflicted by parasitic worms, and eggs are readily detected in archaeological deposits. This study integrated parasitological and ancient DNA methods with a large sample set dating between Neolithic and Early Modern periods to explore the utility of molecular archaeoparasitology as a new approach to study the past. Molecular analyses provided unequivocal species-level parasite identification and revealed location-specific epidemiological signatures. Faecal-oral transmitted nematodes (Ascaris lumbricoides and Trichuris trichiura) were ubiquitous across time and space. By contrast, high numbers of food-associated cestodes (Diphyllobothrium latum and Taenia saginata) were restricted to medieval Lübeck. The presence of these cestodes and changes in their prevalence at approximately 1300 CE indicate substantial alterations in diet or parasite availability. Trichuris trichiura ITS-1 sequences grouped into two clades; one ubiquitous and one restricted to medieval Lübeck and Bristol. The high sequence diversity of T.tITS-1 detected in Lübeck is consistent with its importance as a Hanseatic trading centre. Collectively, these results introduce molecular archaeoparasitology as an artefact-independent source of historical evidence.
Archäologie und Denkmalpflege der Hansestadt Lübeck 23566 Lübeck Germany
Hochbauamt der Stadt Zürich Abteilung Unterwasserarchäologie 8008 Zürich Switzerland
Masaryk University Brno 60177 Brno Czech Republic
Oxford Archaeology Ltd Janus House Osney Mead Oxford OX2 0ES UK
Regierungspräsidium Stuttgart Landesamt für Denkmalpflege 78467 Konstanz Germany
Research Laboratory for Archaeology and the History of Art University of Oxford Oxford OX1 3QY UK
Zobrazit více v PubMed
Bos KI, et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510. (10.1038/nature10549) PubMed DOI PMC
Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl. Acad. Sci. USA 95, 12 637–12 640. (10.1073/pnas.95.21.12637) PubMed DOI PMC
Muller R, Roberts CA, Brown TA. 2014. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity. Proc. R. Soc. B 281, 20133236 (10.1098/rspb.2013.3236) PubMed DOI PMC
Biagini P, et al. 2012. Variola virus in a 300-year-old Siberian mummy. N Engl. J. Med. 367, 2057–2059. (10.1056/nejmc1208124) PubMed DOI
Chan JZ, Sergeant MJ, Lee OY, Minnikin DE, Besra GS, Pap I, Spigelman M, Donoghue HD, Pallen MJ. 2013. Metagenomic analysis of tuberculosis in a mummy. N Engl. J. Med. 369, 289–290. (10.1056/NEJMc1302295) PubMed DOI
Bouwman AS, Kennedy SL, Muller R, Stephens RH, Holst M, Caffell AC, Roberts CA, Brown TA. 2012. Genotype of a historic strain of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 109, 18 511–18 516. (10.1073/pnas.1209444109) PubMed DOI PMC
Haensch S, et al. 2010. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog. 6, e1001134 (10.1371/journal.ppat.1001134) PubMed DOI PMC
Harbeck M, et al. 2013. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog. 9, e1003349 (10.1371/journal.ppat.1003349) PubMed DOI PMC
Hershkovitz I, et al. 2008. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS ONE 3, e3426 (10.1371/journal.pone.0003426) PubMed DOI PMC
Bos KI, et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497. (10.1038/nature13591) PubMed DOI PMC
Dabernat H, et al. 2014. Tuberculosis epidemiology and selection in an autochthonous Siberian population from the 16th-19th century. PLoS ONE 9, e89877 (10.1371/journal.pone.0089877) PubMed DOI PMC
Gelabert P, et al. 2016. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc. Natl Acad. Sci. USA 113, 11 495–11 500. (10.1073/pnas.1611017113) PubMed DOI PMC
Seo M, et al. 2007. Paleoparasitological report on the stool from a medieval child mummy in Yangju, Korea. J. Parasitol. 93, 589–592. (10.1645/GE-905R3.1) PubMed DOI
Mitchell PD, Yeh HY, Appleby J, Buckley R. 2013. The intestinal parasites of King Richard III. Lancet 382, 888 (10.1016/S0140-6736(13)61757-2) PubMed DOI
Loreille O, Roumat E, Verneau O, Bouchet F, Hanni C. 2001. Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int. J. Parasitol. 31, 1101–1106. (10.1016/S0020-7519(01)00214-4) PubMed DOI
Soe MJ, Nejsum P, Fredensborg BL, Kapel CM. 2015. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J. Parasitol. 101, 57–63. (10.1645/14-650.1) PubMed DOI
Aufderheide AC, et al. 2004. A 9,000-year record of Chagas' disease. Proc. Natl Acad. Sci. USA 101, 2034–2039. (10.1073/pnas.0307312101) PubMed DOI PMC
Ferreira LF, Britto C, Cardoso MA, Fernandes O, Reinhard K, Araujo A. 2000. Paleoparasitology of Chagas disease revaled by infected tissues from Chilean mummies. Acta Trop. 75, 79–84. (10.1016/S0001-706X(99)00095-9) PubMed DOI
Nerlich AG, Schraut B, Dittrich S, Jelinek T, Zink AR. 2008. Plasmodium falciparum in ancient Egypt. Emerg. Infect. Dis. 14, 1317–1319. (10.3201/eid1408.080235) PubMed DOI PMC
Sallares R, Bouwman A, Anderung C. 2004. The spread of Malaria to Southern Europe in antiquity: new approaches to old problems. Med. Hist. 48, 311–328. (10.1017/S0025727300007651) PubMed DOI PMC
Oh CS, Seo M, Chai JY, Lee SJ, Kim MJ, Park JB, Shin DH. 2010. Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. J. Archaeol. Sci. 37, 1269–1273. (10.1016/j.jas.2009.12.029) DOI
Liu WQ, Liu J, Zhang JH, Long XC, Lei JH, Li YL. 2007. Comparison of ancient and modern Clonorchis sinensis based on ITS1 and ITS2 sequences. Acta Trop. 101, 91–94. (10.1016/j.actatropica.2006.08.010) PubMed DOI
Cote NM, et al. 2016. A new high-throughput approach to genotype ancient human gastrointestinal parasites. PLoS ONE 11, e0146230 (10.1371/journal.pone.0146230) PubMed DOI PMC
Yeh HY, Pluskowski A, Kalejs U, Mitchell PD. 2014. Intestinal parasites in a mid-14th century latrine from Riga, Latvia: fish tapeworm and the consumption of uncooked fish in the medieval eastern Baltic region. J. Archaeol. Sci. 49, 83–89. (10.1016/j.jas.2014.05.001) DOI
Bleicher N, Harb CH. 2015. Zürich-Parkhaus Opéra: eine neolithische Feuchtbodenfundstelle. Zürich, Egg: Baudirektion Kanton Zürich, Amt für Kantonsarchäologie Zürich, Vol. 1. Unterwasserarchäologie/Dendrochronologie.
Harrison XA. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. Peer J. 2, e616 (10.7717/peerj.616) PubMed DOI PMC
McCullagh P, Nelder JA. 1992. Generalized linear models, XIX, 511 S p, 2nd edn London, UK: Chapman & Hall.
Slon V, et al. 2017. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608. (10.1126/science.aam9695) PubMed DOI
Willerslev E, et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795. (10.1126/science.1084114) PubMed DOI
Horreo JL, Ardura A, Pola IG, Martinez JL, Garcia-Vazquez E. 2013. Universal primers for species authentication of animal foodstuff in a single polymerase chain reaction. J. Sci. Food Agric. 93, 354–361. (10.1002/jsfa.5766) PubMed DOI
Legant G. 2010. Zur Siedlungsgeschichte des ehemaligen Lübecker Kaufleuteviertels im 12. und frühen 13. Jahrhundert: nach den altesten Befunden der Grabung Alfstrasse - Fischstrasse - Schlüsselbuden, 1985–1990 [Thesis (doctoral) - Universität, Hamburg, 1998]. Rahden/Westf.: Verlag Marie Leidorf.
Gläser M. 2002. Lübecker Schriften zur Archäologie und Kulturgeschichte, Archäologische Untersuchungen auf dem Lübecker Stadthügel. Lübeck (Germany) Amt für Vor- und Frühgeschichte, p. 552 Bonn: Dr Rudolf Habelt Verlag.
Fehring GP, Gläser M. 1991. Beiträge zur Bevölkerung Lübecks, zu ihrer Ernährung und Umwelt. Lübecker Schriften zur Archäologie und Kulturgeschichte. 21, 183–202.
Fehring GP, Gläser M. 1984. Lübecker Schriften zur Archäologie und Kulturgeschichte. Lübeck (Germany) Amt für Vor- und Frühgeschichte, p. 208/142. Frankfurt am Main: P. Lang.
Fehring GP, Gläser M. 1980. Lübecker Schriften zur Archäologie und Kulturgeschichte. Lübeck (Germany) Amt für Vor- und Frühgeschichte (Bodendenkmalpflege), p. 202. Frankfurt am Main: P. Lang.
Cutillas C, Callejon R, de Rojas M, Tewes B, Ubeda JM, Ariza C, Guevara DC. 2009. Trichuris suis and Trichuris trichiura are different nematode species. Acta Trop. 111, 299–307. (10.1016/j.actatropica.2009.05.011) PubMed DOI
Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. (10.1093/oxfordjournals.molbev.a026036) PubMed DOI
Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273. (10.1073/pnas.76.10.5269) PubMed DOI PMC
Mardulyn P, Mikhailov YE, Pasteels JM. 2009. Testing phylogeographic hypotheses in a Euro-Siberian cold-adapted leaf beetle with coalescent simulations. Evolution 63, 2717–2729. (10.1111/j.1558-5646.2009.00755.x) PubMed DOI
Wharton D. 1980. Nematode egg-shells. Parasitology 81, 447–463. (10.1017/S003118200005616X) PubMed DOI
Herrmann B, Schulz U. 1986. Parasitologische Untersuchungen eines spätmittelalterlich-frühneuzeitlichen Kloakeninhaltes aus der Fronerei auf dem Schrangen in Lübeck. In Lübecker Schriften zur Archäologie und Kulturgeschichte 12 (ed. Fehring GP.), Bonn: Verlag Dr. Rudolf Habelt.
Zimmerling D. 1976. Die Hanse: Handelsmacht im Zeichen d. Kogge. Düsseldorf/Wien: Econ.
Lübeck. 1843. Codex diplomaticus Lubecensis. Lübeckisches Urkundenbuch. Urkundenbuch der Stadt Lübeck. (Verein für lübeck. Gesch.). Lübeck.
Berndt H, Neugebauer W. 1968. Lübeck - eine medizinhistorische Studie. In Archaeologica ludensia III (ed. Bengtsson B.), pp. 78–82. Lund, Sweden: University of Lund.
Lampen A. 2000. Stadt und Fisch: Konsum, Produktion und Handel im Hanseraum der Frühzeit. VSWG: Vierteljahrschrift für Sozial- und Wirtschaftsgeschichte 3, 281–307.
Barrett JH, et al. 2011. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524. (10.1016/j.jas.2011.02.017) DOI
Newfield TP. 2009. A cattle panzootic in early fourteenth-century Europe. Agricul. Hist. Rev. 57, 155–190.
Paabo S, et al. 2004. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679. (10.1146/annurev.genet.37.110801.143214) PubMed DOI
Cooper A, Poinar HN. 2000. Ancient DNA: do it right or not at all. Science 289, 1139 (10.1126/science.289.5482.1139b) PubMed DOI
Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. 2001. Ancient DNA. Nat. Rev. Genet. 2, 353–359. (10.1038/35072071) PubMed DOI
Bystrykh LV. 2012. Generalized DNA barcode design based on Hamming codes. PLoS ONE 7, e36852 (10.1371/journal.pone.0036852) PubMed DOI PMC
Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. (10.1109/TAC.1974.1100705) DOI
Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526. PubMed
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. (10.1093/molbev/msw054) PubMed DOI PMC
Dellicour S. 2014. Mardulyn P. spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651. (10.1111/1755-0998.12200) PubMed DOI
Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491. PubMed PMC
Epidemiological insights from a large-scale investigation of intestinal helminths in Medieval Europe
figshare
10.6084/m9.figshare.c.4239758