• This record comes from PubMed

Silver Nanomaterials for Wound Dressing Applications

. 2020 Aug 28 ; 12 (9) : . [epub] 20200828

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
H2020 CA COST Action CA15114 Mendelova Univerzita v Brně
INTER-COST LTC18002 Mendelova Univerzita v Brně

Links

PubMed 32872234
PubMed Central PMC7557923
DOI 10.3390/pharmaceutics12090821
PII: pharmaceutics12090821
Knihovny.cz E-resources

Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.

See more in PubMed

Augustine R., Zahid A.A., Hasan A., Wang M., Webster T.J. CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int. J. Nanomed. 2019;14:8573–8588. doi: 10.2147/IJN.S224047. PubMed DOI PMC

Garcia-Villen F., Faccendini A., Aguzzi C., Cerezo P., Bonferoni M.C., Rossi S., Grisoli P., Ruggeri M., Ferrari F., Sandri G., et al. Montmorillonite-Norfloxacin nanocomposite intended for healing of infected wounds. Int. J. Nanomed. 2019;14:5051–5060. doi: 10.2147/IJN.S208713. PubMed DOI PMC

Pang S.C., Gao Y., Wang F.B., Wang Y.Y., Cao M.X., Zhang W.J., Liang Y., Song M.Y., Jiang G.B. Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model. Sci. Total Environ. 2020;717:10. doi: 10.1016/j.scitotenv.2020.137178. PubMed DOI

Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI

Percival S.L., Salisbury A.M., Chen R. Silver, biofilms and wounds: Resistance revisited. Crit. Rev. Microbiol. 2019;45:223–237. doi: 10.1080/1040841X.2019.1573803. PubMed DOI

Kim J.H., Yang B., Tedesco A., Lebig E.G.D., Ruegger P.M., Xu K.R., Borneman J., Martins-Green M. High levels of oxidative stress and skin microbiome are critical for initiation and development of chronic wounds in diabetic mice. Sci. Rep. 2019;9:16. doi: 10.1038/s41598-019-55644-3. PubMed DOI PMC

Theuretzbacher U., Bush K., Harbarth S., Paul M., Rex J.H., Tacconelli E., Thwaites G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 2020;18:286–298. doi: 10.1038/s41579-020-0340-0. PubMed DOI

Banerjee S., Vishakha K., Das S., Dutta M., Mukherjee D., Mondal J., Mondal S., Ganguli A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus Aureus. Colloid Surf. B Biointerfaces. 2020;190:11. doi: 10.1016/j.colsurfb.2020.110921. PubMed DOI

Kim D., Lee H., Yoon E.J., Hong J.S., Shin J.H., Uh Y., Shin K.S., Shin J.H., Kim Y.A., Park Y.S., et al. Prospective observational study of the clinical prognoses of patients with bloodstream infections caused by ampicillin-susceptible but penicillin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 2019;63:11. doi: 10.1128/AAC.00291-19. PubMed DOI PMC

Kardan-Yamchi J., Kazemian H., Battaglia S., Abtahi H., Foroushani A.R., Hamzelou G., Cirillo D.M., Ghodousi A., Feizabadi M.M. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of mycobacterium tuberculosis from Iran. J. Clin. Med. 2020;9:465. doi: 10.3390/jcm9020465. PubMed DOI PMC

Natan M., Banin E. From Nano to Micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 2017;41:302–322. doi: 10.1093/femsre/fux003. PubMed DOI

Shehabeldine A.M., Ashour R.M., Okba M.M., Saber F.R. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2020;254:12. doi: 10.1016/j.jep.2020.112669. PubMed DOI

Halawani E.M., Hassan A.M., El-Rab S. Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. Int. J. Nanomed. 2020;15:1889–1901. doi: 10.2147/IJN.S236182. PubMed DOI PMC

Hamida R.S., Abdelmeguid N.E., Ali M.A., Bin-Meferij M.M., Khalil M.I. Synthesis of silver nanoparticles using a novel cyanobacteria desertifilum sp. extract: Their antibacterial and cytotoxicity effects. Int. J. Nanomed. 2020;15:49–63. doi: 10.2147/IJN.S238575. PubMed DOI PMC

Lomeli-Marroquin D., Cruz D.M., Nieto-Arguello A., Crua A.V., Chen J.J., Torres-Castro A., Webster T.J., Cholula-Diaz J.L. Starch-Mediated synthesis of mono-and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomed. 2019;14:2171–2189. doi: 10.2147/IJN.S192757. PubMed DOI PMC

López R.A., Bartomeu G.C., Navarro G.S.M., Webster T. Novel Silver-Platinum Nanoparticles for anticancer and antimicrobial applications. Int. J. Nanomed. 2020;15:169–179. doi: 10.2147/IJN.S176737. PubMed DOI PMC

Yuan Y.C., Zhu H., Wang X.D., Cui D.Z., Gao Z.H., Su D., Zhao J., Chen O. Cu-Catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mat. 2019;31:2635–2643. doi: 10.1021/acs.chemmater.9b00557. DOI

Toy R., Peiris P.M., Ghaghada K.B., Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine. 2014;9:121–134. doi: 10.2217/nnm.13.191. PubMed DOI PMC

Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.M. Nano-Sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496–499. doi: 10.1038/35035045. PubMed DOI

Nel A.E., Madler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI

Yang W.R., Ratinac K.R., Ringer S.P., Thordarson P., Gooding J.J., Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Edit. 2010;49:2114–2138. doi: 10.1002/anie.200903463. PubMed DOI

Hoseinnejad M., Jafari S.M., Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2018;44:161–181. doi: 10.1080/1040841X.2017.1332001. PubMed DOI

Morais L.D., Macedo E.V., Granjeiro J.M., Delgado I.F. Critical evaluation of migration studies of silver nanoparticles present in food packaging: A systematic review. Crit. Rev. Food Sci. Nutr. 2019 doi: 10.1080/10408398.2019.1676699. PubMed DOI

Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q.L., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020;15:2555–2562. doi: 10.2147/IJN.S246764. PubMed DOI PMC

Mihai M.M., Dima M.B., Dima B., Holban A.M. Nanomaterials for wound healing and infection control. Materials. 2019;12:2176. doi: 10.3390/ma12132176. PubMed DOI PMC

Chan K.L., Mariatti M., Lockman Z., Sim L.C. Effects of the Size and Filler Loading on the Properties of Copper- and Silver-Nanoparticle-Filled Epoxy Composites. J. Appl. Polym. Sci. 2011;121:3145–3152. doi: 10.1002/app.33798. DOI

Stamplecoskie K.G., Scaiano J.C., Tiwari V.S., Anis H. Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C. 2011;115:1403–1409. doi: 10.1021/jp106666t. DOI

Chinnapongse S.L., MacCuspie R.I., Hackley V.A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 2011;409:2443–2450. doi: 10.1016/j.scitotenv.2011.03.020. PubMed DOI

Zhang P., Shao C.L., Zhang Z.Y., Zhang M.Y., Mu J.B., Guo Z.C., Liu Y.C. In Situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale. 2011;3:3357–3363. doi: 10.1039/c1nr10405e. PubMed DOI

Karimzadeh R., Mansour N. The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles. Opt. Laser Technol. 2010;42:783–789. doi: 10.1016/j.optlastec.2009.12.003. DOI

Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI

Maillard J.Y., Hartemann P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol. 2013;39:373–383. doi: 10.3109/1040841X.2012.713323. PubMed DOI

Liao C.Z., Li Y.C., Tjong S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019;20:449. doi: 10.3390/ijms20020449. PubMed DOI PMC

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

van Belkum A., Dunne W.M. Next-Generation antimicrobial susceptibility testing. J. Clin. Microbiol. 2013;51:2018–2024. doi: 10.1128/JCM.00313-13. PubMed DOI PMC

Schumacher A., Vranken T., Malhotra A., Arts J.J.C., Habibovic P. In Vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:187–208. doi: 10.1007/s10096-017-3089-2. PubMed DOI PMC

CLSI . Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Standard, CLSI Document M26-A. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 1999.

CLSI . Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved Standard, CLSI Document M11-A7. 7th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2007.

CLSI . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, CLSI Document M07-A9. 9th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2012.

Mady O.Y., Al-Madboly L.A., Donia A.A. Preparation, and Assessment of Antidermatophyte Activity of Miconazole-Urea Water-Soluble Film. Front. Microbiol. 2020;11:16. doi: 10.3389/fmicb.2020.00385. PubMed DOI PMC

Farha A.K., Yang Q.Q., Kim G., Zhang D., Mavumengwana V., Habimana O., Li H.B., Corke H., Gan R.Y. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)—Nootkatone and related molecular mechanism. Food Control. 2020;112:8. doi: 10.1016/j.foodcont.2020.107154. DOI

Lin S.H., Huang R.X., Cheng Y.W., Liu J., Lau B.L.T., Wiesner M.R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 2013;47:3959–3965. doi: 10.1016/j.watres.2012.09.005. PubMed DOI

Lee N.-Y., Ko W.-C., Hsueh P.-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.01153. PubMed DOI PMC

Chugh H., Sood D., Chandra I., Tomar V., Dhawan G., Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cell. Nanomed. Biotechnol. 2018;46:S1210–S1220. doi: 10.1080/21691401.2018.1449118. PubMed DOI

Abbasi E., Milani M., Fekri A.S., Kouhi M., Akbarzadeh A., Tayefi N.H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016;42:173–180. doi: 10.3109/1040841X.2014.912200. PubMed DOI

Saha J., Begum A., Mukherjee A., Kumar S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res. 2017;27:245–250. doi: 10.1016/j.serj.2017.04.003. DOI

Vorobyova V., Vasyliev G., Skiba M. Eco-Friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Appl. Nanosci. 2020;12 doi: 10.1007/s13204-020-01369-z. DOI

Bindhu M.R., Umadevi M., Esmail G.A., Al-Dhabi N.A., Arasu M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B Biol. 2020;205:7. doi: 10.1016/j.jphotobiol.2020.111836. PubMed DOI

Jyoti K., Baunthiyal M., Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9:217–227. doi: 10.1016/j.jrras.2015.10.002. DOI

Chinnasamy G., Chandrasekharan S., Bhatnagar S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int. J. Nanomed. 2019;14:9823–9836. doi: 10.2147/IJN.S231340. PubMed DOI PMC

Barbosa A., Silva L.P.C., Ferraz C.M., Tobias F.L., de Araujo J.V., Loureiro B., Braga G., Veloso F.B.R., Soares F.E.D., Fronza M., et al. Nematicidal activity of silver nanoparticles from the fungus duddingtonia flagrans. Int. J. Nanomed. 2019;14:2341–2348. doi: 10.2147/IJN.S193679. PubMed DOI PMC

Hamedi S., Shojaosadati S., Shokrollahzadeh S., Hashemi-Najafabadi S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, neurospora intermedia: Controlled synthesis and antibacterial activity. World J. Microbiol. Biotechnol. 2014;30:693–704. doi: 10.1007/s11274-013-1417-y. PubMed DOI

Saravanan M., Arokiyaraj S., Lakshmi T., Pugazhendhi A. Synthesis of silver nanoparticles from phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018;117:68–72. doi: 10.1016/j.micpath.2018.02.008. PubMed DOI

Li F.S., Weng J.K. Demystifying traditional herbal medicine with modern approaches. Nat. Plants. 2017;3:7. doi: 10.1038/nplants.2017.109. PubMed DOI

Sehnal K., Hosnedlova B., Docekalova M., Stankova M., Uhlirova D., Tothova Z., Kepinska M., Milnerowicz H., Fernandez C., Ruttkay-Nedecky B., et al. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.) Nanomaterials. 2019;9:1550. doi: 10.3390/nano9111550. PubMed DOI PMC

Jia X.W., Yao Y.C., Yu G.F., Qu L.L., Li T.X., Li Z.J., Xu C.P. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydr. Polym. 2020;238:7. doi: 10.1016/j.carbpol.2020.116169. PubMed DOI

Yu Z.L., Wang W., Dhital R., Kong F.B., Lin M.S., Mustaph A. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticle nanocomposites prepared by an ultraviolet irradiation method. Colloid Surf. B Biointerfaces. 2019;180:212–220. doi: 10.1016/j.colsurfb.2019.04.054. PubMed DOI

Zhao X.M., Li N., Jing M.L., Zhang Y.F., Wang W., Liu L.S., Xu Z.W., Liu L.Y., Li F.Y., Wu N. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim. Acta. 2019;295:434–443. doi: 10.1016/j.electacta.2018.10.039. DOI

Haleem A., Chen J., Guo X.X., Wang J.Y., Li H.J., Li P.Y., Chen S.Q., He W.D. Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer. 2020;193:10. doi: 10.1016/j.polymer.2020.122352. DOI

Liang M., Su R.X., Huang R.L., Qi W., Yu Y.J., Wang L.B., He Z.M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces. 2014;6:4638–4649. doi: 10.1021/am500665p. PubMed DOI

Cao X.L., Tang M., Liu F., Nie Y.Y., Zhao C.S. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloid Surf. B Biointerfaces. 2010;81:555–562. doi: 10.1016/j.colsurfb.2010.07.057. PubMed DOI

Hanif Z., Khan Z.A., Siddiqui M.F., Tariq M.Z., Park S., Park S.J. Tannic acid-mediated rapid layer-by-layer deposited non-leaching silver nanoparticles hybridized cellulose membranes for point-of-use water disinfection. Carbohydr. Polym. 2020;231:8. doi: 10.1016/j.carbpol.2019.115746. PubMed DOI

Dong X.B., Shannon H.D., Amirsoleimani A., Brion G.M., Escobar I.C. Thiol-Affinity immobilization of casein-coated silver nanoparticles on polymeric membranes for biofouling control. Polymers. 2019;11:2057. doi: 10.3390/polym11122057. PubMed DOI PMC

Hirsch U.M., Teuscher N., Ruhl M., Heilmann A. Plasma-Enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf. Interfaces. 2019;16:1–7. doi: 10.1016/j.surfin.2019.04.003. DOI

Saraswathi M., Rana D., Alwarappan S., Gowrishankar S., Vijayakumar P., Nagendran A. Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. J. Ind. Eng. Chem. 2019;76:141–149. doi: 10.1016/j.jiec.2019.03.014. DOI

Yang G., Xie J., Hong F., Cao Z., Yang X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym. 2012;87:839–845. doi: 10.1016/j.carbpol.2011.08.079. PubMed DOI

Levi-Polyachenko N., Jacob R., Day C., Kuthirummal N. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules. Colloids Surf. B Biointerfaces. 2016;142:315–324. doi: 10.1016/j.colsurfb.2016.02.038. PubMed DOI

Archana D., Singh B.K., Dutta J., Dutta P.K. Chitosan-PVP-nano silver oxide wound dressing: In Vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015;73:49–57. doi: 10.1016/j.ijbiomac.2014.10.055. PubMed DOI

Madhumathi K., Sudheesh K.P.T., Abhilash S., Sreeja V., Tamura H., Manzoor K., Nair S.V., Jayakumar R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med. 2010;21:807–813. doi: 10.1007/s10856-009-3877-z. PubMed DOI

Maneerung T., Tokura S., Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008;72:43–51. doi: 10.1016/j.carbpol.2007.07.025. DOI

Chen H., Lan G., Ran L., Xiao Y., Yu K., Lu B., Dai F., Wu D., Lu F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 2018;183:70–80. doi: 10.1016/j.carbpol.2017.11.029. PubMed DOI

Ahamed M.I., Sankar S., Kashif P.M., Basha S.K., Sastry T.P. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int. J. Biol. Macromol. 2015;72:680–686. doi: 10.1016/j.ijbiomac.2014.08.055. PubMed DOI

Kanikireddy V., Yallapu M., Varaprasad K., Nagireddy N., Ravindra S., Neppalli S., Raju K. Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. J. Biomater. Nanobiotechnol. 2011;2:55–64. doi: 10.4236/jbnb.2011.21008. DOI

Hu W., Chen S., Li X., Shi S., Shen W., Zhang X., Wang H. In Situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C. 2009;29:1216–1219. doi: 10.1016/j.msec.2008.09.017. DOI

Singh R., Singh D. Chitin membranes containing silver nanoparticles for wound dressing application. Int. Wound J. 2014;11:264–268. doi: 10.1111/j.1742-481X.2012.01084.x. PubMed DOI PMC

Wu J., Zheng Y., Song W., Luan J., Wen X., Wu Z., Chen X., Wang Q., Guo S. In Situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014;102:762–771. doi: 10.1016/j.carbpol.2013.10.093. PubMed DOI

Hebeish A., El-Rafie M.H., El-Sheikh M.A., Seleem A.A., El-Naggar M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071. PubMed DOI

Tian J., Wong K., Ho C.-M., Lok C.-N., Yu W.-Y., Che C.-M., Chiu J.-F., Tam P. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem. 2007;2:129–136. doi: 10.1002/cmdc.200600171. PubMed DOI

Duran N., Marcato P., Souza G., Alves O., Esposito E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007;3:203–208. doi: 10.1166/jbn.2007.022. DOI

Sundaramoorthi C., Mathews D., Sivanandy D.P., Kalaiselvan V., Rajasekaran A. Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int. J. PharmTech Res. 2009;1:1523–1529.

Chen X., Lin H.T., Xu T.T., Lai K.Q., Han X., Lin M.S. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem. 2020;315:7. doi: 10.1016/j.foodchem.2020.126276. PubMed DOI

Yun B.J., Koh W.G. Highly-Sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020;82:341–348. doi: 10.1016/j.jiec.2019.10.032. DOI

Shen B.L., Zhang D.Y., Wei Y.J., Zhao Z.H., Ma X.F., Zhao X.D., Wang S., Yang W.X. Preparation of Ag Doped Keratin/PA6 Nanofiber Membrane with Enhanced Air Filtration and Antimicrobial Properties. Polymers. 2019;11:1511. doi: 10.3390/polym11091511. PubMed DOI PMC

Dou J.L., Zhu G.D., Hu B., Yang J.M., Ge Y.X., Li X., Liu J.Y. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochim. Acta. 2019;306:466–476. doi: 10.1016/j.electacta.2019.03.152. DOI

Rath G., Hussain T., Chauhan G., Garg T., Goyal A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016;24:520–529. doi: 10.3109/1061186X.2015.1095922. PubMed DOI

Jin W.-J., Lee H., Jeong E., Park W.H., Youk J. Preparation of Polymer Nanofibers Containing Silver Nanoparticles by Using Poly(N-vinylpyrrolidone) Macromol. Rapid Comm. 2005;26:1903–1907. doi: 10.1002/marc.200500569. DOI

Ghavaminejad A., Unnithan R.A., Ramachandra K.S.A., Samarikhalaj M., Thomas R., Jeong Y., Nasseri S., Murugesan P., Wu D., Park C., et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl. Mater. Interf. 2015;7 doi: 10.1021/acsami.5b02542. PubMed DOI

Natarajan D., Lakra R., Srivatsan K., Usha R., Korrapati P., Kiran M. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J. Mater. Chem. B. 2014;3 doi: 10.1039/c4tb01791a. PubMed DOI

Rujitanaroj P.-O., Pimpha N., Supaphol P. Wound-Dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49:4723–4732. doi: 10.1016/j.polymer.2008.08.021. DOI

Dubey P., Bhushan B., Sachdev A., Matai I., Kumar U., Packirisamy G. Silver-Nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polymer Sci. 2015;132 doi: 10.1002/app.42473. DOI

Neibert K., Gopishetty V., Grigoryev A., Tokarev I., Al-Hajaj N., Vorstenbosch J., Philip A., Minko S., Maysinger D. Wound-Healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv. Healthc. Mater. 2012;1:621–630. doi: 10.1002/adhm.201200075. PubMed DOI

Abdelgawad A.M., Hudson S.M., Rojas O.J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 2014;100:166–178. doi: 10.1016/j.carbpol.2012.12.043. PubMed DOI

El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., Agwa M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-Vitro and in-vivo studies. Carbohydr. Polym. 2020;238:11. doi: 10.1016/j.carbpol.2020.116175. PubMed DOI

Augustine R., Kalarikkal N., Thomas S. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. 2016;6:337–344. doi: 10.1007/s13204-015-0439-1. DOI

Uttayarat P., Jetawattana S., Suwanmala P., Eamsiri J., Tangthong T., Pongpat S. Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fiber. Polymer. 2012;13:999–1006. doi: 10.1007/s12221-012-0999-6. DOI

Saberi A., Sadeghi M., Alipour E. Design of AgNPs-Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II) J. Polym. Environ. 2020;28:906–917. doi: 10.1007/s10924-020-01651-9. DOI

Dil N.N., Sadeghi M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu (II) metal ions. J. Hazard. Mater. 2018;351:38–53. doi: 10.1016/j.jhazmat.2018.02.017. PubMed DOI

Varaprasad K., Yallapu M., Ravindra S., Nagireddy N., Kanikireddy V., Monika K., Bojja S., Raju K. Hydrogel–Silver nanoparticle composites: A new generation of antimicrobials. J. Appl. Polymer Sci. 2010;115:1199–1207. doi: 10.1002/app.31249. DOI

Kumar P.T.S., Abhilash S., Manzoor K., Nair S.V., Tamura H., Jayakumar R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr. Polym. 2010;80:761–767. doi: 10.1016/j.carbpol.2009.12.024. DOI

Verma J., Kanoujia J., Parashar P., Tripathi C.B., Saraf S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Translat. Res. 2017;7:77–88. doi: 10.1007/s13346-016-0322-y. PubMed DOI

Boonkaew B., Kempf M., Kimble R., Supaphol P., Cuttle L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns. 2014;40:89–96. doi: 10.1016/j.burns.2013.05.011. PubMed DOI

Oliveira R.N., Rouze R., Quilty B., Alves G.G., Soares G.D., Thire R.M., McGuinness G.B. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus. 2014;4 doi: 10.1098/rsfs.2013.0049. PubMed DOI PMC

Rattanaruengsrikul V., Pimpha N., Supaphol P. In Vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J. Appl. Polymer. Sci. 2012;124 doi: 10.1002/app.35195. DOI

Das A., Kumar A., Patil N.B., Viswanathan C., Ghosh D. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr. Polym. 2015;130:254–261. doi: 10.1016/j.carbpol.2015.03.082. PubMed DOI

Liu X., Lee P.Y., Ho C.M., Lui V.C., Chen Y., Che C.M., Tam P.K., Wong K.K. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5:468–475. doi: 10.1002/cmdc.200900502. PubMed DOI

Pinto R.M., Lopes-de-Campos D., Martins M.C.L., Van Dijck P., Nunes C., Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019;43:622–641. doi: 10.1093/femsre/fuz021. PubMed DOI PMC

Gopinath P., Gogoi S.K., Chattopadhyay A., Ghosh S.S. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology. 2008;19:075104. doi: 10.1088/0957-4484/19/7/075104. PubMed DOI

Borm P.J., Kreyling W. Toxicological hazards of inhaled nanoparticles—Potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004;4:521–531. doi: 10.1166/jnn.2004.081. PubMed DOI

McAuliffe M.E., Perry M.J. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology. 2007;1:204–210. doi: 10.1080/17435390701675914. DOI

Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci. 2006;92:456–463. doi: 10.1093/toxsci/kfl020. PubMed DOI

Hussain S., Hess K., Gearhart J., Geiss K., Schlager J. In Vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005;19:975–983. doi: 10.1016/j.tiv.2005.06.034. PubMed DOI

Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.-C. In Vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412–419. doi: 10.1093/toxsci/kfi256. PubMed DOI PMC

Chen K., Wang F., Liu S., Wu X., Xu L., Zhang D. In Situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Internatl. J. Biol. Macromol. 2020;148:501–509. doi: 10.1016/j.ijbiomac.2020.01.156. PubMed DOI

Ip M., Lui S.L., Poon V.K., Lung I., Burd A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 2006;55:59–63. doi: 10.1099/jmm.0.46124-0. PubMed DOI

Sarkar S., Jana A.D., Samanta S.K., Mostafa G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron. 2007;26:4419–4426. doi: 10.1016/j.poly.2007.05.056. DOI

Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010;6:570–574. doi: 10.1016/j.nano.2009.12.002. PubMed DOI

Yang Y., Qin Z., Zeng W., Yang T., Cao Y., Mei C., Kuang Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017;6:279–289. doi: 10.1515/ntrev-2016-0047. DOI

Zewde B., Ambaye A., Stubbs Iii J., Raghavan D. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. Nanomed. 2016;4:1–14.

Rai M., Deshmukh S., Ingle A., Gade A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112:841–852. doi: 10.1111/j.1365-2672.2012.05253.x. PubMed DOI

Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns. 2007;33:139–148. doi: 10.1016/j.burns.2006.06.010. PubMed DOI

Franková J., Pivodová V., Vágnerová H., Juráňová J., Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 2016;14:137–142. doi: 10.5301/jabfm.5000268. PubMed DOI

Resmi R., Unnikrishnan S., Krishnan L.K., Kalliyana K.V. Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci. 2017;134:44529. doi: 10.1002/app.44529. DOI

Kalantari K., Mostafavi E., Afifi A.M., Izadiyan Z., Jahangirian H., Rafiee-Moghaddam R., Webster T.J. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale. 2020;12:2268–2291. doi: 10.1039/C9NR08234D. PubMed DOI

Szegedi Á., Popova M., Yoncheva K., Makk J., Mihály J., Shestakova P. Silver-and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. J. Mater. Chem. B. 2014;2:6283–6292. doi: 10.1039/C4TB00619D. PubMed DOI

Walker M., Cochrane C.A., Bowler P.G., Parsons D., Bradshaw P. Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy Wound Manag. 2006;52:42. PubMed

Trop M., Novak M., Rodl S., Hellbom B., Kroell W., Goessler W. Silver-Coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006;60:648–652. doi: 10.1097/01.ta.0000208126.22089.b6. PubMed DOI

Anisha B., Biswas R., Chennazhi K., Jayakumar R. Chitosan–Hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Internatl. J. Biol. Macromol. 2013;62:310–320. doi: 10.1016/j.ijbiomac.2013.09.011. PubMed DOI

Nam G., Rangasamy S., Purushothaman B., Song J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomate. Nanotechnol. 2015;5:5–23. doi: 10.5772/60918. DOI

Burd A., Kwok C.H., Hung S.C., Chan H.S., Gu H., Lam W.K., Huang L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regener. 2007;15:94–104. doi: 10.1111/j.1524-475X.2006.00190.x. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Marine Biomaterials: Hyaluronan

. 2023 Jul 27 ; 21 (8) : . [epub] 20230727

Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli

. 2022 Jun 25 ; 12 (13) : . [epub] 20220625

Find record

Citation metrics

Loading data ...

    Archiving options