Silver Nanomaterials for Wound Dressing Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
H2020 CA COST Action CA15114
Mendelova Univerzita v Brně
INTER-COST LTC18002
Mendelova Univerzita v Brně
PubMed
32872234
PubMed Central
PMC7557923
DOI
10.3390/pharmaceutics12090821
PII: pharmaceutics12090821
Knihovny.cz E-resources
- Keywords
- antibacterial effect, nanosilver, synthesis route, therapeutic activity,
- Publication type
- Journal Article MeSH
- Review MeSH
Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.
See more in PubMed
Augustine R., Zahid A.A., Hasan A., Wang M., Webster T.J. CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int. J. Nanomed. 2019;14:8573–8588. doi: 10.2147/IJN.S224047. PubMed DOI PMC
Garcia-Villen F., Faccendini A., Aguzzi C., Cerezo P., Bonferoni M.C., Rossi S., Grisoli P., Ruggeri M., Ferrari F., Sandri G., et al. Montmorillonite-Norfloxacin nanocomposite intended for healing of infected wounds. Int. J. Nanomed. 2019;14:5051–5060. doi: 10.2147/IJN.S208713. PubMed DOI PMC
Pang S.C., Gao Y., Wang F.B., Wang Y.Y., Cao M.X., Zhang W.J., Liang Y., Song M.Y., Jiang G.B. Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model. Sci. Total Environ. 2020;717:10. doi: 10.1016/j.scitotenv.2020.137178. PubMed DOI
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI
Percival S.L., Salisbury A.M., Chen R. Silver, biofilms and wounds: Resistance revisited. Crit. Rev. Microbiol. 2019;45:223–237. doi: 10.1080/1040841X.2019.1573803. PubMed DOI
Kim J.H., Yang B., Tedesco A., Lebig E.G.D., Ruegger P.M., Xu K.R., Borneman J., Martins-Green M. High levels of oxidative stress and skin microbiome are critical for initiation and development of chronic wounds in diabetic mice. Sci. Rep. 2019;9:16. doi: 10.1038/s41598-019-55644-3. PubMed DOI PMC
Theuretzbacher U., Bush K., Harbarth S., Paul M., Rex J.H., Tacconelli E., Thwaites G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 2020;18:286–298. doi: 10.1038/s41579-020-0340-0. PubMed DOI
Banerjee S., Vishakha K., Das S., Dutta M., Mukherjee D., Mondal J., Mondal S., Ganguli A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus Aureus. Colloid Surf. B Biointerfaces. 2020;190:11. doi: 10.1016/j.colsurfb.2020.110921. PubMed DOI
Kim D., Lee H., Yoon E.J., Hong J.S., Shin J.H., Uh Y., Shin K.S., Shin J.H., Kim Y.A., Park Y.S., et al. Prospective observational study of the clinical prognoses of patients with bloodstream infections caused by ampicillin-susceptible but penicillin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 2019;63:11. doi: 10.1128/AAC.00291-19. PubMed DOI PMC
Kardan-Yamchi J., Kazemian H., Battaglia S., Abtahi H., Foroushani A.R., Hamzelou G., Cirillo D.M., Ghodousi A., Feizabadi M.M. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of mycobacterium tuberculosis from Iran. J. Clin. Med. 2020;9:465. doi: 10.3390/jcm9020465. PubMed DOI PMC
Natan M., Banin E. From Nano to Micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 2017;41:302–322. doi: 10.1093/femsre/fux003. PubMed DOI
Shehabeldine A.M., Ashour R.M., Okba M.M., Saber F.R. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2020;254:12. doi: 10.1016/j.jep.2020.112669. PubMed DOI
Halawani E.M., Hassan A.M., El-Rab S. Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. Int. J. Nanomed. 2020;15:1889–1901. doi: 10.2147/IJN.S236182. PubMed DOI PMC
Hamida R.S., Abdelmeguid N.E., Ali M.A., Bin-Meferij M.M., Khalil M.I. Synthesis of silver nanoparticles using a novel cyanobacteria desertifilum sp. extract: Their antibacterial and cytotoxicity effects. Int. J. Nanomed. 2020;15:49–63. doi: 10.2147/IJN.S238575. PubMed DOI PMC
Lomeli-Marroquin D., Cruz D.M., Nieto-Arguello A., Crua A.V., Chen J.J., Torres-Castro A., Webster T.J., Cholula-Diaz J.L. Starch-Mediated synthesis of mono-and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomed. 2019;14:2171–2189. doi: 10.2147/IJN.S192757. PubMed DOI PMC
López R.A., Bartomeu G.C., Navarro G.S.M., Webster T. Novel Silver-Platinum Nanoparticles for anticancer and antimicrobial applications. Int. J. Nanomed. 2020;15:169–179. doi: 10.2147/IJN.S176737. PubMed DOI PMC
Yuan Y.C., Zhu H., Wang X.D., Cui D.Z., Gao Z.H., Su D., Zhao J., Chen O. Cu-Catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mat. 2019;31:2635–2643. doi: 10.1021/acs.chemmater.9b00557. DOI
Toy R., Peiris P.M., Ghaghada K.B., Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine. 2014;9:121–134. doi: 10.2217/nnm.13.191. PubMed DOI PMC
Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.M. Nano-Sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496–499. doi: 10.1038/35035045. PubMed DOI
Nel A.E., Madler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Yang W.R., Ratinac K.R., Ringer S.P., Thordarson P., Gooding J.J., Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Edit. 2010;49:2114–2138. doi: 10.1002/anie.200903463. PubMed DOI
Hoseinnejad M., Jafari S.M., Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2018;44:161–181. doi: 10.1080/1040841X.2017.1332001. PubMed DOI
Morais L.D., Macedo E.V., Granjeiro J.M., Delgado I.F. Critical evaluation of migration studies of silver nanoparticles present in food packaging: A systematic review. Crit. Rev. Food Sci. Nutr. 2019 doi: 10.1080/10408398.2019.1676699. PubMed DOI
Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q.L., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020;15:2555–2562. doi: 10.2147/IJN.S246764. PubMed DOI PMC
Mihai M.M., Dima M.B., Dima B., Holban A.M. Nanomaterials for wound healing and infection control. Materials. 2019;12:2176. doi: 10.3390/ma12132176. PubMed DOI PMC
Chan K.L., Mariatti M., Lockman Z., Sim L.C. Effects of the Size and Filler Loading on the Properties of Copper- and Silver-Nanoparticle-Filled Epoxy Composites. J. Appl. Polym. Sci. 2011;121:3145–3152. doi: 10.1002/app.33798. DOI
Stamplecoskie K.G., Scaiano J.C., Tiwari V.S., Anis H. Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C. 2011;115:1403–1409. doi: 10.1021/jp106666t. DOI
Chinnapongse S.L., MacCuspie R.I., Hackley V.A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 2011;409:2443–2450. doi: 10.1016/j.scitotenv.2011.03.020. PubMed DOI
Zhang P., Shao C.L., Zhang Z.Y., Zhang M.Y., Mu J.B., Guo Z.C., Liu Y.C. In Situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale. 2011;3:3357–3363. doi: 10.1039/c1nr10405e. PubMed DOI
Karimzadeh R., Mansour N. The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles. Opt. Laser Technol. 2010;42:783–789. doi: 10.1016/j.optlastec.2009.12.003. DOI
Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Maillard J.Y., Hartemann P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol. 2013;39:373–383. doi: 10.3109/1040841X.2012.713323. PubMed DOI
Liao C.Z., Li Y.C., Tjong S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019;20:449. doi: 10.3390/ijms20020449. PubMed DOI PMC
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
van Belkum A., Dunne W.M. Next-Generation antimicrobial susceptibility testing. J. Clin. Microbiol. 2013;51:2018–2024. doi: 10.1128/JCM.00313-13. PubMed DOI PMC
Schumacher A., Vranken T., Malhotra A., Arts J.J.C., Habibovic P. In Vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:187–208. doi: 10.1007/s10096-017-3089-2. PubMed DOI PMC
CLSI . Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Standard, CLSI Document M26-A. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 1999.
CLSI . Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved Standard, CLSI Document M11-A7. 7th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2007.
CLSI . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, CLSI Document M07-A9. 9th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2012.
Mady O.Y., Al-Madboly L.A., Donia A.A. Preparation, and Assessment of Antidermatophyte Activity of Miconazole-Urea Water-Soluble Film. Front. Microbiol. 2020;11:16. doi: 10.3389/fmicb.2020.00385. PubMed DOI PMC
Farha A.K., Yang Q.Q., Kim G., Zhang D., Mavumengwana V., Habimana O., Li H.B., Corke H., Gan R.Y. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)—Nootkatone and related molecular mechanism. Food Control. 2020;112:8. doi: 10.1016/j.foodcont.2020.107154. DOI
Lin S.H., Huang R.X., Cheng Y.W., Liu J., Lau B.L.T., Wiesner M.R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 2013;47:3959–3965. doi: 10.1016/j.watres.2012.09.005. PubMed DOI
Lee N.-Y., Ko W.-C., Hsueh P.-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.01153. PubMed DOI PMC
Chugh H., Sood D., Chandra I., Tomar V., Dhawan G., Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cell. Nanomed. Biotechnol. 2018;46:S1210–S1220. doi: 10.1080/21691401.2018.1449118. PubMed DOI
Abbasi E., Milani M., Fekri A.S., Kouhi M., Akbarzadeh A., Tayefi N.H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016;42:173–180. doi: 10.3109/1040841X.2014.912200. PubMed DOI
Saha J., Begum A., Mukherjee A., Kumar S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res. 2017;27:245–250. doi: 10.1016/j.serj.2017.04.003. DOI
Vorobyova V., Vasyliev G., Skiba M. Eco-Friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Appl. Nanosci. 2020;12 doi: 10.1007/s13204-020-01369-z. DOI
Bindhu M.R., Umadevi M., Esmail G.A., Al-Dhabi N.A., Arasu M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B Biol. 2020;205:7. doi: 10.1016/j.jphotobiol.2020.111836. PubMed DOI
Jyoti K., Baunthiyal M., Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9:217–227. doi: 10.1016/j.jrras.2015.10.002. DOI
Chinnasamy G., Chandrasekharan S., Bhatnagar S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int. J. Nanomed. 2019;14:9823–9836. doi: 10.2147/IJN.S231340. PubMed DOI PMC
Barbosa A., Silva L.P.C., Ferraz C.M., Tobias F.L., de Araujo J.V., Loureiro B., Braga G., Veloso F.B.R., Soares F.E.D., Fronza M., et al. Nematicidal activity of silver nanoparticles from the fungus duddingtonia flagrans. Int. J. Nanomed. 2019;14:2341–2348. doi: 10.2147/IJN.S193679. PubMed DOI PMC
Hamedi S., Shojaosadati S., Shokrollahzadeh S., Hashemi-Najafabadi S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, neurospora intermedia: Controlled synthesis and antibacterial activity. World J. Microbiol. Biotechnol. 2014;30:693–704. doi: 10.1007/s11274-013-1417-y. PubMed DOI
Saravanan M., Arokiyaraj S., Lakshmi T., Pugazhendhi A. Synthesis of silver nanoparticles from phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018;117:68–72. doi: 10.1016/j.micpath.2018.02.008. PubMed DOI
Li F.S., Weng J.K. Demystifying traditional herbal medicine with modern approaches. Nat. Plants. 2017;3:7. doi: 10.1038/nplants.2017.109. PubMed DOI
Sehnal K., Hosnedlova B., Docekalova M., Stankova M., Uhlirova D., Tothova Z., Kepinska M., Milnerowicz H., Fernandez C., Ruttkay-Nedecky B., et al. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.) Nanomaterials. 2019;9:1550. doi: 10.3390/nano9111550. PubMed DOI PMC
Jia X.W., Yao Y.C., Yu G.F., Qu L.L., Li T.X., Li Z.J., Xu C.P. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydr. Polym. 2020;238:7. doi: 10.1016/j.carbpol.2020.116169. PubMed DOI
Yu Z.L., Wang W., Dhital R., Kong F.B., Lin M.S., Mustaph A. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticle nanocomposites prepared by an ultraviolet irradiation method. Colloid Surf. B Biointerfaces. 2019;180:212–220. doi: 10.1016/j.colsurfb.2019.04.054. PubMed DOI
Zhao X.M., Li N., Jing M.L., Zhang Y.F., Wang W., Liu L.S., Xu Z.W., Liu L.Y., Li F.Y., Wu N. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim. Acta. 2019;295:434–443. doi: 10.1016/j.electacta.2018.10.039. DOI
Haleem A., Chen J., Guo X.X., Wang J.Y., Li H.J., Li P.Y., Chen S.Q., He W.D. Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer. 2020;193:10. doi: 10.1016/j.polymer.2020.122352. DOI
Liang M., Su R.X., Huang R.L., Qi W., Yu Y.J., Wang L.B., He Z.M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces. 2014;6:4638–4649. doi: 10.1021/am500665p. PubMed DOI
Cao X.L., Tang M., Liu F., Nie Y.Y., Zhao C.S. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloid Surf. B Biointerfaces. 2010;81:555–562. doi: 10.1016/j.colsurfb.2010.07.057. PubMed DOI
Hanif Z., Khan Z.A., Siddiqui M.F., Tariq M.Z., Park S., Park S.J. Tannic acid-mediated rapid layer-by-layer deposited non-leaching silver nanoparticles hybridized cellulose membranes for point-of-use water disinfection. Carbohydr. Polym. 2020;231:8. doi: 10.1016/j.carbpol.2019.115746. PubMed DOI
Dong X.B., Shannon H.D., Amirsoleimani A., Brion G.M., Escobar I.C. Thiol-Affinity immobilization of casein-coated silver nanoparticles on polymeric membranes for biofouling control. Polymers. 2019;11:2057. doi: 10.3390/polym11122057. PubMed DOI PMC
Hirsch U.M., Teuscher N., Ruhl M., Heilmann A. Plasma-Enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf. Interfaces. 2019;16:1–7. doi: 10.1016/j.surfin.2019.04.003. DOI
Saraswathi M., Rana D., Alwarappan S., Gowrishankar S., Vijayakumar P., Nagendran A. Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. J. Ind. Eng. Chem. 2019;76:141–149. doi: 10.1016/j.jiec.2019.03.014. DOI
Yang G., Xie J., Hong F., Cao Z., Yang X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym. 2012;87:839–845. doi: 10.1016/j.carbpol.2011.08.079. PubMed DOI
Levi-Polyachenko N., Jacob R., Day C., Kuthirummal N. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules. Colloids Surf. B Biointerfaces. 2016;142:315–324. doi: 10.1016/j.colsurfb.2016.02.038. PubMed DOI
Archana D., Singh B.K., Dutta J., Dutta P.K. Chitosan-PVP-nano silver oxide wound dressing: In Vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015;73:49–57. doi: 10.1016/j.ijbiomac.2014.10.055. PubMed DOI
Madhumathi K., Sudheesh K.P.T., Abhilash S., Sreeja V., Tamura H., Manzoor K., Nair S.V., Jayakumar R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med. 2010;21:807–813. doi: 10.1007/s10856-009-3877-z. PubMed DOI
Maneerung T., Tokura S., Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008;72:43–51. doi: 10.1016/j.carbpol.2007.07.025. DOI
Chen H., Lan G., Ran L., Xiao Y., Yu K., Lu B., Dai F., Wu D., Lu F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 2018;183:70–80. doi: 10.1016/j.carbpol.2017.11.029. PubMed DOI
Ahamed M.I., Sankar S., Kashif P.M., Basha S.K., Sastry T.P. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int. J. Biol. Macromol. 2015;72:680–686. doi: 10.1016/j.ijbiomac.2014.08.055. PubMed DOI
Kanikireddy V., Yallapu M., Varaprasad K., Nagireddy N., Ravindra S., Neppalli S., Raju K. Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. J. Biomater. Nanobiotechnol. 2011;2:55–64. doi: 10.4236/jbnb.2011.21008. DOI
Hu W., Chen S., Li X., Shi S., Shen W., Zhang X., Wang H. In Situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C. 2009;29:1216–1219. doi: 10.1016/j.msec.2008.09.017. DOI
Singh R., Singh D. Chitin membranes containing silver nanoparticles for wound dressing application. Int. Wound J. 2014;11:264–268. doi: 10.1111/j.1742-481X.2012.01084.x. PubMed DOI PMC
Wu J., Zheng Y., Song W., Luan J., Wen X., Wu Z., Chen X., Wang Q., Guo S. In Situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014;102:762–771. doi: 10.1016/j.carbpol.2013.10.093. PubMed DOI
Hebeish A., El-Rafie M.H., El-Sheikh M.A., Seleem A.A., El-Naggar M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071. PubMed DOI
Tian J., Wong K., Ho C.-M., Lok C.-N., Yu W.-Y., Che C.-M., Chiu J.-F., Tam P. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem. 2007;2:129–136. doi: 10.1002/cmdc.200600171. PubMed DOI
Duran N., Marcato P., Souza G., Alves O., Esposito E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007;3:203–208. doi: 10.1166/jbn.2007.022. DOI
Sundaramoorthi C., Mathews D., Sivanandy D.P., Kalaiselvan V., Rajasekaran A. Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int. J. PharmTech Res. 2009;1:1523–1529.
Chen X., Lin H.T., Xu T.T., Lai K.Q., Han X., Lin M.S. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem. 2020;315:7. doi: 10.1016/j.foodchem.2020.126276. PubMed DOI
Yun B.J., Koh W.G. Highly-Sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020;82:341–348. doi: 10.1016/j.jiec.2019.10.032. DOI
Shen B.L., Zhang D.Y., Wei Y.J., Zhao Z.H., Ma X.F., Zhao X.D., Wang S., Yang W.X. Preparation of Ag Doped Keratin/PA6 Nanofiber Membrane with Enhanced Air Filtration and Antimicrobial Properties. Polymers. 2019;11:1511. doi: 10.3390/polym11091511. PubMed DOI PMC
Dou J.L., Zhu G.D., Hu B., Yang J.M., Ge Y.X., Li X., Liu J.Y. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochim. Acta. 2019;306:466–476. doi: 10.1016/j.electacta.2019.03.152. DOI
Rath G., Hussain T., Chauhan G., Garg T., Goyal A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016;24:520–529. doi: 10.3109/1061186X.2015.1095922. PubMed DOI
Jin W.-J., Lee H., Jeong E., Park W.H., Youk J. Preparation of Polymer Nanofibers Containing Silver Nanoparticles by Using Poly(N-vinylpyrrolidone) Macromol. Rapid Comm. 2005;26:1903–1907. doi: 10.1002/marc.200500569. DOI
Ghavaminejad A., Unnithan R.A., Ramachandra K.S.A., Samarikhalaj M., Thomas R., Jeong Y., Nasseri S., Murugesan P., Wu D., Park C., et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl. Mater. Interf. 2015;7 doi: 10.1021/acsami.5b02542. PubMed DOI
Natarajan D., Lakra R., Srivatsan K., Usha R., Korrapati P., Kiran M. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J. Mater. Chem. B. 2014;3 doi: 10.1039/c4tb01791a. PubMed DOI
Rujitanaroj P.-O., Pimpha N., Supaphol P. Wound-Dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49:4723–4732. doi: 10.1016/j.polymer.2008.08.021. DOI
Dubey P., Bhushan B., Sachdev A., Matai I., Kumar U., Packirisamy G. Silver-Nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polymer Sci. 2015;132 doi: 10.1002/app.42473. DOI
Neibert K., Gopishetty V., Grigoryev A., Tokarev I., Al-Hajaj N., Vorstenbosch J., Philip A., Minko S., Maysinger D. Wound-Healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv. Healthc. Mater. 2012;1:621–630. doi: 10.1002/adhm.201200075. PubMed DOI
Abdelgawad A.M., Hudson S.M., Rojas O.J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 2014;100:166–178. doi: 10.1016/j.carbpol.2012.12.043. PubMed DOI
El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., Agwa M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-Vitro and in-vivo studies. Carbohydr. Polym. 2020;238:11. doi: 10.1016/j.carbpol.2020.116175. PubMed DOI
Augustine R., Kalarikkal N., Thomas S. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. 2016;6:337–344. doi: 10.1007/s13204-015-0439-1. DOI
Uttayarat P., Jetawattana S., Suwanmala P., Eamsiri J., Tangthong T., Pongpat S. Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fiber. Polymer. 2012;13:999–1006. doi: 10.1007/s12221-012-0999-6. DOI
Saberi A., Sadeghi M., Alipour E. Design of AgNPs-Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II) J. Polym. Environ. 2020;28:906–917. doi: 10.1007/s10924-020-01651-9. DOI
Dil N.N., Sadeghi M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu (II) metal ions. J. Hazard. Mater. 2018;351:38–53. doi: 10.1016/j.jhazmat.2018.02.017. PubMed DOI
Varaprasad K., Yallapu M., Ravindra S., Nagireddy N., Kanikireddy V., Monika K., Bojja S., Raju K. Hydrogel–Silver nanoparticle composites: A new generation of antimicrobials. J. Appl. Polymer Sci. 2010;115:1199–1207. doi: 10.1002/app.31249. DOI
Kumar P.T.S., Abhilash S., Manzoor K., Nair S.V., Tamura H., Jayakumar R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr. Polym. 2010;80:761–767. doi: 10.1016/j.carbpol.2009.12.024. DOI
Verma J., Kanoujia J., Parashar P., Tripathi C.B., Saraf S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Translat. Res. 2017;7:77–88. doi: 10.1007/s13346-016-0322-y. PubMed DOI
Boonkaew B., Kempf M., Kimble R., Supaphol P., Cuttle L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns. 2014;40:89–96. doi: 10.1016/j.burns.2013.05.011. PubMed DOI
Oliveira R.N., Rouze R., Quilty B., Alves G.G., Soares G.D., Thire R.M., McGuinness G.B. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus. 2014;4 doi: 10.1098/rsfs.2013.0049. PubMed DOI PMC
Rattanaruengsrikul V., Pimpha N., Supaphol P. In Vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J. Appl. Polymer. Sci. 2012;124 doi: 10.1002/app.35195. DOI
Das A., Kumar A., Patil N.B., Viswanathan C., Ghosh D. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr. Polym. 2015;130:254–261. doi: 10.1016/j.carbpol.2015.03.082. PubMed DOI
Liu X., Lee P.Y., Ho C.M., Lui V.C., Chen Y., Che C.M., Tam P.K., Wong K.K. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5:468–475. doi: 10.1002/cmdc.200900502. PubMed DOI
Pinto R.M., Lopes-de-Campos D., Martins M.C.L., Van Dijck P., Nunes C., Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019;43:622–641. doi: 10.1093/femsre/fuz021. PubMed DOI PMC
Gopinath P., Gogoi S.K., Chattopadhyay A., Ghosh S.S. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology. 2008;19:075104. doi: 10.1088/0957-4484/19/7/075104. PubMed DOI
Borm P.J., Kreyling W. Toxicological hazards of inhaled nanoparticles—Potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004;4:521–531. doi: 10.1166/jnn.2004.081. PubMed DOI
McAuliffe M.E., Perry M.J. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology. 2007;1:204–210. doi: 10.1080/17435390701675914. DOI
Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci. 2006;92:456–463. doi: 10.1093/toxsci/kfl020. PubMed DOI
Hussain S., Hess K., Gearhart J., Geiss K., Schlager J. In Vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005;19:975–983. doi: 10.1016/j.tiv.2005.06.034. PubMed DOI
Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.-C. In Vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412–419. doi: 10.1093/toxsci/kfi256. PubMed DOI PMC
Chen K., Wang F., Liu S., Wu X., Xu L., Zhang D. In Situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Internatl. J. Biol. Macromol. 2020;148:501–509. doi: 10.1016/j.ijbiomac.2020.01.156. PubMed DOI
Ip M., Lui S.L., Poon V.K., Lung I., Burd A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 2006;55:59–63. doi: 10.1099/jmm.0.46124-0. PubMed DOI
Sarkar S., Jana A.D., Samanta S.K., Mostafa G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron. 2007;26:4419–4426. doi: 10.1016/j.poly.2007.05.056. DOI
Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010;6:570–574. doi: 10.1016/j.nano.2009.12.002. PubMed DOI
Yang Y., Qin Z., Zeng W., Yang T., Cao Y., Mei C., Kuang Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017;6:279–289. doi: 10.1515/ntrev-2016-0047. DOI
Zewde B., Ambaye A., Stubbs Iii J., Raghavan D. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. Nanomed. 2016;4:1–14.
Rai M., Deshmukh S., Ingle A., Gade A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112:841–852. doi: 10.1111/j.1365-2672.2012.05253.x. PubMed DOI
Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns. 2007;33:139–148. doi: 10.1016/j.burns.2006.06.010. PubMed DOI
Franková J., Pivodová V., Vágnerová H., Juráňová J., Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 2016;14:137–142. doi: 10.5301/jabfm.5000268. PubMed DOI
Resmi R., Unnikrishnan S., Krishnan L.K., Kalliyana K.V. Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci. 2017;134:44529. doi: 10.1002/app.44529. DOI
Kalantari K., Mostafavi E., Afifi A.M., Izadiyan Z., Jahangirian H., Rafiee-Moghaddam R., Webster T.J. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale. 2020;12:2268–2291. doi: 10.1039/C9NR08234D. PubMed DOI
Szegedi Á., Popova M., Yoncheva K., Makk J., Mihály J., Shestakova P. Silver-and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. J. Mater. Chem. B. 2014;2:6283–6292. doi: 10.1039/C4TB00619D. PubMed DOI
Walker M., Cochrane C.A., Bowler P.G., Parsons D., Bradshaw P. Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy Wound Manag. 2006;52:42. PubMed
Trop M., Novak M., Rodl S., Hellbom B., Kroell W., Goessler W. Silver-Coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006;60:648–652. doi: 10.1097/01.ta.0000208126.22089.b6. PubMed DOI
Anisha B., Biswas R., Chennazhi K., Jayakumar R. Chitosan–Hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Internatl. J. Biol. Macromol. 2013;62:310–320. doi: 10.1016/j.ijbiomac.2013.09.011. PubMed DOI
Nam G., Rangasamy S., Purushothaman B., Song J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomate. Nanotechnol. 2015;5:5–23. doi: 10.5772/60918. DOI
Burd A., Kwok C.H., Hung S.C., Chan H.S., Gu H., Lam W.K., Huang L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regener. 2007;15:94–104. doi: 10.1111/j.1524-475X.2006.00190.x. PubMed DOI
Marine Biomaterials: Hyaluronan
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli