• This record comes from PubMed

Pre-Radiotherapy Progression after Surgery of Newly Diagnosed Glioblastoma: Corroboration of New Prognostic Variable

. 2020 Sep 05 ; 10 (9) : . [epub] 20200905

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
MMCI, 00209805 and FNBr, 65269705, NU20-03-00148 and NV19-05-00410 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 32899528
PubMed Central PMC7555958
DOI 10.3390/diagnostics10090676
PII: diagnostics10090676
Knihovny.cz E-resources

BACKGROUND: The aim of this retrospective study is to assess the incidence, localization, and potential predictors of rapid early progression (REP) prior to initiation of radiotherapy in newly diagnosed glioblastoma patients and to compare survival outcomes in cohorts with or without REP in relation to the treatment. METHODS: We assessed a consecutive cohort of 155 patients with histologically confirmed irradiated glioblastoma from 1/2014 to 12/2017. A total of 90 patients with preoperative, postoperative, and planning MRI were analyzed. RESULTS: Median age 59 years, 59% men, and 39 patients (43%) underwent gross total tumor resection. The Stupp regimen was indicated to 64 patients (71%); 26 patients (29%) underwent radiotherapy alone. REP on planning MRI performed shortly prior to radiotherapy was found in 46 (51%) patients, most often within the surgical cavity wall, and the main predictor for REP was non-radical surgery (p < 0.001). The presence of REP was confirmed as a strong negative prognostic factor; median overall survival (OS) in patients with REP was 10.7 vs. 18.7 months and 2-year survival was 15.6% vs. 37.7% (hazard ratio HR 0.53 for those without REP; p = 0.007). Interestingly, the REP occurrence effect on survival outcome was significantly different in younger patients (≤ 50 years) and older patients (> 50 years) for OS (p = 0.047) and non-significantly for PFS (p = 0.341). In younger patients, REP was a stronger negative prognostic factor, probably due to more aggressive behavior. Patients with REP who were indicated for the Stupp regimen had longer OS compared to radiotherapy alone (median OS 16.0 vs 7.5; HR = 0.5, p = 0.022; 2-year survival 22.3% vs. 5.6%). The interval between surgery and the initiation of radiotherapy were not prognostic in either the entire cohort or in patients with REP. CONCLUSION: Especially in the subgroup of patients without radical resection, one may recommend as early initiation of radiotherapy as possible. The phenomenon of REP should be recognized as an integral part of stratification factors in future prospective clinical trials enrolling patients before initiation of radiotherapy.

1st Department of Pathology St Anne's University Hospital and Faculty of Medicine Masaryk University 656 91 Brno Czech Republic

Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic

Department of Biology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Comprehensive Cancer Care Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic

Department of Neurosurgery St Anne's University Hospital Brno 656 91 Brno Czech Republic

Department of Neurosurgery St Anne's University Hospital Brno Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Neurosurgery University Hospital Brno and Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Pathological Physiology Faculty of Medicine Gamma Delta T Cell Laboratory Masaryk University 625 00 Brno Czech Republic

Department of Pathology University Hospital Brno and Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Radiation Oncology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Department of Radiation Oncology Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic

Department of Radiology Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic

Faculty of Medicine Masaryk University 625 00 Brno Czech Republic

Research Center for Applied Molecular Oncology Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic

See more in PubMed

Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7. PubMed DOI

Kazda T., Dziacky A., Burkon P., Pospisil P., Slavik M., Rehak Z., Jancalek R., Slampa P., Slaby O., Lakomy R. Radiotherapy of Glioblastoma 15 Years after the Landmark Stupp’s Trial: More Controversies than Standards? Radiol. Oncol. 2018;52:121–128. doi: 10.2478/raon-2018-0023. PubMed DOI PMC

Stupp R., Taillibert S., Kanner A., Read W., Steinberg D., Lhermitte B., Toms S., Idbaih A., Ahluwalia M.S., Fink K., et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA. 2017;318:2306–2316. doi: 10.1001/jama.2017.18718. PubMed DOI PMC

Perry J.R., Laperriere N., O’Callaghan C.J., Brandes A.A., Menten J., Phillips C., Fay M., Nishikawa R., Cairncross J.G., Roa W., et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 2017;376:1027–1037. doi: 10.1056/NEJMoa1611977. PubMed DOI

Herrlinger U., Tzaridis T., Mack F., Steinbach J., Schlegel U., Sabel M., Hau P., Kortman R.D., Krex D., Grauer O., et al. Phase III trial of CCNU/temozolomide (TMZ) combination therapy vs. standard TMZ therapy for newly diagnosed MGMT-methylated glioblastoma patients: The randomized, open-label CeTeG/NOA-09 trial. Lancet. 2019;393:678–688. doi: 10.1016/S0140-6736(18)31791-4. PubMed DOI

Hegi M.E., Liu L., Herman J.G., Stupp R., Wick W., Weller M., Mehta M.P., Gilbert M.R. Correlation of O6-methylguanine methyl-transferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J. Clin. Oncol. 2008;26:4189–4199. doi: 10.1200/JCO.2007.11.5964. PubMed DOI

Sanson M., Marie Y., Paris S., Idbaih A., Laffaire J., Ducray F., El Hallani S., Boisselier B., Mokhtari K., Hoang-Xuan K., et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 2009;27:4150–4154. doi: 10.1200/JCO.2009.21.9832. PubMed DOI

Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI

Wen P.Y., Weller M., Lee E.Q., Alexander B.A., Barnholtz-Sloan J.S., Barthel F.P., Batchelor T.T., Bindra R.S., Chang S.M., Chiocca E.A., et al. Glioblastoma in Adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and Future Directions. Neuro. Oncol. 2020;8:1073–1113. doi: 10.1093/neuonc/noaa106. PubMed DOI PMC

Merkel A., Soeldner D., Wendl C., Urkan D., Kuramatsu J.B., Seliger C., Proescholdt M., Eyupoglu I.Y., Hau P., Uhl M. Early postoperative tumor progression predicts clinical outcome in glioblastoma-implication for clinical trials. J. Neurooncol. 2017;132:249–254. doi: 10.1007/s11060-016-2362-z. PubMed DOI PMC

Villanueva-Meyer J.E., Han S.J., Cha S., Butowski N.A. Early tumor growth between initial resection and radiotherapy of glioblastoma: Incidence and impact on clinical outcomes. J. Neurooncol. 2017;134:213–219. doi: 10.1007/s11060-017-2511-z. PubMed DOI PMC

Palmer J.D., Bhamidipati D., Shukla G., Sharma D., Glass J., Kim L., Evans J.J., Judy K., Farrell C., Andrews D.W. Rapid Early Tumor Progression is Prognostic in Glioblastoma Patients. Am. J. Clin. Oncol. 2019;42:481–486. doi: 10.1097/COC.0000000000000537. PubMed DOI

Sulman E.P., Ismaila N., Armstrong T.S., Tsien C., Batchelor T.T., Cloughesy T., Galanis E., Gilbert M., Gondi V., Lovely M. Radiation Therapy for Glioblastoma: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Guideline. J. Clin. Oncol. 2017;35:361–369. doi: 10.1200/JCO.2016.70.7562. PubMed DOI

Niyazi M., Brada M., Chalmers A.J., Combs S.E., Erridge S.C., Fiorentino A., Grosu A.L., Lagerwaard F.J., Minniti G., Mirimanoff R.O., et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother. Oncol. 2016;118:35–42. doi: 10.1016/j.radonc.2015.12.003. PubMed DOI

Chukwueke U.N., Wen P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019;8:CNS28. doi: 10.2217/cns-2018-0007. PubMed DOI PMC

Kazda T., Bulik M., Pospisil P., Lakomy R., Smrcka M., Slampa P., Jancalek R. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. Neuroimage Clin. 2016;11:316–321. doi: 10.1016/j.nicl.2016.02.016. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 6 April 2020)]. Available online: https://www.R-project.org/

Irwin C., Hunn M., Purdie G., Hamilton D. Delay in radiotherapy shortens survival in patients with high grade glioma. J. Neurooncol. 2007;85:339–343. doi: 10.1007/s11060-007-9426-z. PubMed DOI

Gliński B., Urbański J., Hetnał M., Małecki K., Jarosz M., Mucha-Małecka A., Chrostowska A., Jakubowicz E., Frączek-Błachut B., Dymek P. Prognostic value of the interval from surgery to initiation of radiation therapy in correlation with some histo-clinical parameters in patients with malignant supratentorial gliomas. Contemp Oncol. 2012;16:34–37. doi: 10.5114/wo.2012.27334. PubMed DOI PMC

Noel G., Huchet A., Feuvret L., Maire J.P., Verrelle P., Le Rhun E., Aumont M., Thillays F., Sunyach M.P., Henzen C., et al. Waiting times before initiation of radiotherapy might not affect outcomes for patients with glioblastoma: A French retrospective analysis of patients treated in the era of concomitant temozolomide and radiotherapy. J. Neurooncol. 2012;109:167–175. doi: 10.1007/s11060-012-0883-7. PubMed DOI

Lutterbach J., Weigel P., Guttenberger R., Hinkelbein W. Accelerated hyper-fractionated radiotherapy in 149 patients with glioblastoma multiforme. Radiother. Oncol. 1999;53:49–52. doi: 10.1016/S0167-8140(99)00128-0. PubMed DOI

Hulshof M.C., Koot R.W., Schimmel E.C., Dekker F., Bosch D.A., González González D. Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution. Strahlenther. Onkol. 2001;177:283–290. doi: 10.1007/PL00002409. PubMed DOI

Lai R., Hershman D.L., Doan T., Neugut A.I. The timing of cranial radiation in elderly patients with newly diagnosed glioblastoma multiforme. Neuro. Oncol. 2010;12:190–198. doi: 10.1093/neuonc/nop004. PubMed DOI PMC

Blumenthal D.T., Won M., Mehta M.P., Curran W.J., Souhami L., Michalski J.M., Rogers C.L., Corn B.W. Short delay in initiation of radiotherapy may not affect outcome of patients with glioblastoma: A secondary analysis from the radiation therapy oncology group database. J. Clin. Oncol. 2009;27:733–739. doi: 10.1200/JCO.2008.18.9035. PubMed DOI PMC

Burnet N.G., Jena R., Jefferies S.J., Stenning S.P., Kirkby N.F. Mathematical modelling of survival of glioblastoma patients suggests a role for radiotherapy dose escalation and predicts poorer outcome after delay to start treatment. Clin. Oncol. 2006;18:93–103. doi: 10.1016/j.clon.2005.08.017. PubMed DOI

Grewal A.S., Schonewolf C., Min E.J., Chao H.H., Both S., Lam S., Mazzoni S., Bekelman J., Christodouleas J., Vapiwala N. The effect of delay in treatment on local control by radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1996;34:243–250. doi: 10.1016/0360-3016(95)02049-7. PubMed DOI

Han S.J., Englot D.J., Birk H., Molinaro A.M., Chang S.M., Clarke J.L., Prados M.D., Taylor J.W., Berger M.S., Butowski N.A. Impact of Timing of Concurrent Chemoradiation for Newly Diagnosed Glioblastoma: A Critical Review of Current Evidence. Neurosurgery. 2015;62:160–165. doi: 10.1227/NEU.0000000000000801. PubMed DOI PMC

Marra J.S., Mendes G.P., Yoshinari G.H., Jr., da Silva Guimarães F., Mazin S.C., de Oliveira H.F. Survival after radiation therapy for high-grade glioma. Rep. Pract. Oncol. Radiother. 2019;24:35–40. doi: 10.1016/j.rpor.2018.09.003. PubMed DOI PMC

Albert N.L., Weller M., Suchorska B., Galldiks N., Soffietti R., Kim M.M., la Fougère C., Pope W., Law I., Arbizu J., et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro. Oncol. 2016;18:1199–1208. doi: 10.1093/neuonc/now058. PubMed DOI PMC

Grosu A.L., Weber W.A., Riedel E., Jeremic B., Nieder C., Franz M., Gumprecht H., Jaeger R., Schwaiger M., Molls M. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:64–74. doi: 10.1016/j.ijrobp.2005.01.045. PubMed DOI

Killela P.J., Pirozzi C.J., Healy P., Reitman Z.J., Lipp E., Ahmed Rasheed B., Yang R., Diplas B.H., Wang Z., Greeret P.K., et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 2014;5:1515–1525. doi: 10.18632/oncotarget.1765. PubMed DOI PMC

Arita H., Yamasaki K., Matsushita Y., Nakamura T., Shimokawa A., Takami H., Tanaka S., Mukasa A., Shirahata M., Shimizu S., et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol. Commun. 2016;4:79. doi: 10.1186/s40478-016-0351-2. PubMed DOI PMC

Houdova Megova M., Drábek J., Dwight Z., Trojanec R., Koudeláková V., Vrbková J., Kalita O., Mlcochova S., Rabcanova M., Hajdúch M. Isocitrate Dehydrogenase Mutations Are Better Prognostic Marker Than O6-methylguanine-DNA Methyltransferase Promoter Methylation in Glioblastomas—A Retrospective, Single-centre Molecular Genetics Study of Gliomas. Klin. Onkol. 2017;30:361–371. doi: 10.14735/amko2017361. PubMed DOI

Weller M., Butowski N., Tran D.D., Recht L.D., Lim M., Hirte H., Ashby L., Mechtler L., Goldlust S.A., Iwamoto F., et al. Rindopepimut and temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–1385. doi: 10.1016/S1470-2045(17)30517-X. PubMed DOI

Filley A.C., Henriquez M., Dey M. Recurrent glioma clinical trial, CheckMate-143: The game is not over yet. Oncotarget. 2017;8:91779–91794. doi: 10.18632/oncotarget.21586. PubMed DOI PMC

Weller M., Le Rhun E., Preusser M., Tonn J.C., Roth P. How we treat glioblastoma. ESMO Open. 2019;4:e000520. doi: 10.1136/esmoopen-2019-000520. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...