11C-methionine in the diagnostics and management of glioblastoma patients with rapid early progression: nonrandomized, open label, prospective clinical trial (GlioMET)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu klinické zkoušky, časopisecké články
PubMed
38879476
PubMed Central
PMC11179343
DOI
10.1186/s12885-024-12469-2
PII: 10.1186/s12885-024-12469-2
Knihovny.cz E-zdroje
- Klíčová slova
- 11C-methionine, Clinical trial, Glioblastoma, Positron emission tomography, Radiopharmaceutical, Radiotherapy, Rapid early progression,
- MeSH
- dospělí MeSH
- glioblastom * diagnostické zobrazování terapie diagnóza radioterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- methionin * MeSH
- nádory mozku * diagnostické zobrazování terapie radioterapie diagnóza MeSH
- PET/CT metody MeSH
- plánování radioterapie pomocí počítače metody MeSH
- progrese nemoci * MeSH
- prospektivní studie MeSH
- radiofarmaka terapeutické užití MeSH
- radioizotopy uhlíku MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- Názvy látek
- methionin * MeSH
- radiofarmaka MeSH
- radioizotopy uhlíku MeSH
BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary brain cancer. The treatment of GBM consists of a combination of surgery and subsequent oncological therapy, i.e., radiotherapy, chemotherapy, or their combination. If postoperative oncological therapy involves irradiation, magnetic resonance imaging (MRI) is used for radiotherapy treatment planning. Unfortunately, in some cases, a very early worsening (progression) or return (recurrence) of the disease is observed several weeks after the surgery and is called rapid early progression (REP). Radiotherapy planning is currently based on MRI for target volumes definitions in many radiotherapy facilities. However, patients with REP may benefit from targeting radiotherapy with other imaging modalities. The purpose of the presented clinical trial is to evaluate the utility of 11C-methionine in optimizing radiotherapy for glioblastoma patients with REP. METHODS: This study is a nonrandomized, open-label, parallel-setting, prospective, monocentric clinical trial. The main aim of this study was to refine the diagnosis in patients with GBM with REP and to optimize subsequent radiotherapy planning. Glioblastoma patients who develop REP within approximately 6 weeks after surgery will undergo 11C-methionine positron emission tomography (PET/CT) examinations. Target volumes for radiotherapy are defined using both standard planning T1-weighted contrast-enhanced MRI and PET/CT. The primary outcome is progression-free survival defined using RANO criteria and compared to a historical cohort with REP treated without PET/CT optimization of radiotherapy. DISCUSSION: PET is one of the most modern methods of molecular imaging. 11C-Methionine is an example of a radiolabelled (carbon 11) amino acid commonly used in the diagnosis of brain tumors and in the evaluation of response to treatment. Optimized radiotherapy may also have the potential to cover those regions with a high risk of subsequent progression, which would not be identified using standard-of-care MRI for radiotherapy planning. This is one of the first study focused on radiotherapy optimization for subgroup of patinets with REP. TRIAL REGISTRATION: NCT05608395, registered on 8.11.2022 in clinicaltrials.gov; EudraCT Number: 2020-000640-64, registered on 26.5.2020 in clinicaltrialsregister.eu. Protocol ID: MOU-2020-01, version 3.2, date 18.09.2020.
Department of Clinical Trials Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic
Department of Medical Imaging Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic
Department of Neurosurgery St Anne's University Hospital Brno 656 91 Brno Czech Republic
Department of Neurosurgery University Hospital Brno 625 00 Brno Czech Republic
Department of Nuclear Medicine Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic
Department of Pharmacology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Radiation Oncology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Radiation Oncology Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic
Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
International Clinical Research Centre St Anne´S University Hospital Brno 656 91 Brno Czech Republic
Zobrazit více v PubMed
Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–1113. doi: 10.1093/neuonc/noaa106. PubMed DOI PMC
Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood [published correction appears in Nat Rev Clin Oncol. 2022 May;19(5):357-358] Nat Rev Clin Oncol. 2021;18(3):170–186. doi: 10.1038/s41571-020-00447-z. PubMed DOI PMC
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi: 10.1056/NEJMoa043330. PubMed DOI
Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–466. doi: 10.1016/S1470-2045(09)70025-7. PubMed DOI
Lakomy R, Kazda T, Selingerova I, et al. Real-world evidence in glioblastoma: stupp's regimen after a decade. Front Oncol. 2020;10:840. doi: 10.3389/fonc.2020.00840. PubMed DOI PMC
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–2316. doi: 10.1001/jama.2017.18718. PubMed DOI PMC
Kazda T, Dziacky A, Burkon P, et al. Radiotherapy of Glioblastoma 15 Years after the Landmark Stupp's Trial: more controversies than standards? Radiol Oncol. 2018;52(2):121–128. doi: 10.2478/raon-2018-0023. PubMed DOI PMC
Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–1037. doi: 10.1056/NEJMoa1611977. PubMed DOI
Farace P, Amelio D, Ricciardi GK, et al. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy. J Neurooncol. 2013;111(2):177–185. doi: 10.1007/s11060-012-0997-y. PubMed DOI
Palmer JD, Bhamidipati D, Shukla G, et al. Rapid Early Tumor Progression is Prognostic in Glioblastoma Patients. Am J Clin Oncol. 2019;42(5):481–486. doi: 10.1097/COC.0000000000000537. PubMed DOI
Lakomy R, Kazda T, Selingerova I, et al. Pre-radiotherapy progression after surgery of newly diagnosed glioblastoma: corroboration of new prognostic variable. Diagnostics (Basel). 2020;10(9):676. doi: 10.3390/diagnostics10090676. PubMed DOI PMC
Wee CW, Kim E, Kim TM, et al. Impact of interim progression during the surgery-to-radiotherapy interval and its predictors in glioblastoma treated with temozolomide-based radiochemotherapy. J Neurooncol. 2017;134(1):169–175. doi: 10.1007/s11060-017-2505-x. PubMed DOI
Merkel A, Soeldner D, Wendl C, et al. Early postoperative tumor progression predicts clinical outcome in glioblastoma-implication for clinical trials. J Neurooncol. 2017;132(2):249–254. doi: 10.1007/s11060-016-2362-z. PubMed DOI PMC
Villanueva-Meyer JE, Han SJ, Cha S, Butowski NA. Early tumor growth between initial resection and radiotherapy of glioblastoma: incidence and impact on clinical outcomes. J Neurooncol. 2017;134(1):213–219. doi: 10.1007/s11060-017-2511-z. PubMed DOI PMC
Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med. 2005;352:997–1003. doi: 10.1056/NEJMoa043331. PubMed DOI
Sana J, Hajduch M, Michalek J, et al. MicroRNAs and glioblastoma: Roles in core signalling pathways and potential clinical implications. J Cell Mol Med. 2011;15(8):1636–1644. doi: 10.1111/j.1582-4934.2011.01317.x. PubMed DOI PMC
Ondracek J, Fadrus P, Sana J, et al. Global microRNA expression profiling identifies unique microrna pattern of radioresistant glioblastoma cells. Anticancer Res. 2017;37(3):1099–1104. doi: 10.21873/anticanres.11422. PubMed DOI
Kren L, Slaby O, Muckova K, et al. Expression of immune-modulatory molecules HLA-G and HLA-E by tumor cells in glioblastomas: an unexpected prognostic significance? Neuropathology. 2011;31(2):129–134. doi: 10.1111/j.1440-1789.2010.01149.x. PubMed DOI
Zhao H, Wang S, Song C, et al. The prognostic value of MGMT promoter status by pyrosequencing assay for glioblastoma patients' survival: a meta-analysis. World J Surg Oncol. 2016;14(1):261. doi: 10.1186/s12957-016-1012-4. PubMed DOI PMC
Karsy M, Neil JA, Guan J, et al. A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus. 2015;38(3):E4. doi: 10.3171/2015.1.FOCUS14755. PubMed DOI
Piwecka M, Rolle K, Belter A, et al. Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol. 2015;9(7):1324–1340. doi: 10.1016/j.molonc.2015.03.007. PubMed DOI PMC
Lakomy R, Sana J, Hankeova S, et al. MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102(12):2186–2190. doi: 10.1111/j.1349-7006.2011.02092.x. PubMed DOI PMC
Niyazi M, Andratschke N, Bendszus M, et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol. 2023;184:109663. doi: 10.1016/j.radonc.2023.109663. PubMed DOI
Galldiks N, Niyazi M, Grosu AL, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol. 2021;23(6):881–893. doi: 10.1093/neuonc/noab013. PubMed DOI PMC
Albert NL, Weller M, Suchorska B, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18(9):1199–1208. doi: 10.1093/neuonc/now058. PubMed DOI PMC
Heiss P, Mayer S, Herz M, et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40:1367–1373. PubMed
Okubo S, Zhen HN, Kawai N, et al. Correlation of l-methyl- 11 C-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99(2):217–225. doi: 10.1007/s11060-010-0117-9. PubMed DOI
Nariai T, Tanaka Y, Wakimoto H, et al. Usefulness of L-[methyl- 11 C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103(3):498–507. doi: 10.3171/jns.2005.103.3.0498. PubMed DOI
Kracht LW, Friese M, Herholz K, et al. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging. 2003;30(6):868–873. doi: 10.1007/s00259-003-1148-7. PubMed DOI
Herholz K, Holzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50:1316–1322. doi: 10.1212/wnl.50.5.1316. PubMed DOI
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–1972. doi: 10.1200/JCO.2009.26.3541. PubMed DOI
Niyazi M, Brada M, Chalmers AJ, et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol. 2016;118(1):35–42. doi: 10.1016/j.radonc.2015.12.003. PubMed DOI
Scoccianti S, Detti B, Gadda D, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114(2):230–238. doi: 10.1016/j.radonc.2015.01.016. PubMed DOI
ClinicalTrials.gov
NCT05608395