Chelating Polymers for Hereditary Hemochromatosis Treatment
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32954629
DOI
10.1002/mabi.202000254
Knihovny.cz E-zdroje
- Klíčová slova
- SPECT, antioxidant, experimental therapy, hemochromatosis, iron metabolism, iron overload, maintenance therapy, polymeric chelator, preventive therapy, siderophore, uptake inhibitor,
- MeSH
- benzen chemie farmakologie MeSH
- chelátory železa chemie farmakologie MeSH
- fenantroliny chemie farmakologie MeSH
- gastrointestinální trakt účinky léků MeSH
- hemochromatóza diagnostické zobrazování farmakoterapie patologie MeSH
- lidé MeSH
- polymery chemie farmakologie MeSH
- teoretické modely * MeSH
- tomografie emisní počítačová MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,10-phenanthroline MeSH Prohlížeč
- benzen MeSH
- chelátory železa MeSH
- fenantroliny MeSH
- polymery MeSH
- železo MeSH
Hemochromatosis (iron overload) encompasses a group of diseases that are characterized by a toxic hyperaccumulation of iron in parenchymal organs. Currently, only few treatments for this disease have been approved; however, all these treatments possess severe side effects. In this study, a paradigm for hemochromatosis maintenance/preventive therapy is investigated: polymers with negligible systemic biological availability form stable complexes with iron ions in the gastrointestinal tract, which reduces the biological availability of iron. Macroporous polymer beads are synthesized with three different iron-chelating moieties (benzene-1,2-diol, benzene-1,2,3-triol, and 1,10-phenanthroline). The polymers rapidly chelate iron ions from aqueous solutions in vitro in the course of minutes, and are noncytotoxic and nonprooxidant. Moreover, the in vivo biodistribution and pharmacokinetics show a negligible uptake from the gastrointestinal tract (using 125 I-labeled polymer and single photon emission computed tomography/computed tomography), which generally prevents them from having systemic side effects. The therapeutic efficacy of the prepared polymers is successfully tested in vivo, and exhibits a significant inhibition of iron uptake from the gastrointestinal tract without any noticeable signs of toxicity. Furthermore, an in silico method is developed for the prediction of chelator selectivity. Therefore, this paradigm can be applied to the next-generation maintenance/preventive treatment for hemochromatosis and/or other diseases of similar pathophysiology.
Zobrazit více v PubMed
W. J. H. Griffiths, Medicine 2011, 39, 597.
A. Pietrangelo, Gastroenterology 2010, 139, 393.
P. C. Adams, J. C. Barton, Lancet 2007, 370, 1855.
M. Betts, P. A. Flight, L. C. Paramore, L. Tian, D. Milenković, S. Sheth, Clin. Ther. 2020, 42, 322.
F. M. O'Reilly, C. Darby, J. Fogarty, W. Tormey, E. W. Kay, M. Leader, G. M. Murphy, Arch. Dermatol. 1997, 133, 1098.
C. Q. Edwards, J. P. Kushner, N. Engl. J. Med. 1993, 328, 1616.
R. J. Simpson, A. T. McKie, Cell Metab. 2009, 10, 84.
P. Brissot, M.-B. Troadec, E. Bardou-Jacquet, C. Le Lan, A.-M. Jouanolle, Y. Deugnier, O. Loreal, Blood Rev. 2008, 22, 195.
R. E. Fleming, P. Ponka, N. Engl. J. Med. 2012, 366, 348.
H. Kondo, K. Saito, J. P. Grasso, P. Aisen, Hepatology 1988, 8, 32.
E. Beutler, Blood 2003, 101, 3347.
P. Adams, A. Altes, P. Brissot, B. Butzeck, I. Cabantchik, R. Cançado, S. Distante, P. Evans, R. Evans, T. Ganz, Hepatol. Int. 2018, 12, 83.
C. J. Gallego, A. Burt, A. S. Sundaresan, Z. Ye, C. Shaw, D. R. Crosslin, P. K. Crane, S. M. Fullerton, K. Hansen, D. Carrell, Am. J. Hum. Genet. 2015, 97, 512.
J. Alexander, K. V. Kowdley, Genet. Med. 2009, 11, 307.
A. Åsberg, K. Hveem, K. Thorstensen, E. Ellekjaer, K. Kannelønning, U. Fjøsne, T. B. Halvorsen, H.-B. Smethurst, E. Sagen, K. S. Bjerve, Scand. J. Gastroenterol. 2001, 36, 1108.
S. Distante, J. P. Berg, K. Lande, E. Haug, H. Bell, Scand. J. Gastroenterol. 1999, 34, 529.
H. A. Jackson, K. Carter, C. Darke, M. G. Guttridge, D. Ravine, R. D. Hutton, J. A. Napier, M. Worwood, Br. J. Haematol. 2001, 114, 474.
R. Sood, R. Bakashi, V. S. Hegade, S. M. Kelly, Br. J. Gen. Pract. 2013, 63, 331.
T. P. Flaten, J. Aaseth, O. Andersen, G. J. Kontoghiorghes, J. Trace Elem. Med. Biol. 2012, 26, 127.
J. C. Barton, Lancet Haematol. 2017, 4, e569.
P. Brissot, S. Ball, D. Rofail, H. Cannon, V. W. Jin, Transfusion 2011, 51, 1331.
B. Galy, D. Ferring-Appel, S. Kaden, H.-J. Gröne, M. W. Hentze, Cell Metab. 2008, 7, 79.
D. Roberts, S. Brunskill, C. Doree, S. Williams, J. Howard, C. Hyde, Cochrane Database Syst. Rev. 2007, 3, CD004839.
J.-I. Henter, J. Karlén, Blood 2007, 109, 5157.
M. D. Cappellini, A. Cohen, A. Piga, M. Bejaoui, S. Perrotta, L. Agaoglu, Y. Aydinok, A. Kattamis, Y. Kilinc, J. Porter, Blood 2006, 107, 3455.
European Association for the Study of the Liver, J. Hepatol. 2010, 53, 3.
Z. K. Roughead, J. R. Hunt, Am. J. Clin. Nutr. 2000, 72, 982.
T. J. Peters, K. B. Raja, R. J. Simpson, Food Chem. 1992, 43, 315.
J. D. Cook, E. R. Monsen, Am. J. Clin. Nutr. 1977, 30, 235.
M. A. Bryszewska, Nutrients 2019, 11, 273.
J. Qian, B. P. Sullivan, S. J. Peterson, C. Berkland, ACS Macro Lett. 2017, 6, 350.
T. Zhou, H. Neubert, D. Y. Liu, Z. D. Liu, Y. M. Ma, X. L. Kong, W. Luo, S. Mark, R. C. Hider, J. Med. Chem. 2006, 49, 4171.
S. C. Polomoscanik, C. P. Cannon, T. X. Neenan, S. R. Holmes-Farley, W. H. Mandeville, P. K. Dhal, Biomacromolecules 2005, 6, 2946.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
A. S. Lileev, V. L. Dar'ya, A. K. Lyashchenko, Mendeleev Commun. 2007, 17, 364.
Turbomole, A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, Turbomole GmbH 2007, http://www.turbomole.com
J. Řezáč, J. Comput. Chem. 2016, 37, 1230.
ISO/IEC 17025:2005, International Organization for Standardization 2005.
F. Švec, J. Hradil, J. Čoupek, J. Kálal, Angew. Makromol. Chem. 1975, 48, 135.
J. S. Thompson, J. C. Calabrese, J. Am. Chem. Soc. 1986, 108, 1903.
K. Tomita, Y. Takashi, Y. Ouchi, Y. Kuwahara, K. Igarashi, T. Nagasawa, H. Nabika, A. Kurimasa, M. Fukumoto, Y. Nishitani, Cancer Sci. 2019, 110, 2856.
S. B. Nimse, D. Pal, RSC Adv. 2015, 5, 27986.
J. Lü, P. H. Lin, Q. Yao, C. Chen, J. Cell. Mol. Med. 2010, 14, 840.
G. P. Bienert, J. K. Schjoerring, T. P. Jahn, Biochim. Biophys. Acta, Biomembr. 2006, 1758, 994.
G. Spiteller, Free Radical Biol. Med. 2006, 41, 362.
D. Huang, B. Ou, M. Hampsch-Woodill, J. A. Flanagan, R. L. Prior, J. Agric. Food Chem. 2002, 50, 4437.
ISO 10993-5:1992, International Organization for Standardization 1992.
M. E. V. Johansson, H. Sjövall, G. C. Hansson, Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 352.
G. C. Hansson, Curr. Opin. Microbiol. 2012, 15, 57.
J. Katakura, M. Oshima, K. Kitao, H. Iimura, Nucl. Data Sheets 1993, 70, 217.
E. Fröhlich, R. Wahl, Trends Endocrinol. Metab. 2019, 30, 479.
A. Querido, J. B. Stanbury, A. A. H. Kassenaar, J. W. A. Meijer, J. Clin. Endocrinol. Metab. 1956, 16, 1096.
M. M. Häggblom, I. D. Bossert, Microbial Processes and Environmental Applications, Springer, New York 2003.
National Research Council, Nutrient Requirements of Laboratory Animals, National Academies Press, Washington, DC 1995.
T. H. Bothwell, R. D. Baynes, B. J. MacFarlane, A. P. MacPhail, J. Intern. Med. 1989, 226, 357.
B. M. Raabe, J. E. Artwohl, J. E. Purcell, J. Lovaglio, J. D. Fortman, J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 680.
H. Kang, M. Han, J. Xue, Y. Baek, J. Chang, S. Hu, H. Nam, M. J. Jo, G. E. Fakhri, M. P. Hutchens, H. S. Choi, J. Kim, Nat. Commun. 2019, 10, 5134.
O. Groborz, BSc Thesis, Charles University 2019.