Structural analysis of a new carotenoid-binding protein: the C-terminal domain homolog of the OCP

. 2020 Sep 23 ; 10 (1) : 15564. [epub] 20200923

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32968135

Grantová podpora
P30 GM124169 NIGMS NIH HHS - United States
R01 GM126218 NIGMS NIH HHS - United States
1R01GM126218 NIH HHS - United States
795070 Marie Curie - United Kingdom

Odkazy

PubMed 32968135
PubMed Central PMC7512017
DOI 10.1038/s41598-020-72383-y
PII: 10.1038/s41598-020-72383-y
Knihovny.cz E-zdroje

The Orange Carotenoid Protein (OCP) is a water-soluble protein that governs photoprotection in many cyanobacteria. The 35 kDa OCP is structurally and functionally modular, consisting of an N-terminal effector domain (NTD) and a C-terminal regulatory domain (CTD); a carotenoid spans the two domains. The CTD is a member of the ubiquitous Nuclear Transport Factor-2 (NTF2) superfamily (pfam02136). With the increasing availability of cyanobacterial genomes, bioinformatic analysis has revealed the existence of a new family of proteins, homologs to the CTD, the C-terminal domain-like carotenoid proteins (CCPs). Here we purify holo-CCP2 directly from cyanobacteria and establish that it natively binds canthaxanthin (CAN). We use small-angle X-ray scattering (SAXS) to characterize the structure of this carotenoprotein in two distinct oligomeric states. A single carotenoid molecule spans the two CCPs in the dimer. Our analysis with X-ray footprinting-mass spectrometry (XFMS) identifies critical residues for carotenoid binding that likely contribute to the extreme red shift (ca. 80 nm) of the absorption maximum of the carotenoid bound by the CCP2 dimer and a further 10 nm shift in the tetramer form. These data provide the first structural description of carotenoid binding by a protein consisting of only an NTF2 domain.

Zobrazit více v PubMed

Esteban R, Moran JF, Becerril JMA, Garcia-Plazaola JI. Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 2015;119:63–75. doi: 10.1016/j.envexpbot.2015.04.009. DOI

Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem. Photobiol. 1996;63:257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. PubMed DOI

Kerfeld C. Water-soluble carotenoid proteins of cyanobacteria. Arch. Biochem. Biophys. 2004;430:2–9. doi: 10.1016/j.abb.2004.03.018. PubMed DOI

Ort DR. When there is too much light. Plant Physiol. 2001;125:29–32. doi: 10.1104/pp.125.1.29. PubMed DOI PMC

Cianci M, et al. The molecular basis of the coloration mechanism in lobster shell: Beta-crustacyanin at 3.2—A resolution. Proc. Natl. Acad. Sci. USA. 2002;99:9795–9800. doi: 10.1073/pnas.152088999. PubMed DOI PMC

Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. Curr. Opin. Plant Biol. 2017;37:1–9. doi: 10.1016/j.pbi.2017.03.010. PubMed DOI

Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 2017;215:937–951. doi: 10.1111/nph.14670. PubMed DOI

Kerfeld C, et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI

Melnicki M, et al. Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria. Mol. Plant. 2016;9:1379–1394. doi: 10.1016/j.molp.2016.06.009. PubMed DOI

Lechno-Yossef S, Melnicki MR, Bao H, Montgomery BL, Kerfeld CA. Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection. Plant J. 2017;91:646–656. doi: 10.1111/tpj.13593. PubMed DOI

Moldenhauer M, et al. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynth. Res. 2017 doi: 10.1007/s11120-017-0353-3. PubMed DOI

Kerfeld C. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth. Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI

Lopez-Igual R, et al. Different functions of the paralogs to the N-terminal domain of the orange carotenoid protein in the cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 2016;171:1852–1866. doi: 10.1104/pp.16.00502. PubMed DOI PMC

Dominguez-Martin MA, et al. Structural and spectroscopic characterization of HCP2. Biochim. Biophys. Acta Bioenergy. 2019;1860:414–424. doi: 10.1016/j.bbabio.2019.03.004. PubMed DOI

Yang YW, et al. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth. Res. 2019;140:103–113. doi: 10.1007/s11120-019-00629-6. PubMed DOI

Muzzopappa F, et al. Paralogs of the C-terminal domain of the cyanobacterial orange carotenoid protein are carotenoid donors to helical carotenoid proteins. Plant Physiol. 2017;175:1283–1303. doi: 10.1104/pp.17.01040pp.17.01040[pii]. PubMed DOI PMC

Slonimskiy YB, et al. Light-controlled carotenoid transfer between water-soluble proteins related to cyanobacterial photoprotection. FEBS J. 2019;286:1908–1924. doi: 10.1111/febs.14803. PubMed DOI

Harris D, et al. Structural dynamics in the C terminal domain homolog of orange carotenoid protein reveals residues critical for carotenoid uptake. Biochim. Biophys. Acta Bioenergy. 2020;1861:148214. doi: 10.1016/j.bbabio.2020.148214. PubMed DOI

Harris D, et al. Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Commun. Biol. 2018;1:125. doi: 10.1038/s42003-018-0132-5. PubMed DOI PMC

Eberhardt RY, et al. Filling out the structural map of the NTF2-like superfamily. BMC Bioinform. 2013;14:327. doi: 10.1186/1471-2105-14-327. PubMed DOI PMC

Bao, H. et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants3, 17089. 10.1038/nplants.2017.89 (2017). PubMed

Wolk CP, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch. Microbiol. 2007;188:551–563. doi: 10.1007/s00203-007-0276-z. PubMed DOI

Singh SP, Montgomery BL. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front. Microbiol. 2015;6:1215. doi: 10.3389/fmicb.2015.01215. PubMed DOI PMC

Cobley JG, et al. Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plasmid. 1993;30:90–105. doi: 10.1006/plas.1993.1037. PubMed DOI

Lechno-Yossef S, et al. Cyanobacterial carboxysomes contain an unique rubisco-activase-like protein. New Phytol. 2019 doi: 10.1111/nph.16195. PubMed DOI

Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl. Acad. Sci. USA. 2015;112:E5567–5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC

Kiselar JG, Maleknia SD, Sullivan M, Downard KM, Chance MR. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int. J. Radiat. Biol. 2002;78:101–114. doi: 10.1080/09553000110094805. PubMed DOI

Dyer KN, et al. High-throughput SAXS for the characterization of biomolecules in solution: A practical approach. Methods Mol. Biol. 2014;1091:245–258. doi: 10.1007/978-1-62703-691-7_18. PubMed DOI PMC

Hura GL, et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) Nat. Methods. 2009;6:606–612. doi: 10.1038/nmeth.1353. PubMed DOI PMC

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 2009;28:174–189. doi: 10.4149/gpb_2009_02_174. PubMed DOI PMC

Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013;105:962–974. doi: 10.1016/j.bpj.2013.07.020. PubMed DOI PMC

Schneidman-Duhovny D, Hammel M, Sali A. FoXS: A web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38:W540–544. doi: 10.1093/nar/gkq461. PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015;43:D357–363. doi: 10.1093/nar/gku1047. PubMed DOI PMC

Kuznetsova V, et al. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. Biochim. Biophys. Acta Bioenergy. 2020;1861:148120. doi: 10.1016/j.bbabio.2019.148120. PubMed DOI PMC

Knott GJ, et al. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. Elife. 2019;8:e49110. doi: 10.7554/eLife.49110. PubMed DOI PMC

Fiksdahl A, Foss P, Liaaenjensen S, Siegelman HW. Carotenoids of blue-green-algae. 11. Carotenoids of chromatically-adapted cyanobacteria. Comp. Biochem. Phys. B. 1983;76:599–601. doi: 10.1016/0305-0491(83)90300-0. DOI

Venugopalan V, et al. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 2013;23:237–245. doi: 10.4014/jmb.1203.03032. PubMed DOI

Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI

Maksimov EG, et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth. Res. 2016 doi: 10.1007/s11120-016-0272-8. PubMed DOI

Young AJ, Phillip DM, Hashimoto H. Ring-to-chain conformation may be a determining factor in the ability of xanthophylls to bind to the bulk light-harvesting complex of plants. J. Mol. Struct. 2002;642:137–145. doi: 10.1016/S0022-2860(02)00444-1. DOI

Polivka T, Kerfeld CA, Pascher T, Sundstrom V. Spectroscopic properties of the carotenoid 3'-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry. 2005;44:3994–4003. doi: 10.1021/bi047473t. PubMed DOI

Pishchalnikov RY, et al. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys. Chem. Chem. Phys. 2019;21:25707–25719. doi: 10.1039/c9cp04508b. PubMed DOI

Chabera P, Fuciman M, Hribek P, Polivka T. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys. Chem. Chem. Phys. 2009;11:8795–8803. doi: 10.1039/b909924g. PubMed DOI

Bondanza M, Cupellini L, Lipparini F, Menucci B. The multiple roles of the protein in thephotoactivation of orange carotenoid protein. Chem. 2020;6:1–17. doi: 10.1016/j.chempr.2019.10.014. DOI

Olsina, J., Durchan, M., Minofar, B., Polivka, T. & Mancal, T. Absorption Spectra of Astaxanthin Aggregates. arXiv (2012).

Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature. 2013;496:477–481. doi: 10.1038/nature12070. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...