Structural analysis of a new carotenoid-binding protein: the C-terminal domain homolog of the OCP
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P30 GM124169
NIGMS NIH HHS - United States
R01 GM126218
NIGMS NIH HHS - United States
1R01GM126218
NIH HHS - United States
795070
Marie Curie - United Kingdom
PubMed
32968135
PubMed Central
PMC7512017
DOI
10.1038/s41598-020-72383-y
PII: 10.1038/s41598-020-72383-y
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie ultrastruktura MeSH
- kanthaxanthin chemie MeSH
- krystalografie rentgenová MeSH
- maloúhlový rozptyl MeSH
- nukleocytoplazmatické transportní proteiny chemie genetika ultrastruktura MeSH
- proteinové domény genetika MeSH
- sinice chemie ultrastruktura MeSH
- vazba proteinů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- kanthaxanthin MeSH
- nukleocytoplazmatické transportní proteiny MeSH
- orange carotenoid protein, Synechocystis MeSH Prohlížeč
The Orange Carotenoid Protein (OCP) is a water-soluble protein that governs photoprotection in many cyanobacteria. The 35 kDa OCP is structurally and functionally modular, consisting of an N-terminal effector domain (NTD) and a C-terminal regulatory domain (CTD); a carotenoid spans the two domains. The CTD is a member of the ubiquitous Nuclear Transport Factor-2 (NTF2) superfamily (pfam02136). With the increasing availability of cyanobacterial genomes, bioinformatic analysis has revealed the existence of a new family of proteins, homologs to the CTD, the C-terminal domain-like carotenoid proteins (CCPs). Here we purify holo-CCP2 directly from cyanobacteria and establish that it natively binds canthaxanthin (CAN). We use small-angle X-ray scattering (SAXS) to characterize the structure of this carotenoprotein in two distinct oligomeric states. A single carotenoid molecule spans the two CCPs in the dimer. Our analysis with X-ray footprinting-mass spectrometry (XFMS) identifies critical residues for carotenoid binding that likely contribute to the extreme red shift (ca. 80 nm) of the absorption maximum of the carotenoid bound by the CCP2 dimer and a further 10 nm shift in the tetramer form. These data provide the first structural description of carotenoid binding by a protein consisting of only an NTF2 domain.
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI 48824 USA
Graduate Group in Biophysics University of California Berkeley CA 94720 USA
Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Zobrazit více v PubMed
Esteban R, Moran JF, Becerril JMA, Garcia-Plazaola JI. Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 2015;119:63–75. doi: 10.1016/j.envexpbot.2015.04.009. DOI
Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem. Photobiol. 1996;63:257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. PubMed DOI
Kerfeld C. Water-soluble carotenoid proteins of cyanobacteria. Arch. Biochem. Biophys. 2004;430:2–9. doi: 10.1016/j.abb.2004.03.018. PubMed DOI
Ort DR. When there is too much light. Plant Physiol. 2001;125:29–32. doi: 10.1104/pp.125.1.29. PubMed DOI PMC
Cianci M, et al. The molecular basis of the coloration mechanism in lobster shell: Beta-crustacyanin at 3.2—A resolution. Proc. Natl. Acad. Sci. USA. 2002;99:9795–9800. doi: 10.1073/pnas.152088999. PubMed DOI PMC
Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. Curr. Opin. Plant Biol. 2017;37:1–9. doi: 10.1016/j.pbi.2017.03.010. PubMed DOI
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 2017;215:937–951. doi: 10.1111/nph.14670. PubMed DOI
Kerfeld C, et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI
Melnicki M, et al. Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria. Mol. Plant. 2016;9:1379–1394. doi: 10.1016/j.molp.2016.06.009. PubMed DOI
Lechno-Yossef S, Melnicki MR, Bao H, Montgomery BL, Kerfeld CA. Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection. Plant J. 2017;91:646–656. doi: 10.1111/tpj.13593. PubMed DOI
Moldenhauer M, et al. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynth. Res. 2017 doi: 10.1007/s11120-017-0353-3. PubMed DOI
Kerfeld C. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth. Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI
Lopez-Igual R, et al. Different functions of the paralogs to the N-terminal domain of the orange carotenoid protein in the cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 2016;171:1852–1866. doi: 10.1104/pp.16.00502. PubMed DOI PMC
Dominguez-Martin MA, et al. Structural and spectroscopic characterization of HCP2. Biochim. Biophys. Acta Bioenergy. 2019;1860:414–424. doi: 10.1016/j.bbabio.2019.03.004. PubMed DOI
Yang YW, et al. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth. Res. 2019;140:103–113. doi: 10.1007/s11120-019-00629-6. PubMed DOI
Muzzopappa F, et al. Paralogs of the C-terminal domain of the cyanobacterial orange carotenoid protein are carotenoid donors to helical carotenoid proteins. Plant Physiol. 2017;175:1283–1303. doi: 10.1104/pp.17.01040pp.17.01040[pii]. PubMed DOI PMC
Slonimskiy YB, et al. Light-controlled carotenoid transfer between water-soluble proteins related to cyanobacterial photoprotection. FEBS J. 2019;286:1908–1924. doi: 10.1111/febs.14803. PubMed DOI
Harris D, et al. Structural dynamics in the C terminal domain homolog of orange carotenoid protein reveals residues critical for carotenoid uptake. Biochim. Biophys. Acta Bioenergy. 2020;1861:148214. doi: 10.1016/j.bbabio.2020.148214. PubMed DOI
Harris D, et al. Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Commun. Biol. 2018;1:125. doi: 10.1038/s42003-018-0132-5. PubMed DOI PMC
Eberhardt RY, et al. Filling out the structural map of the NTF2-like superfamily. BMC Bioinform. 2013;14:327. doi: 10.1186/1471-2105-14-327. PubMed DOI PMC
Bao, H. et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants3, 17089. 10.1038/nplants.2017.89 (2017). PubMed
Wolk CP, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch. Microbiol. 2007;188:551–563. doi: 10.1007/s00203-007-0276-z. PubMed DOI
Singh SP, Montgomery BL. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front. Microbiol. 2015;6:1215. doi: 10.3389/fmicb.2015.01215. PubMed DOI PMC
Cobley JG, et al. Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plasmid. 1993;30:90–105. doi: 10.1006/plas.1993.1037. PubMed DOI
Lechno-Yossef S, et al. Cyanobacterial carboxysomes contain an unique rubisco-activase-like protein. New Phytol. 2019 doi: 10.1111/nph.16195. PubMed DOI
Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl. Acad. Sci. USA. 2015;112:E5567–5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC
Kiselar JG, Maleknia SD, Sullivan M, Downard KM, Chance MR. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int. J. Radiat. Biol. 2002;78:101–114. doi: 10.1080/09553000110094805. PubMed DOI
Dyer KN, et al. High-throughput SAXS for the characterization of biomolecules in solution: A practical approach. Methods Mol. Biol. 2014;1091:245–258. doi: 10.1007/978-1-62703-691-7_18. PubMed DOI PMC
Hura GL, et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) Nat. Methods. 2009;6:606–612. doi: 10.1038/nmeth.1353. PubMed DOI PMC
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 2009;28:174–189. doi: 10.4149/gpb_2009_02_174. PubMed DOI PMC
Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013;105:962–974. doi: 10.1016/j.bpj.2013.07.020. PubMed DOI PMC
Schneidman-Duhovny D, Hammel M, Sali A. FoXS: A web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38:W540–544. doi: 10.1093/nar/gkq461. PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015;43:D357–363. doi: 10.1093/nar/gku1047. PubMed DOI PMC
Kuznetsova V, et al. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. Biochim. Biophys. Acta Bioenergy. 2020;1861:148120. doi: 10.1016/j.bbabio.2019.148120. PubMed DOI PMC
Knott GJ, et al. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. Elife. 2019;8:e49110. doi: 10.7554/eLife.49110. PubMed DOI PMC
Fiksdahl A, Foss P, Liaaenjensen S, Siegelman HW. Carotenoids of blue-green-algae. 11. Carotenoids of chromatically-adapted cyanobacteria. Comp. Biochem. Phys. B. 1983;76:599–601. doi: 10.1016/0305-0491(83)90300-0. DOI
Venugopalan V, et al. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 2013;23:237–245. doi: 10.4014/jmb.1203.03032. PubMed DOI
Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI
Maksimov EG, et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth. Res. 2016 doi: 10.1007/s11120-016-0272-8. PubMed DOI
Young AJ, Phillip DM, Hashimoto H. Ring-to-chain conformation may be a determining factor in the ability of xanthophylls to bind to the bulk light-harvesting complex of plants. J. Mol. Struct. 2002;642:137–145. doi: 10.1016/S0022-2860(02)00444-1. DOI
Polivka T, Kerfeld CA, Pascher T, Sundstrom V. Spectroscopic properties of the carotenoid 3'-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry. 2005;44:3994–4003. doi: 10.1021/bi047473t. PubMed DOI
Pishchalnikov RY, et al. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys. Chem. Chem. Phys. 2019;21:25707–25719. doi: 10.1039/c9cp04508b. PubMed DOI
Chabera P, Fuciman M, Hribek P, Polivka T. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys. Chem. Chem. Phys. 2009;11:8795–8803. doi: 10.1039/b909924g. PubMed DOI
Bondanza M, Cupellini L, Lipparini F, Menucci B. The multiple roles of the protein in thephotoactivation of orange carotenoid protein. Chem. 2020;6:1–17. doi: 10.1016/j.chempr.2019.10.014. DOI
Olsina, J., Durchan, M., Minofar, B., Polivka, T. & Mancal, T. Absorption Spectra of Astaxanthin Aggregates. arXiv (2012).
Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature. 2013;496:477–481. doi: 10.1038/nature12070. PubMed DOI PMC