Acute Kidney Injury in Septic Patients Treated by Selected Nephrotoxic Antibiotic Agents-Pathophysiology and Biomarkers-A Review
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
32993185
PubMed Central
PMC7583998
DOI
10.3390/ijms21197115
PII: ijms21197115
Knihovny.cz E-resources
- Keywords
- acute kidney injury, gentamicin, miRNA, nephrotoxicity, sepsis, vancomycin,
- MeSH
- Acute Kidney Injury chemically induced diagnosis etiology physiopathology MeSH
- Anti-Bacterial Agents adverse effects therapeutic use MeSH
- Biomarkers analysis MeSH
- Gentamicins adverse effects therapeutic use MeSH
- Kidney drug effects physiopathology MeSH
- Humans MeSH
- MicroRNAs analysis MeSH
- Sepsis complications diagnosis drug therapy physiopathology MeSH
- Vancomycin adverse effects therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Biomarkers MeSH
- Gentamicins MeSH
- MicroRNAs MeSH
- Vancomycin MeSH
Acute kidney injury is a common complication in critically ill patients with sepsis and/or septic shock. Further, some essential antimicrobial treatment drugs are themselves nephrotoxic. For this reason, timely diagnosis and adequate therapeutic management are paramount. Of potential acute kidney injury (AKI) biomarkers, non-protein-coding RNAs are a subject of ongoing research. This review covers the pathophysiology of vancomycin and gentamicin nephrotoxicity in particular, septic AKI and the microRNAs involved in the pathophysiology of both syndromes. PubMED, UptoDate, MEDLINE and Cochrane databases were searched, using the terms: biomarkers, acute kidney injury, antibiotic nephrotoxicity, sepsis, miRNA and nephrotoxicity. A comprehensive review describing pathophysiology and potential biomarkers of septic and toxic acute kidney injury in septic patients was conducted. In addition, five miRNAs: miR-15a-5p, miR-192-5p, miR-155-5p, miR-486-5p and miR-423-5p specific to septic and toxic acute kidney injury in septic patients, treated by nephrotoxic antibiotic agents (vancomycin and gentamicin) were identified. However, while these are at the stage of clinical testing, preclinical and clinical trials are needed before they can be considered useful biomarkers or therapeutic targets of AKI in the context of antibiotic nephrotoxicity or septic injury.
See more in PubMed
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012;2:1–138.
Chawla L.S., Bellomo R., Bihorac A., Goldstein S.L., Siew E.D., Bagshaw S.M., Bittleman D., Cruz D., Endre Z., Fitzgerald R.L., et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017;13:241–257. doi: 10.1038/nrneph.2017.2. PubMed DOI
Uchino S., Kellum J.A., Bellomo R., Doig G.S., Morimatsu H., Morgera S., Schetz M., Tan I., Bouman C., Macedo E., et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA. 2005;294:813–818. PubMed
Jiang L., Zhu Y., Luo X., Wen Y., Du B., Wang M., Zhao Z., Yin Y., Zhu B., Xi X. Epidemiology of acute kidney injury in intensive care units in Beijing: The multi-center BAKIT study. BMC Nephrol. 2019;20:468. doi: 10.1186/s12882-019-1660-z. PubMed DOI PMC
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Poston J.T., Koyner J.L. Sepsis associated acute kidney injury. BMJ. 2019;364:k4891. doi: 10.1136/bmj.k4891. PubMed DOI PMC
Gómez H., Kellum J.A. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care. 2016;22:546–553. doi: 10.1097/MCC.0000000000000356. PubMed DOI PMC
Ronco C., Bellomo R., Kellum J.A. Acute kidney injury. Lancet. 2019;394:1949–1964. PubMed
Anders H.J., Banas B., Schlöndorff D. Signaling danger: Toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol. 2004;15:854–867. doi: 10.1097/01.ASN.0000121781.89599.16. PubMed DOI
Kawai T., Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007;13:460–469. PubMed
Morrell E.D., Kellum J.A., Pastor-Soler N.M., Hallows K.R. Septic acute kidney injury: Molecular mechanisms and the importance of stratification and targeting therapy. Crit. Care. 2014;18:501. doi: 10.1186/s13054-014-0501-5. PubMed DOI PMC
Wei Q. Novel strategy for septic acute kidney injury rescue: Maintenance of the tubular integrity. Kidney Int. 2020;97:847–849. PubMed
Nakano D., Kitada K., Wan N., Zhang Y., Wiig H., Wararat K., Yanagita M., Lee S., Jia L., Titze J.M., et al. Lipopolysaccharide induces filtrate leakage from renal tubular lumina into the interstitial space via a proximal tubular Toll-like receptor 4-dependent pathway and limits sensitivity to fluid therapy in mice. Kidney Int. 2020;97:904–912. doi: 10.1016/j.kint.2019.11.024. PubMed DOI
Kashani K., Cheungpasitporn W., Ronco C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017;55:1074–1089. doi: 10.1515/cclm-2016-0973. PubMed DOI
Klein S.J., Brandtner A.K., Lehner G.F., Ulmer H., Bagshaw S.M., Wiedermann C.J., Joannidis M. Biomarkers for prediction of renal replacement therapy in acute kidney injury: A systematic review and meta-analysis. Intensive Care Med. 2018;44:323–336. doi: 10.1007/s00134-018-5126-8. PubMed DOI PMC
Schrezenmeier E.V., Barasch J., Budde K., Westhoff T., Schmidt-Ott K.M. Biomarkers in acute kidney injury-pathophysiological basis and clinical performance. Acta Physiol. 2017;219:554–572. doi: 10.1111/apha.12764. PubMed DOI PMC
Teo S.H., Endre Z.H. Biomarkers in acute kidney injury (AKI) Best Pract. Res. Clin. Anaesthesiol. 2017;31:331–344. doi: 10.1016/j.bpa.2017.10.003. PubMed DOI
Izquierdo-Garcia J.L., Nin N., Cardinal-Fernandez P., Rojas Y., de Paula M., Granados R., Martínez-Caro L., Ruíz-Cabello J., Lorente J.A. Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury. Am. J. Physiol. Renal Physiol. 2019;316:F54–F62. doi: 10.1152/ajprenal.00315.2018. PubMed DOI
Chebotareva N., Bobkova I., Shilov E. Heat shock proteins and kidney disease: Perspectives of HSP therapy. Cell Stress Chaperones. 2017;22:319–343. doi: 10.1007/s12192-017-0790-0. PubMed DOI PMC
Morales-Buenrostro L.E., Salas-Nolasco O.I., Barrera-Chimal J., Casas-Aparicio G., Irizar-Santana S., Pérez-Villalva R., Bobadilla N.A. Hsp72 is a novel biomarker to predict acute kidney injury in critically ill patients. PLoS ONE. 2014;9:e109407. doi: 10.1371/journal.pone.0109407. PubMed DOI PMC
Dozmorov M.G., Giles C.B., Koelsch K.A., Wren J.D. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinform. 2013;14:S2. doi: 10.1186/1471-2105-14-S14-S2. PubMed DOI PMC
Fan P.C., Chen C.C., Chen Y.C., Chang Y.S., Chu P.H. MicroRNAs in acute kidney injury. Hum. Genom. 2016;10:29. doi: 10.1186/s40246-016-0085-z. PubMed DOI PMC
Giza D.E., Fuentes-Mattei E., Bullock M.D., Tudor S., Goblirsch M.J., Fabbri M., Lupu F., Yeung S.J., Vasilescu C., Calin G.A. Cellular and viral microRNAs in sepsis: Mechanisms of action and clinical applications. Cell Death Differ. 2016;23:1906–1918. doi: 10.1038/cdd.2016.94. PubMed DOI PMC
Benz F., Roy S., Trautwein C., Roderburg C., Luedde T. Circulating MicroRNAs as Biomarkers for Sepsis. Int. J. Mol. Sci. 2016;17:78. doi: 10.3390/ijms17010078. PubMed DOI PMC
Lin Z., Liu Z., Wang X., Qiu C., Zheng S. MiR-21-3p Plays a Crucial Role in Metabolism Alteration of Renal Tubular Epithelial Cells during Sepsis Associated Acute Kidney Injury via AKT/CDK2-FOXO1 Pathway. Biomed. Res. Int. 2019;2019:2821731. doi: 10.1155/2019/2821731. PubMed DOI PMC
Ge Q.M., Huang C.M., Zhu X.Y., Bian F., Pan S.M. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE. 2017;12:e0173292. doi: 10.1371/journal.pone.0173292. PubMed DOI PMC
Ishimoto Y., Inagi R. Mitochondria: A therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 2016;31:1062–1069. doi: 10.1093/ndt/gfv317. PubMed DOI
Shen Y., Yu J., Jing Y., Zhang J. MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir. Bras. 2019;34:e201900602. doi: 10.1590/s0102-865020190060000002. PubMed DOI PMC
Taber S.S., Pasko D.A. The epidemiology of drug-induced disorders: The kidney. Expert Opin. Drug Saf. 2008;7:679–690. doi: 10.1517/14740330802410462. PubMed DOI
Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., Sevransky J.E., Sprung C.L., Nunnally M.E., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Wilhelm-Leen E., Montez-Rath M.E., Chertow G. Estimating the Risk of Radiocontrast-Associated Nephropathy. J. Am. Soc. Nephrol. 2017;28:653–659. doi: 10.1681/ASN.2016010021. PubMed DOI PMC
Perazella M.A., Markowitz G.S. Drug-induced acute interstitial nephritis. Nat. Rev. Nephrol. 2010;6:461–470. doi: 10.1038/nrneph.2010.71. PubMed DOI
Petejova N., Martinek A., Zadrazil J., Teplan V. Acute toxic kidney injury. Ren. Fail. 2019;41:576–594. doi: 10.1080/0886022X.2019.1628780. PubMed DOI PMC
Arimura Y., Yano T., Hirano M., Sakamoto Y., Egashira N., Oishi R. Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic. Biol. Med. 2012;52:1865–1873. doi: 10.1016/j.freeradbiomed.2012.02.038. PubMed DOI
Moledina D.G., Perazella M.A. PPIs and kidney disease: From AIN to CKD. J. Nephrol. 2016;29:611–616. doi: 10.1007/s40620-016-0309-2. PubMed DOI
Ong L.Z., Tambyah P.A., Lum L.H., Low Z.J., Cheng I., Murali T.M., Wan M.Q., Chua H.R. Aminoglycoside-associated acute kidney injury in elderly patients with and without shock. J. Antimicrob. Chemother. 2016;71:3250–3257. doi: 10.1093/jac/dkw296. PubMed DOI
Rybak M.J., Lomaestro B.M., Rotschafer J.C., Moellering R.C., Jr., Craig W.A., Billeter M., Dalovisio J.R., Levine D.P. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29:1275–1279. doi: 10.1592/phco.29.11.1275. PubMed DOI
Zamoner W., Prado I.R.S., Balbi A.L., Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin. Exp. Pharmacol. Physiol. 2019 doi: 10.1111/1440-1681.13066. PubMed DOI
Rybak M.J., Le J., Lodise T.P., Levine D.P., Bradley J.S., Liu C., Mueller B.A., Pai M.P., Wong-Beringer A., Rotschafer J.C., et al. Executive Summary: Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2020;40:363–367. PubMed
Chavada R., Ghosh N., Sandaradura I., Maley M., Van Hal S.J. Establishment of an AUC0-24 Threshold for Nephrotoxicity Is a Step towards Individualized Vancomycin Dosing for Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.02535-16. PubMed DOI PMC
Hanrahan T.P., Kotapati C., Roberts M.J., Rowland J., Lipman J., Roberts J.A., Udy A. Factors associated with vancomycin nephrotoxicity in the critically ill. Anaesth. Intensive Care. 2015;43:594–599. doi: 10.1177/0310057X1504300507. PubMed DOI
Sakamoto Y., Yano T., Hanada Y., Takeshita A., Inagaki F., Masuda S., Matsunaga N., Koyanagi S., Ohdo S. Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells. Eur. J. Pharmacol. 2017;800:48–56. doi: 10.1016/j.ejphar.2017.02.025. PubMed DOI
Kane-Gill S.L., Ostermann M., Shi J., Joyce E.L., Kellum J.A. Evaluating Renal Stress Using Pharmacokinetic Urinary Biomarker Data in Critically Ill Patients Receiving Vancomycin and/or Piperacillin-Tazobactam: A Secondary Analysis of the Multicenter Sapphire Study. Drug Saf. 2019;42:1149–1155. doi: 10.1007/s40264-019-00846-x. PubMed DOI
Rhodes N.J., Prozialeck W.C., Lodise T.P., Venkatesan N., O’Donnell J.N., Pais G., Cluff C., Lamar P.C., Neely M.N., Gulati A., et al. Evaluation of Vancomycin Exposures Associated with Elevations in Novel Urinary Biomarkers of Acute Kidney Injury in Vancomycin-Treated Rats. Antimicrob. Agents Chemother. 2016;60:5742–5751. doi: 10.1128/AAC.00591-16. PubMed DOI PMC
Pang H.M., Qin X.L., Liu T.T., Wei W.X., Cheng D.H., Lu H., Guo Q., Jing L. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: A prospective study. Eur. Rev. Med. Pharmacol. Sci. 2017;21:4203–4213. PubMed
Pais G.M., Avedissian S.N., O′Donnell J.N., Rhodes N.J., Lodise T.P., Prozialeck W.C., Lamar P.C., Cluff C., Gulati A., Fitzgerald J.C., et al. Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury. Antimicrob. Agents Chemother. 2019;63 doi: 10.1128/AAC.00079-19. PubMed DOI PMC
Wang J., Li H., Qiu S., Dong Z., Xiang X., Zhang D. MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis. 2017;8:e3120. doi: 10.1038/cddis.2017.509. PubMed DOI PMC
Olbricht C.J., Fink M., Gutjahr E. Alterations in lysosomal enzymes of the proximal tubule in gentamicin nephrotoxicity. Kidney Int. 1991;39:639–646. doi: 10.1038/ki.1991.76. PubMed DOI
Gentamicin 40 mg/mL Injection. [(accessed on 7 July 2020)]; Available online: https://www.medicines.org.uk/emc/product/6531/smpc.
Romero F., Pérez M., Chávez M., Parra G., Durante P. Effect of uric acid on gentamicin-induced nephrotoxicity in rats-role of matrix metalloproteinases 2 and 9. Basic Clin. Pharmacol. Toxicol. 2009;105:416–424. doi: 10.1111/j.1742-7843.2009.00466.x. PubMed DOI
Martínez-Salgado C., López-Hernández F.J., López-Novoa J.M. Glomerular nephrotoxicity of aminoglycosides. Toxicol. Appl. Pharmacol. 2007;223:86–98. doi: 10.1016/j.taap.2007.05.004. PubMed DOI
Udupa V., Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol. Rep. 2018;6:91–99. doi: 10.1016/j.toxrep.2018.11.015. PubMed DOI PMC
Campos M.A.A., de Almeida L.A., Grossi M.F., Tagliati C.A. In vitro evaluation of biomarkers of nephrotoxicity through gene expression using gentamicin. J. Biochem. Mol. Toxicol. 2018;32:e22189. doi: 10.1002/jbt.22189. PubMed DOI
Kagawa T., Zarybnicky T., Omi T., Shirai Y., Toyokuni S., Oda S., Yokoi T. A scrutiny of circulating microRNA biomarkers for drug-induced tubular and glomerular injury in rats. Toxicology. 2019;415:26–36. doi: 10.1016/j.tox.2019.01.011. PubMed DOI
Hori Y., Aoki N., Kuwahara S., Hosojima M., Kaseda R., Goto S., Iida T., De S., Kabasawa H., Kaneko R., et al. Megalin Blockade with Cilastatin Suppresses Drug-Induced Nephrotoxicity. J. Am. Soc. Nephrol. 2017;28:1783–1791. doi: 10.1681/ASN.2016060606. PubMed DOI PMC
Balakumar P., Rohilla A., Thangathirupathi A. Gentamicin-induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol. Res. 2010;62:179–186. doi: 10.1016/j.phrs.2010.04.004. PubMed DOI
Xu G., Mo L., Wu C., Shen X., Dong H., Yu L., Pan P., Pan K. The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury. Ren. Fail. 2019;41:955–966. doi: 10.1080/0886022X.2019.1669460. PubMed DOI PMC
Lou Y., Huang Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp. Ther. Med. 2020;19:3060–3068. doi: 10.3892/etm.2020.8547. PubMed DOI PMC
Wang Z.M., Wan X.H., Sang G.Y., Zhao J.D., Zhu Q.Y., Wang D.M. miR-15a-5p suppresses endometrial cancer cell growth via Wnt/β-catenin signaling pathway by inhibiting WNT3A. Eur. Rev. Med. Pharmacol. Sci. 2017;21:4810–4818. PubMed
Chen D., Wu D., Shao K., Ye B., Huang J., Gao Y. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am. J. Transl. Res. 2017;9:4308–4316. PubMed PMC
Shang J., He Q., Chen Y., Yu D., Sun L., Cheng G., Liu D., Xiao J., Zhao Z. miR-15a-5p suppresses inflammation and fibrosis of peritoneal mesothelial cells induced by peritoneal dialysis via targeting VEGFA. J. Cell. Physiol. 2019;234:9746–9755. doi: 10.1002/jcp.27660. PubMed DOI
Caserta S., Kern F., Cohen J., Drage S., Newbury S.F., Llewelyn M.J. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS) Sci. Rep. 2016;6:28006. doi: 10.1038/srep28006. PubMed DOI PMC
Caserta S., Mengozzi M., Kern F., Newbury S.F., Ghezzi P., Llewelyn M.J. Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs. Front. Immunol. 2018;8:1977. doi: 10.3389/fimmu.2017.01977. PubMed DOI PMC
Zou Y.F., Wen D., Zhao Q., Shen P.Y., Shi H., Zhao Q., Chen Y.X., Zhang W. Urinary MicroRNA-30c-5p and MicroRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury. Exp. Biol. Med. 2017;242:657–667. doi: 10.1177/1535370216685005. PubMed DOI PMC
Cai H., Jiang Z., Yang X., Lin J., Cai Q., Li X. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr. J. 2020;67:397–408. doi: 10.1507/endocrj.EJ19-0271. PubMed DOI
Baker M.A., Wang F., Liu Y., Kriegel A.J., Geurts A.M., Usa K., Xue H., Wang D., Kong Y., Liang M. MiR-192-5p in the Kidney Protects Against the Development of Hypertension. Hypertension. 2019;73:399–406. doi: 10.1161/HYPERTENSIONAHA.118.11875. PubMed DOI PMC
Chen J., Wang J., Li H., Wang S., Xiang X., Zhang D. p53 activates miR-192-5p to mediate vancomycin induced AKI. Sci. Rep. 2016;6:38868. doi: 10.1038/srep38868. PubMed DOI PMC
Elton T.S., Selemon H., Elton S.M., Parinandi N.L. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12. doi: 10.1016/j.gene.2012.12.009. PubMed DOI
Pfeiffer D., Roßmanith E., Lang I., Falkenhagen D. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an In vitro sepsis model. PLoS ONE. 2017;12:e0179850. doi: 10.1371/journal.pone.0179850. PubMed DOI PMC
Alexander M., Hu R., Runtsch M.C., Kagele D.A., Mosbruger T.L., Tolmachova T., Seabra M.C., Round J.L., Ward D.M., O’Connell R.M. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 2015;6:7321. doi: 10.1038/ncomms8321. PubMed DOI PMC
Johnson B.J., Le T.T., Dobbin C.A., Banovic T., Howard C.B., Flores F.D.M.L., Vanags D., Naylor D.J., Hill G.R., Suhrbier A. Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J. Biol. Chem. 2005;280:4037–4047. doi: 10.1074/jbc.M411569200. PubMed DOI
Saikumar J., Hoffmann D., Kim T.M., Gonzalez V.R., Zhang Q., Goering P.L., Brown R.P., Bijol V., Park P.J., Waikar S.S., et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci. 2012;129:256–267. doi: 10.1093/toxsci/kfs210. PubMed DOI PMC
Lu C., Chen B., Chen C., Li H., Wang D., Tan Y., Weng H. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell. Mol. Med. 2020;24:1700–1712. doi: 10.1111/jcmm.14863. PubMed DOI PMC
Wang Y., Zheng Z.J., Jia Y.J., Yang Y.L., Xue Y.M. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J. Transl. Med. 2018;16:146. doi: 10.1186/s12967-018-1486-7. PubMed DOI PMC
Viñas J.L., Burger D., Zimpelmann J., Haneef R., Knoll W., Campbell P., Gutsol A., Carter A., Allan D.S., Burns K.D. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 2016;90:1238–1250. doi: 10.1016/j.kint.2016.07.015. PubMed DOI
Xu J., Li R., Workeneh B., Dong Y., Wang X., Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 2012;82:401–411. doi: 10.1038/ki.2012.84. PubMed DOI PMC
Regmi A., Liu G., Zhong X., Hu S., Ma R., Gou L., Zafar M.I., Chen L. Evaluation of Serum microRNAs in Patients with Diabetic Kidney Disease: A Nested Case-Controlled Study and Bioinformatics Analysis. Med. Sci. Monit. 2019;25:1699–1708. doi: 10.12659/MSM.913265. PubMed DOI PMC
Chai X., Si H., Song J., Chong Y., Wang J., Zhao G. miR-486-5p Inhibits Inflammatory Response, Matrix Degradation and Apoptosis of Nucleus Pulposus Cells through Directly Targeting FOXO1 in Intervertebral Disc Degeneration. Cell. Physiol. Biochem. 2019;52:109–118. PubMed
Yuan X.P., Liu L.S., Chen C.B., Zhou J., Zheng Y.T., Wang X.P., Han M., Wang C.X. MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress. Oncotarget. 2017;8:82064–82077. doi: 10.18632/oncotarget.18289. PubMed DOI PMC
Wang W., Gao J., Wang F. MiR-663a/MiR-423-5p are involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting TNIP2. Am. J. Transl. Res. 2017;9:3796–3803. PubMed PMC
Xu Y., Zhang J., Fan L., He X. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem. Biophys. Res. Commun. 2018;505:339–345. doi: 10.1016/j.bbrc.2018.09.067. PubMed DOI
Montomoli J., Donati A., Ince C. Acute Kidney Injury and Fluid Resuscitation in Septic Patients: Are We Protecting the Kidney? Nephron. 2019;143:170–173. doi: 10.1159/000501748. PubMed DOI PMC
O’Connor M.E., Prowle J.R. Fluid Overload. Crit. Care Clin. 2015;31:803–821. doi: 10.1016/j.ccc.2015.06.013. PubMed DOI
Bellomo R., Kellum J.A., Ronco C., Wald R., Martensson J., Maiden M., Bagshaw S.M., Glassford N.J., Lankadeva Y., Vaara S.T., et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43:816–828. doi: 10.1007/s00134-017-4755-7. PubMed DOI
Gaudry S., Hajage D., Benichou N., Chaïbi K., Barbar S., Zarbock A., Lumlertgul N., Wald R., Bagshaw S.M., Srisawat N., et al. Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: A systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet. 2020;395:1506–1515. doi: 10.1016/S0140-6736(20)30531-6. PubMed DOI
Gaudry S., Hajage D., Schortgen F., Martin-Lefevre L., Pons B., Boulet E., Boyer A., Chevrel G., Lerolle N., Carpentier D., et al. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N. Engl. J. Med. 2016;375:122–133. doi: 10.1056/NEJMoa1603017. PubMed DOI
Karkar A., Ronco C. Prescription of CRRT: A pathway to optimize therapy. Ann. Intensive Care. 2020;10:32. doi: 10.1186/s13613-020-0648-y. PubMed DOI PMC
Romagnoli S., Ricci Z., Ronco C. CRRT for sepsis-induced acute kidney injury. Curr. Opin. Crit. Care. 2018;24:483–492. doi: 10.1097/MCC.0000000000000544. PubMed DOI
Petejova N., Martinek A., Zahalkova J., Duricova J., Brozmannova H., Urbanek K., Grundmann M., Plasek J., Kacirova I. Vancomycin pharmacokinetics during high-volume continuous venovenous hemofiltration in critically ill septic patients. Biomed. Pap. Med. Faculty Univ. Palacky Olomouc Czech Repub. 2014;158:65–72. doi: 10.5507/bp.2012.092. PubMed DOI
Petejova N., Zahalkova J., Duricova J., Kacirova I., Brozmanova H., Urbanek K., Grundmann M., Martinek A. Gentamicin pharmacokinetics during continuous venovenous hemofiltration in critically ill septic patients. J. Chemother. 2012;24:107–112. doi: 10.1179/1120009X12Z.0000000006. PubMed DOI