Genotoxic effect of simultaneous therapeutic exposure to polycyclic aromatic hydrocarbons and UV radiation
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33015835
DOI
10.1002/jat.4074
Knihovny.cz E-resources
- Keywords
- Goeckerman therapy, genotoxic hazard, polycyclic aromatic hydrocarbons, psoriasis, ultraviolet radiation,
- MeSH
- Chromosome Aberrations MeSH
- Coal Tar therapeutic use MeSH
- Humans MeSH
- Lymphocytes MeSH
- Polycyclic Aromatic Hydrocarbons toxicity MeSH
- DNA Damage MeSH
- Psoriasis drug therapy MeSH
- Ultraviolet Rays * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coal Tar MeSH
- Polycyclic Aromatic Hydrocarbons MeSH
Polycyclic aromatic hydrocarbons (PAHs) and ultraviolet radiation (UV) represent genotoxic factors that commonly occur in the living and working environment. The dermal form of exposure represents a significant part of the total load of dangerous chemical and physical environmental factors to which an organism is subjected. However, simultaneous dermal exposures to PAHs (pharmaceutical crude coal tar [CCT]) and UV (UVA and UVB) also have therapeutic uses. A typical example is Goeckerman therapy (GT) for psoriasis. The question of the therapeutic efficacy of GT and the related level of genotoxic danger is still under discussion. The aim of the present study was to compare four GT variants (G1-G4) in terms of efficacy and acceptable genotoxic hazard. Efficacy was expressed by the psoriasis area of severity index (PASI) score, genotoxic hazard by chromosomal aberration in peripheral lymphocytes. The lowest risk of genotoxic hazard and the lowest efficiency was observed in G1 variant (3% of the CCT and UVA + UVB). The efficacy of G2 (4% CCT and UVA + UVB), G3 (4% CCT and UVB), and G4 variants (5% CCT and UVA + UVB) was comparable. The highest risk of genotoxic hazard was found in the G3 variant. In the terms of sufficient efficacy and acceptable genotoxic hazard, a combination of 4% or 5% of CCT and UVA and UVB seems to be acceptable (variants G2 and G4).
See more in PubMed
Ali, D., Verma, A., Mujtaba, F., Dwivedi, A., Hans, R. K., & Ray, R. S. (2011). UVB-induced apoptosis and DNA damaging potential of chrysene via reactive oxygen species in human keratinocytes. Toxicology Letters, 204(2), 199-207. https://doi.org/10.1016/j.toxlet.2011.04.033
Bansal, V., & Kim, K. H. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84, 26-38. https://doi.org/10.1016/j.envint.2015.06.016
Beranek, M., Fiala, Z., Kremlacek, J., Andrys, C., Hamakova, K., Chmelarova, M., … Borska, L. (2016). Genetic polymorphisms in biotransformation enzymes for benzo[a]pyrene and related levels of benzo[a]pyrene-7,8-diol-9,10-epoxide-DNA adducts in Goeckerman therapy. Toxicology Letters, 255, 47-51. https://doi.org/10.1016/j.toxlet.2016.05.009
Beranek, M., Malkova, A., Fiala, Z., Kremlacek, J., Hamakova, K., Zaloudkova, L., … Borska, L. (2019). Goeckerman therapy of psoriasis: Genotoxicity, dietary micronutrients, homocysteine, and MTHFR gene polymorphisms. International Journal of Molecular Sciences, 20(8), 1-9. https://doi.org/10.3390/ijms20081908
Błaszczyk, E., & Mielżyńska-Švach, D. (2017). Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of Applied Genetics, 58(3), 321-330. https://doi.org/10.1007/s13353-016-0380-3
Borak, J., Sirianni, G., Cohen, H., Chemerynski, S., & Jongeneelen, F. (2002). Biological versus ambient exposure monitoring of creosote facility workers. Journal of Occupational and Environmental Medicine, 44(4), 310-319. https://doi.org/10.1097/00043764-200204000-00011
Borska, L., Andrys, C., Krejsek, J., Hamakova, K., Kremlacek, J., Palicka, V., … Fiala, Z. (2010). Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis. International Journal of Dermatology, 49(3), 289-294. https://doi.org/10.1111/j.1365-4632.2009.04258.x
Borska, L., Andrys, C., Krejsek, J., Palicka, V., Vorisek, V., Hamakova, K., … Fiala, Z. (2016). Influence of dermal exposure to ultraviolet radiation and coal tar (polycyclic aromatic hydrocarbons) on the skin aging process. Journal of Dermatological Science, 81(3), 192-202. https://doi.org/10.1016/j.jdermsci.2015.12.010
Burke, K. E., & Wei, H. (2009). Synergistic damage by UVA radiation and pollutants. Toxicology and Industrial Health, 25(4-5), 219-224. https://doi.org/10.1177/0748233709106067
Cavallo, D., Ursini, C. L., Carelli, G., Iavicoli, I., Ciervo, A., Perniconi, B., … Iavicoli, S. (2006). Occupational exposure in airport personnel: Characterization and evaluation of genotoxic and oxidative effects. Toxicology, 223(1-2), 26-35. https://doi.org/10.1016/j.tox.2006.03.003
Elmets, C. A., Lim, H. W., Stoff, B., Connor, C., Cordoro, K. M., Lebwohl, M., … Menter, A. (2019). Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis with phototherapy. Journal of the American Academy of Dermatology, 81(3), 775-804. https://doi.org/10.1016/j.jaad.2019.04.042
Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084-1104. https://doi.org/10.1038/nprot.2007.77
Ferahbas, A., Donmez-Altuntas, H., Hamurcu, Z., Aktas, E., & Utas, S. (2004). Micronucleus evaluation in mitogen-stimulated lymphocytes of narrow-band (311 nm TL01) UVB-treated patients. Photodermatology, Photoimmunology & Photomedicine, 20(2), 81-85. https://doi.org/10.1111/j.1600-0781.2004.00086.x
Fiala, Z., Borska, L., Pastorkova, A., Kremlacek, J., Cerna, M., Smejkalova, J., & Hamakova, K. (2006). Genotoxic effect of Goeckerman regimen of psoriasis. Archives of Dermatological Research, 298(5), 243-251. https://doi.org/10.1007/s00403-006-0691-z
Fortin, F., Bonvalot, Y., Pham, T. C. V., Ouellt, N., Ayotte, P., Viau, C., & Lemieux, N. (2015). Biomarkers of genotoxicity measured in human lymphocytes exposed to benzo[a]pyrene: Aneugenic effect, and involvement multiple primary DNA lesions. Integrative Pharmacology. Toxicology and Genotoxicology, 1(1), 21-32. https://doi.org/10.15761/iptg.1000106
Fu, P. P., Xia, Q., Sun, X., & Yu, H. (2012). Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 30(1), 1-41. https://doi.org/10.1080/10590501.2012.653887
Ganem, N. J., & Pellman, D. (2007). Limiting the proliferation of polyploid cells. Cell, 131(3), 437-440. https://doi.org/10.1016/j.cell.2007.10.024
IARC. (2010). IARC monographs on the evaluation of carcinogenic risk to human-Volume 92-Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures Retrieved from https://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf
IARC. (2012). IARC monographs on the evaluation of the carcinogenic risk of chemicals to human-Volume 100F-Chemical agents and related occupations. IARC Publications Retrieved from. http://monographs.iarc.fr/ENG/Monographs/vol100F/index.php
IARC. (2020). Agents classified by the IARC monographs, Volumes 1-125. Retrieved from https://monographs.iarc.fr/list-of-classifications
Malkic Salihbegovic, E., Hadzigrahic, N., & Cickusic, A. J. (2015). Psoriasis and metabolic syndrome. Medieval Archaeology, 69(2), 85-87. https://doi.org/10.5455/medarh.2015.69.85-87
Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicological Sciences, 145(1), 5-15. https://doi.org/10.1093/toxsci/kfv040
OECD. (2016). Test No. 473: in vitro mammalian chromosomal aberration test: OECD Publishing, Paris.
Oesch, F., Fabian, E., Guth, K., & Landsiedel, R. (2014). Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Archives of Toxicology, 88(12), 2135-2190. https://doi.org/10.1007/s00204-014-1382-8
Ozawa, M., Ferenczi, K., Kikuchi, T., Cardinale, I., Austin, L. M., Coven, T. R., & Krueger, J. G. (1999). 312-Nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. The Journal of Experimental Medicine, 189(4), 711-718. https://doi.org/10.1084/jem.189.4.711
R Core Team. (2017). R: A language and environment for statistical computing (version 3.4). R Foundation for Statistical Computing. Retrieved from. https://www.R-project.org/
Ranna, D., Andrys, C., Krejsek, J., Hamakova, K., Kremlacek, J., Fiala, Z., … Borska, L. (2014). Elevated levels of circulating biomarkers of cell death (nucleosomes) in the patients with plaque psoriasis treated with the Goeckerman regimen. Bratislavské Lekárske Listy, 115(4), 229-232. https://doi.org/10.4149/bll_2014_047
Ranna, D., Borska, L., Smejkalova, J., Kotingova, L., Kremlacek, J., & Tamchynova, H. (2012). Contribution to the assessment of the health risk of occupational exposure to polycyclic aromatic hydrocarbons (PAHs). Hygie, 57(3), 84-88.
Rastogi, R. P., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 592980-592980. https://doi.org/10.4061/2010/592980
Roos, W. P., & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12(9), 440-450. https://doi.org/10.1016/j.molmed.2006.07.007
Sage, E., Girard, P. M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochemical & Photobiological Sciences, 11(1), 74-80. https://doi.org/10.1039/c1pp05219e
Silva, F. S. G., Oliveira, H., Moreiras, A., Fernandes, J. C., Bronze-da-Rocha, E., Figueiredo, A., … Santos-Silva, A. (2013). Cytotoxic and genotoxic effects of acitretin, alone or in combination with psoralen-ultraviolet A or narrow-band ultraviolet B-therapy in psoriatic patients. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 753(1), 42-47. https://doi.org/10.1016/j.mrgentox.2012.12.017
Slikker, W. Jr., Andersen, M. E., Bogdanffy, M. S., Bus, J. S., Cohen, S. D., Conolly, R. B., … Wallace, K. (2004). Dose-dependent transitions in mechanisms of toxicity. Toxicology and Applied Pharmacology, 201(3), 203-225. https://doi.org/10.1016/j.taap.2004.06.019
Svobodova, A. R., Galandakova, A., Sianska, J., Dolezal, D., Lichnovska, R., Ulrichova, J., & Vostalova, J. (2012). DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Archives of Dermatological Research, 304(5), 407-412. https://doi.org/10.1007/s00403-012-1212-x
Tajima, H., Tajiki-Nishino, R., Watanabe, Y., Kurata, K., & Fukuyama, T. (2020). Activation of aryl hydrocarbon receptor by benzo[a]pyrene increases interleukin 33 expression and eosinophil infiltration in a mouse model of allergic airway inflammation. Journal of Applied Toxicology, 1-9. https://doi.org/10.1002/jat.4017
Tichy, A., Kabacik, S., O'Brien, G., Pejchal, J., Sinkorova, Z., Kmochova, A., … Badie, C. (2018). The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE, 13(2), 1-21, e0193412. https://doi.org/10.1371/journal.pone.0193412
Toyooka, T., & Ibuki, Y. (2007). DNA damage induced by coexposure to PAHs and light. Environmental Toxicology and Pharmacology, 23(2), 256-263. https://doi.org/10.1016/j.etap.2006.09.002
Tuchinda, C., Lim, H. W., Strickland, F. M., Guzman, E. A., & Wong, H. K. (2007). Comparison of broadband UVB, narrowband UVB, broadband UVA and UVA1 on activation of apoptotic pathways in human peripheral blood mononuclear cells. Photodermatology, Photoimmunology & Photomedicine, 23(1), 2-9. https://doi.org/10.1111/j.1600-0781.2007.00260.x
Wagner, M., Bolm-Audorff, U., Hegewald, J., Fishta, A., Schlattmann, P., Schmitt, J., & Seidler, A. (2015). Occupational polycyclic aromatic hydrocarbon exposure and risk of larynx cancer: A systematic review and meta-analysis. Occupational and Environmental Medicine, 72(3), 226-233. https://doi.org/10.1136/oemed-2014-102317
Walter, D., & Knecht, U. (2007). Standardized investigation of percutaneous absorption of bitumen emission in humans. Journal of Occupational and Environmental Hygiene, 4(sup1), 144-153. https://doi.org/10.1080/15459620701354556
Wu, C. C., Bao, L. J., Tao, S., & Zeng, E. Y. (2016). Dermal uptake from airborne organics as an important route of human exposure to e-waste combustion fumes. Environmental Science & Technology, 50(13), 6599-6605. https://doi.org/10.1021/acs.est.5b05952