Genetic diversity of SAD and FAD genes responsible for the fatty acid composition in flax cultivars and lines

. 2020 Oct 14 ; 20 (Suppl 1) : 301. [epub] 20201014

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33050879
Odkazy

PubMed 33050879
PubMed Central PMC7557025
DOI 10.1186/s12870-020-02499-w
PII: 10.1186/s12870-020-02499-w
Knihovny.cz E-zdroje

BACKGROUND: Flax (Linum usitatissimum L.) is grown for fiber and seed in many countries. Flax cultivars differ in the oil composition and, depending on the ratio of fatty acids, are used in pharmaceutical, food, or paint industries. It is known that genes of SAD (stearoyl-ACP desaturase) and FAD (fatty acid desaturase) families play a key role in the synthesis of fatty acids, and some alleles of these genes are associated with a certain composition of flax oil. However, data on genetic polymorphism of these genes are still insufficient. RESULTS: On the basis of the collection of the Institute for Flax (Torzhok, Russia), we formed a representative set of 84 cultivars and lines reflecting the diversity of fatty acid composition of flax oil. An approach for the determination of full-length sequences of SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes using the Illumina platform was developed and deep sequencing of the 6 genes in 84 flax samples was performed on MiSeq. The obtained high coverage (about 400x on average) enabled accurate assessment of polymorphisms in SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes and evaluation of cultivar/line heterogeneity. The highest level of genetic diversity was observed for FAD3A and FAD3B genes - 91 and 62 polymorphisms respectively. Correlation analysis revealed associations between particular variants in SAD and FAD genes and predominantly those fatty acids whose conversion they catalyze: SAD - stearic and oleic acids, FAD2 - oleic and linoleic acids, FAD3 - linoleic and linolenic acids. All except one low-linolenic flax cultivars/lines contained both the substitution of tryptophan to stop codon in the FAD3A gene and histidine to tyrosine substitution in the FAD3B gene, while samples with only one of these polymorphisms had medium content of linolenic acid and cultivars/lines without them were high-linolenic. CONCLUSIONS: Genetic polymorphism of SAD and FAD genes was evaluated in the collection of flax cultivars and lines with diverse oil composition, and associations between particular polymorphisms and the ratio of fatty acids were revealed. The achieved results are the basis for the development of marker-assisted selection and DNA-based certification of flax cultivars.

Erratum v

PubMed

Zobrazit více v PubMed

Muir AD, Westcott ND. Flax: the genus Linum. London: CRC Press; 2003.

Cullis CA. Genetics and genomics of Linum. Cham: Springer; 2019.

Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014;51(9):1633–1653. doi: 10.1007/s13197-013-1247-9. PubMed DOI PMC

Fombuena V, Petrucci R, Dominici F, Jorda-Vilaplana A, Montanes N, Torre L. Maleinized Linseed Oil as Epoxy Resin Hardener for Composites with High Bio Content Obtained from Linen Byproducts. Polymers. 2019;11(2):301. doi: 10.3390/polym11020301. PubMed DOI PMC

Dar AA, Choudhury AR, Kancharla PK, Arumugam N. The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci. 2017;8:1789. doi: 10.3389/fpls.2017.01789. PubMed DOI PMC

Simopoulos AP, DiNicolantonio JJ. The importance of a balanced omega-6 to omega-3 ratio in the prevention and management of obesity. Open Heart. 2016;3(2):e000385. doi: 10.1136/openhrt-2015-000385. PubMed DOI PMC

Simopoulos AP. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128. doi: 10.3390/nu8030128. PubMed DOI PMC

DiNicolantonio JJ, O'Keefe JH. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open heart. 2018;5(2):e000946. doi: 10.1136/openhrt-2018-000946. PubMed DOI PMC

Shanklin J, Cahoon EB. Desaturation and related modifications of fatty Acids1. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:611–641. doi: 10.1146/annurev.arplant.49.1.611. PubMed DOI

Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM, et al. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theor Appl Genet. 2013;126(10):2627–2641. doi: 10.1007/s00122-013-2161-2. PubMed DOI PMC

Zhang Y, Maximova SN, Guiltinan MJ. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. Front Plant Sci. 2015;6:239. PubMed PMC

Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in alpha-linolenic acid content. Phytochemistry. 2014;98:41–53. doi: 10.1016/j.phytochem.2013.12.002. PubMed DOI

Jain RK, Thompson RG, Taylor DC, MacKenzie SL, McHughen A, Rowland GG, et al. Isolation and characterization of two promoters from linseed for genetic engineering. Crop Sci. 1999;39(6):1696–1701. doi: 10.2135/cropsci1999.3961696x. DOI

Thambugala D, Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.) J Appl Genet. 2014;55(4):423–432. doi: 10.1007/s13353-014-0222-0. PubMed DOI PMC

Banik M, Duguid S, Cloutier S. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Genome. 2011;54(6):471–483. doi: 10.1139/g11-013. PubMed DOI

Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol. 2005;139(1):79–87. doi: 10.1104/pp.105.064451. PubMed DOI PMC

You FM, Xiao J, Li P, Yao Z, Jia G, He L, et al. Genome-Wide Association Study and Selection Signatures Detect Genomic Regions Associated with Seed Yield and Oil Quality in Flax. Int J Mol Sci. 2018;19(8):2303. doi: 10.3390/ijms19082303. PubMed DOI PMC

Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72(3):461–473. doi: 10.1111/j.1365-313X.2012.05093.x. PubMed DOI

You FM, Xiao J, Li P, Yao Z, Jia G, He L, et al. Chromosome-scale pseudomolecules refined by optical, physical and genetic maps in flax. Plant J. 2018;95(2):371–384. doi: 10.1111/tpj.13944. PubMed DOI

You FM, Li P, Kumar S, Ragupathy R, Li Z, Fu Y, et al. Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L) J Proteomics Bioinformatics. 2014;7(10):310–326.

Rajwade AV, Joshi RS, Kadoo NY, Gupta VS. Sequence characterization and in silico structure prediction of fatty acid desaturases in linseed varieties with differential fatty acid composition. J Sci Food Agric. 2016;96(15):4896–4906. doi: 10.1002/jsfa.7775. PubMed DOI

Porokhovinova EA, Shelenga TV, Matveeva TV, Pavlov AV, Grigorieva EA, Brutch NB. Polymorphism of genes controlling low level of linolenic acid in lines from VIR flax genetic collection. Ecol Genet. 2019;17(2):5–19. doi: 10.17816/ecogen1725-19. DOI

Bjelkova M, Nozkova J, Fatrcova-Sramkova K, Tejklova E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunsaturated fatty acids. Chem Pap. 2012;66(10):972–976. doi: 10.2478/s11696-012-0209-4. DOI

Clarke JD. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protoc. 2009;2009(3):pdb.prot5177. doi: 10.1101/pdb.prot5177. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC

Krasnov GS, Melnikova NV, Lakunina VA, Snezhkina AV, Kudryavtseva AV, Dmitriev AA. MethyMer: design of combinations of specific primers for bisulfite sequencing of complete CpG islands. J Bioinforma Comput Biol. 2018;16(1):1840004. doi: 10.1142/S0219720018400048. PubMed DOI

Melnikova NV, Kudryavtseva AV, Borkhert EV, Pushkova EN, Fedorova MS, Snezhkina AV, et al. Sex-specific polymorphism of MET1 and ARR17 genes in Populus x sibirica. Biochimie. 2019;162:26–32. doi: 10.1016/j.biochi.2019.03.018. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013.

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...