The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production

. 2020 Oct 30 ; 21 (21) : . [epub] 20201030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33143091

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_048/0007323 Ministerstvo Školství, Mládeže a Tělovýchovy :
16-04184S Czech Science Foundation
IGA_PrF_2018_022, IGA_PrF_2020_010 Palacky University Olomouc

Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.

Zobrazit více v PubMed

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

Holub L., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI

Oh M.H., Kim J.H., Zulfugarov I.S., Moon Y.H., Rhew T.H., Lee C.H. Effects of benzyladenine and abscisic acid on the disassembly process of photosystems in an Arabidopsis delayed-senescence mutant, ore9. J. Plant Biol. 2005;48:170–177. doi: 10.1007/BF03030405. DOI

Vlčková A., Špundová M., Kotabová E., Novotný R., Doležal K., Nauš J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006;126:257–267. doi: 10.1111/j.1399-3054.2006.00593.x. DOI

PubMed DOI

Liu L., Li H., Zeng H., Cai Q., Zhou X., Yin C. Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. J. Plant Growth Regul. 2016;35:366–376. doi: 10.1007/s00344-015-9539-0. DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI

Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI

Woodward E.J., Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum distichum L.) Ann. Bot. 1998;61:347–354. doi: 10.1093/oxfordjournals.aob.a087563. DOI

Werbrouck S.P.O., Strnad M., Van Ockelen H.A., Debergh P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI

Iqbal M., Ashraf M., Jamil A. Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 2006;50:29–39. doi: 10.1007/s10725-006-9123-5. DOI

Bairu M.W., Stirk W.A., Doležal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ. Cult. 2007;90:15–23. doi: 10.1007/s11240-007-9233-4. DOI

Rulcová J., Pospíšilová J. Effect of benzylaminopurine on rehydration of bean plants after water stress. Biol. Plant. 2001;44:75–81. doi: 10.1023/A:1017922421606. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

Doležal K., Plíhalová L., Vylíčilová H., Zatloukal M., Plíhal O., Voller J., Strnad M., Bryksová M., Vostálová J., Rajnochová Svobodová A., et al. 6-aryl-9-glycosylpurines and use thereof. 10,100,077. U.S. Patent. 2018 Oct 16

PubMed DOI

PubMed DOI PMC

Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P., editors. Probing Photosynthesis: Mechanism, Regulation & Adaptation. Taylor & Francis; New York, NY, USA: 2000. pp. 443–480.

PubMed DOI

PubMed DOI

PubMed DOI

Špundová M., Vlčková A., Doležal K., Habertová A., Nauš J., Strnad M. Proceedings of the 12th International Congress on Photosynthesis. CSIRO Publishing; Collingwood, Victoria, Australia: 2001. Effect of meta-topolin and bohemine derived from benzylaminopurine on PSII function in artificially senescing wheat leaves. S22-012.

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI

Gilmore A.M., Björkman O. Adenine nucleotides and the xanthophyll cycle in leaves—I. Effects of CO2- and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta. 1994;192:526–536. doi: 10.1007/BF00203591. DOI

Sedlářová M., Petřivalský M., Piterková J., Luhová L., Kočířová J., Lebeda A. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 2011;129:267–280. doi: 10.1007/s10658-010-9626-9. DOI

PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...