Impacts of predator-induced behavioural plasticity on the temperature dependence of predator-prey activity and population dynamics
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33159686
DOI
10.1111/1365-2656.13383
Knihovny.cz E-zdroje
- Klíčová slova
- amphibian, climate change, dragonfly, locomotor activity, phenotypic plasticity, predation risk, predator-prey interaction, thermal reaction norm,
- MeSH
- populační dynamika MeSH
- potravní řetězec MeSH
- predátorské chování MeSH
- teplota MeSH
- vážky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator-prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predator-induced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator-prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator-prey population dynamics. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator-prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator-prey dynamics. The behavioural component of predator-prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator-prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator-prey interactions and food web dynamics.
Czech Academy of Sciences Biology Centre Institute of Entomology České Budějovice Czech Republic
Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
Zobrazit více v PubMed
Abram, P. K., Boivin, G., Moiroux, J., & Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biological Reviews, 92, 1859-1876. https://doi.org/10.1111/brv.12312
Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294, 321-326. https://doi.org/10.1126/science.1060701
Amarasekare, P., & Savage, V. (2012). A framework for elucidating the temperature dependence of fitness. The American Naturalist, 179, 178-191. https://doi.org/10.1086/663677
Augustin, J., Boivin, G., Brodeur, J., & Bourgeois, G. (2020). Effect of temperature on the walking behaviour of an egg parasitoid: Disentangling kinetic response from integrated response. Ecological Entomology, 45, 741-750. https://doi.org/10.1111/een.12850
Baškiera, S., & Gvoždík, L. (2019). Repeatability of thermal reaction norms for spontaneous locomotor activity in juvenile newts. Journal of Thermal Biology, 80, 126-132. https://doi.org/10.1016/j.jtherbio.2019.01.010
Binzer, A., Guill, C., Brose, U., & Rall, B. C. (2012). The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2935-2944. https://doi.org/10.1098/rstb.2012.0230
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. https://doi.org/10.1016/j.tree.2011.01.009
Boukal, D. S., Bideault, A., Carreira, B. M., & Sentis, A. (2019). Species interactions under climate change: Connecting kinetic effects of temperature on individuals to community dynamics. Current Opinion in Insect Science, 35, 88-95. https://doi.org/10.1016/j.cois.2019.06.014
Boukal, D. S., Sabelis, M. W., & Berec, L. (2007). How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theoretical Population Biology, 72, 136-147. https://doi.org/10.1016/j.tpb.2006.12.003
Bourdeau, P. E., & Johansson, F. (2012). Predator-induced morphological defences as by-products of prey behaviour: A review and prospectus. Oikos, 121, 1175-1190. https://doi.org/10.2307/23261003
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. https://doi.org/10.1890/03-9000
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer.
Chovanec, A. (1992). Beutewahrnehmung (Reaktive Distanzen) und Beuteverfolgung (Kritische Distanzen) bei Larven von Aeshna cyanea (Müller) (Anisoptera: Aeshnidae). Odonatologica, 21, 327-333.
Cloyed, C. S., Dell, A. I., Hayes, T., Kordas, R. L., & O'Gorman, E. J. (2019). Long-term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement. Journal of Animal Ecology, 88, 833-844. https://doi.org/10.1111/1365-2656.12976
Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G. G., Noldus, L. P. J. J., Pérez-Escudero, A., Perona, P., Straw, A. D., Wikelski, M., & Brose, U. (2014). Automated image-based tracking and its application in ecology. Trends in Ecology & Evolution, 29, 417-428. https://doi.org/10.1016/j.tree.2014.05.004
Dell, A. I., Pawar, S., & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, 108(26), 10591-10596. https://doi.org/10.1073/pnas.1015178108
Dell, A. I., Pawar, S., & Savage, V. M. (2014). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83, 70-84. https://doi.org/10.1111/1365-2656.12081
Drai, D., & Golani, I. (2001). SEE: A tool for the visualization and analysis of rodent exploratory behavior. Neuroscience & Biobehavioral Reviews, 25, 409-426. https://doi.org/10.1016/s0149-7634(01)00022-7
Dvořák, J., & Gvoždík, L. (2010). Adaptive accuracy of temperature oviposition preferences in newts. Evolutionary Ecology, 24, 1115-1127. https://doi.org/10.1007/s10682-010-9355-8
Englund, G., Öhlund, G., Hein, C. L., & Diehl, S. (2011). Temperature dependence of the functional response. Ecology Letters, 14, 914-921. https://doi.org/10.1111/j.1461-0248.2011.01661.x
Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A., & Rall, B. C. (2014). Ecological stability in response to warming. Nature Climate Change, 4, 206-210. https://doi.org/10.1038/nclimate2134
Gilbert, B., Tunney, T. D., McCann, K. S., DeLong, J. P., Vasseur, D. A., Savage, V., Shurin, J. B., Dell, A. I., Barton, B. T., Harley, C. D. G., Kharouba, H. M., Kratina, P., Blanchard, J. L., Clements, C., Winder, M., Greig, H. S., & O'Connor, M. I. (2014). A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 17, 902-914. https://doi.org/10.1111/ele.12307
Gilman, S. E. (2017). Predicting indirect effects of predator-prey interactions. Integrative and Comparative Biology, 57, 148-158. https://doi.org/10.1093/icb/icx031
Gvoždík, L., & Boukal, D. S. (2020). Predator-induced plasticity and the temperature dependence of predator-prey activity and population dynamics. Figshare, https://doi.org/10.6084/m9.figshare.13182524.v1
Gvoždík, L., Černická, E., & Van Damme, R. (2013). Predator-prey interactions shape thermal patch use in a newt larvae-dragonfly nymph model. PLoS ONE, 8, e65079. https://doi.org/10.1371/journal.pone.0065079
Gvoždík, L., & Kristín, P. (2017). Economic thermoregulatory response explains mismatch between thermal physiology and behaviour in newts. Journal of Experimental Biology, 220, 1106-1111. https://doi.org/10.1242/jeb.145573
Gvoždík, L., & Smolinský, R. (2015). Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae. BMC Evolutionary Biology, 15, 522. https://doi.org/10.1186/s12862-015-0522-y
Gvoždík, L., & Van Damme, R. (2008). The evolution of thermal performance curves in semiaquatic newts: Thermal specialists on land and thermal generalists in water? Journal of Thermal Biology, 33, 395-403. https://doi.org/10.1016/j.jtherbio.2008.06.004
Hloušková, M., Balogová, M., Kršáková, V., & Gvoždík, L. (2018). No trade-offs in interspecific interference ability and predation susceptibility in newt larvae. Ecology and Evolution, 8, 9095-9104. https://doi.org/10.1002/ece3.4465
Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. American Zoologist, 19, 357-366. https://doi.org/10.1093/icb/19.1.357
Hughes, G. M., & Mill, P. J. (1966). Patterns of ventilation in dragonfly larvae. Journal of Experimental Biology, 52, 167-175.
Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J.-L., Fourcassié, V., & Theraulaz, G. (2003). A model of animal movements in a bounded space. Journal of Theoretical Biology, 225, 443-451. https://doi.org/10.1016/S0022-5193(03)00277-7
Johansson, A., & Johansson, F. (1992). Effects of two different caddisfly case structures on predation by a dragonfly larva. Aquatic Insects, 14, 73-84. https://doi.org/10.1080/01650429209361467
Johnson, J. B., Burt, D. B., & DeWitt, T. J. (2008). Form, function, and fitness: Pathways to survival. Evolution, 62, 1243-1251. https://doi.org/10.1111/j.1558-5646.2008.00343.x
Jürgens, K., & Matz, C. (2002). Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek, 81, 413-434. https://doi.org/10.1023/a:1020505204959
Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: Data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology, 75, 1553-1560. https://doi.org/10.1139/z97-782
Mancinelli, G. (2010). Intraspecific, size-dependent variation in the movement behaviour of a brackish-water isopod: A resource-free laboratory experiment. Marine and Freshwater Behaviour and Physiology, 43, 321-337. https://doi.org/10.1080/10236244.2010.512728
Martin, J. R. (2003). Locomotor activity: A complex behavioural trait to unravel. Behavioral Processes, 64, 145-160. https://doi.org/10.1016/s0376-6357(03)00132-3
McCoy, M. W. (2007). Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia, 153, 871-878. https://doi.org/10.1007/s00442-007-0795-y
Měráková, E., & Gvoždík, L. (2009). Thermal acclimation of swimming performance in newt larvae: The influence of diel temperature fluctuations during embryogenesis. Functional Ecology, 23, 989-995. https://doi.org/10.1111/j.1365-2435.2009.01588.x
Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. A. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 12, 685-692. https://doi.org/10.1016/j.tree.2005.08.002
Öhlund, G., Hedstrom, P., Norman, S., Hein, C. L., & Englund, G. (2015). Temperature dependence of predation depends on the relative performance of predators and prey. Proceedings of the Royal Society B: Biological Sciences, 282, 20142254. https://doi.org/10.1098/rspb.2014.2254
Rall, B. C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmuller, F., Vucic-Pestic, O., & Petchey, O. L. (2012). Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2923-2934. https://doi.org/10.1098/rstb.2012.0242
Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M., & Brose, U. (2010). Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157. https://doi.org/10.1111/j.1365-2486.2009.02124.x
Relyea, R. A. (2002). Competitor-induced plasticity in tadpoles: Consequences, cues, and connections to predator-induced plasticity. Ecological Monographs, 72, 523-540. https://doi.org/10.2307/3100055
Rosenzweig, M. L. (1971). The paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science, 171, 385-387. https://doi.org/10.1126/science.171.3969.385
Sandblom, E., Clark, T. D., Gräns, A., Ekström, A., Brijs, J., Sundström, L. F., Odelström, A., Adill, A., Aho, T., & Jutfelt, F. (2016). Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nature Communications, 7, 11447. https://doi.org/10.1038/ncomms11447
Sentis, A., Binzer, A., & Boukal, D. S. (2017). Temperature-size responses alter food chain persistence across environmental gradients. Ecology Letters, 20, 852-862. https://doi.org/10.1111/ele.12779
Sentis, A., Morisson, J., & Boukal, D. S. (2015). Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics. Global Change Biology, 21, 3290-3298. https://doi.org/10.1111/gcb.12931
Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D. G., Marshall, D. J., Helmuth, B. S., & Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19, 1372-1385. https://doi.org/10.1111/ele.12686
Smolinský, R., & Gvoždík, L. (2014). Effect of temperature extremes on the spatial dynamics of predator-prey interactions: A case study with dragonfly nymphs and newt larvae. Journal of Thermal Biology, 39, 12-16. https://doi.org/10.1016/j.jtherbio.2013.11.004
Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. Animal Behaviour, 85, 1004-1011. https://doi.org/10.1016/j.anbehav.2012.12.031
Stoks, R., Verheyen, J., Van Dievel, M., & Tüzün, N. (2017). Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Current Opinion in Insect Science, 23, 35-42. https://doi.org/10.1016/j.cois.2017.06.008
Uszko, W., Diehl, S., Englund, G., & Amarasekare, P. (2017). Effects of warming on predator-prey interactions: A resource-based approach and a theoretical synthesis. Ecology Letters, 20, 513-523. https://doi.org/10.1111/ele.12755
Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L., & Schuler, H. (2003). The lure effect, tadpole tail shape, and the target of dragonfly strikes. Journal of Herpetology, 37, 420-424. https://doi.org/10.1670/0022-1511(2003)037[0420:TLETTS]2.0.CO;2
Van Buskirk, J., & Schmidt, B. R. (2000). Predator-induced phenotypic plasticity in larval newts: Trade-offs, selection, and variation in nature. Ecology, 81, 3009-3028. https://doi.org/10.2307/177397
Verschoor, A. M., Vos, M., & Van Der Stap, I. (2004). Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecology Letters, 7, 1143-1148. https://doi.org/10.1111/j.1461-0248.2004.00675.x
Wellborn, G. A., Skelly, D. K., & Werner, E. E. (1996). Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics, 27, 337-363. https://doi.org/10.1146/annurev.ecolsys.27.1.337
Werner, E. E., & Anholt, B. R. (1993). Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. The American Naturalist, 142, 242-272. https://doi.org/10.1086/285537
Werner, E., & Peacor, S. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 1083-1100. https://doi.org/10.1890/00129658(2003)084[1083:AROTII]2.0.CO;2
Winterová, B., & Gvoždík, L. (2018). Influence of interspecific competitors on behavioral thermoregulation: Developmental or acute plasticity? Behavioral Ecology and Sociobiology, 72, 169. https://doi.org/10.1007/s00265-018-2587-2
Yodzis, P., & Innes, S. (1992). Body size and consumer-resource dynamics. The American Naturalist, 139, 1151-1175. https://doi.org/10.1086/285380
Zuur, A. F., Leno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
Plasticity in climate change responses