A novel cryo-embedding method for in-depth analysis of craniofacial mini pig bone specimens
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33177543
PubMed Central
PMC7658236
DOI
10.1038/s41598-020-76336-3
PII: 10.1038/s41598-020-76336-3
Knihovny.cz E-zdroje
- MeSH
- fyziologická kalcifikace MeSH
- kryoprezervace metody MeSH
- kryoultramikrotomie metody MeSH
- lebka cytologie MeSH
- miniaturní prasata MeSH
- odběr biologického vzorku metody MeSH
- polyethylenglykoly MeSH
- prasata MeSH
- remodelace kosti MeSH
- sacharosa MeSH
- sodná sůl karboxymethylcelulosy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyethylenglykoly MeSH
- sacharosa MeSH
- sodná sůl karboxymethylcelulosy MeSH
The disconnect between preclinical and clinical results underscores the imperative for establishing good animal models, then gleaning all available data on efficacy, safety, and potential toxicities associated with a device or drug. Mini pigs are a commonly used animal model for testing orthopedic and dental devices because their skeletons are large enough to accommodate human-sized implants. The challenge comes with the analyses of their hard tissues: current methods are time-consuming, destructive, and largely limited to histological observations made from the analysis of very few tissue sections. We developed and employed cryo-based methods that preserved the microarchitecture and the cellular/molecular integrity of mini pig hard tissues, then demonstrated that the results of these histological, histochemical, immunohistochemical, and dynamic histomorphometric analyses e.g., mineral apposition rates were comparable with similar data from preclinical rodent models. Thus, the ability to assess static and dynamic bone states increases the translational value of mini pig and other large animal model studies. In sum, this method represents logical means to minimize the number of animals in a study while simultaneously maximizing the amount of information collected from each specimen.
Zobrazit více v PubMed
Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 2010;16:123–145. doi: 10.1089/ten.TEB.2009.0658. PubMed DOI
McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 2014;87:162–171. doi: 10.1016/j.bcp.2013.08.006. PubMed DOI
Scheinpflug J, et al. Journey into bone models: a review. Genes (Basel) 2018 doi: 10.3390/genes9050247. PubMed DOI PMC
Eppig JT. Mouse genome informatics (MGI) resource: genetic, genomic, and biological knowledgebase for the laboratory mouse. ILAR J. 2017;58:17–41. doi: 10.1093/ilar/ilx013. PubMed DOI PMC
Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA. 2015;112:1167–1172. doi: 10.1073/pnas.1401965111. PubMed DOI PMC
Vandamme TF. Rodent models for human diseases. Eur. J. Pharmacol. 2015;759:84–89. doi: 10.1016/j.ejphar.2015.03.046. PubMed DOI
Epstein SE, Luger D, Lipinski MJ. Large animal model efficacy testing is needed prior to launch of a stem cell clinical trial: an evidence-lacking conclusion based on conjecture. Circ. Res. 2017;121:496–498. doi: 10.1161/CIRCRESAHA.117.311562. PubMed DOI
Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathol. 2015;52:842–850. doi: 10.1177/0300985815593124. PubMed DOI
Stavropoulos A, Cochran D, Obrecht M, Pippenger BE, Dard M. Effect of osteotomy preparation on osseointegration of immediately loaded, tapered dental implants. Adv. Dent. Res. 2016;28:34–41. doi: 10.1177/0022034515624446. PubMed DOI
Jensen SS, et al. Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: a histomorphometric study in minipigs. Clin. Implant Dent. Relat. Res. 2015;17:274–285. doi: 10.1111/cid.12101. PubMed DOI
Erdogan O, Ustun Y, Tatli U, Damlar I, Daglioglu K. A pig model for the histomorphometric evaluation of hard tissue around dental implants. J. Oral Implantol. 2013;39:551–557. doi: 10.1563/AAID-JOI-D-11-00009. PubMed DOI
Stelzle F, et al. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation: an experimental ex vivo comparison between piezosurgery and conventional drilling. Clin. Oral Implants Res. 2012 doi: 10.1111/clr.12077. PubMed DOI
Cone SG, Warren PB, Fisher MB. Rise of the pigs: utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng. Part C Methods. 2017;23:763–780. doi: 10.1089/ten.TEC.2017.0227. PubMed DOI PMC
Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin. Implant Dent. Relat. Res. 2012;14:538–545. doi: 10.1111/j.1708-8208.2010.00289.x. PubMed DOI
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur. Cells Mater. 2007;13:1–10. doi: 10.22203/ecm.v013a01. PubMed DOI
Inui A, et al. Age-related changes of bone mineral density and microarchitecture in miniature pigs. J. Vet. Med. Sci. 2004;66:599–609. doi: 10.1292/jvms.66.599. PubMed DOI
Mangano F, Mortellaro C, Mangano N, Mangano C. Is low serum vitamin D associated with early dental implant failure? A retrospective evaluation on 1625 implants placed in 822 patients. Mediators Inflamm. 2016;2016:5319718. doi: 10.1155/2016/5319718. PubMed DOI PMC
Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J. Dent. Res. 2017;96:516–523. doi: 10.1177/0022034516689082. PubMed DOI PMC
Yeh KD, Popowics T. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, sus scrofa. Anat. Histol. Embryol. 2011;40:283–291. doi: 10.1111/j.1439-0264.2011.01067.x. PubMed DOI PMC
Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J. Histochem. Cytochem. 1999;47:703–710. doi: 10.1177/002215549904700512. PubMed DOI
Erben RG. Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J. Histochem. Cytochem. 1997;45:307–313. doi: 10.1177/002215549704500215. PubMed DOI
Porter A, et al. Quick and inexpensive paraffin-embedding method for dynamic bone formation analyses. Sci. Rep. 2017;7:42505. doi: 10.1038/srep42505. PubMed DOI PMC
Savi FM, Brierly GI, Baldwin J, Theodoropoulos C, Woodruff MA. Comparison of different decalcification methods using rat mandibles as a model. J. Histochem. Cytochem. 2017;65:705–722. doi: 10.1369/0022155417733708. PubMed DOI PMC
Choi SE, Hong SW, Yoon SO. Proposal of an appropriate decalcification method of bone marrow biopsy specimens in the era of expanding genetic molecular study. J. Pathol. Transl. Med. 2015;49:236–242. doi: 10.4132/jptm.2015.03.16. PubMed DOI PMC
Sangeetha R, Uma K, Chandavarkar V. Comparison of routine decalcification methods with microwave decalcification of bone and teeth. J. Oral Maxillofac. Pathol. 2013;17:386–391. doi: 10.4103/0973-029X.125204. PubMed DOI PMC
McLaren JS, et al. A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. Eur. Cells Mater. 2014;27:332–349. doi: 10.22203/ecm.v027a24. PubMed DOI
Dyment NA, et al. High-throughput, multi-image cryohistology of mineralized tissues. J. Vis. Exp. JoVE. 2016 doi: 10.3791/54468. PubMed DOI PMC
Yuan X, et al. Biomechanics of immediate postextraction implant osseointegration. J. Dent. Res. 2018;97:987–994. doi: 10.1177/0022034518765757. PubMed DOI PMC
Yuan X, et al. A Wnt-responsive PDL population effectuates extraction socket healing. J. Dent. Res. 2018 doi: 10.1177/0022034518755719. PubMed DOI PMC
Zhao Y, Yuan X, Bellido T, Helms JA. A correlation between Wnt/beta-catenin signaling and the rate of dentin secretion. J. Endod. 2019;45:1357–13641351. doi: 10.1016/j.joen.2019.07.014. PubMed DOI PMC
Sterchi DL, Eurell JA. A new method for preparation of undecalcified bone sections. Stain Technol. 1989;64:201–205. doi: 10.3109/10520298909107000. PubMed DOI
Golubeva YG, Smith RM, Sternberg LR. Optimizing frozen sample preparation for laser microdissection: assessment of CryoJane tape-transfer system(R) PLoS ONE. 2013;8:e66854. doi: 10.1371/journal.pone.0066854. PubMed DOI PMC
Serowoky MA, Patel DD, Hsieh JW, Mariani FV. The use of commercially available adhesive tapes to preserve cartilage and bone tissue integrity during cryosectioning. Biotechniques. 2018;65:191–196. doi: 10.2144/btn-2018-0021. PubMed DOI PMC
Dobson PF, et al. Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA(-/-) mice. Sci. Rep. 2016;6:31907. doi: 10.1038/srep31907. PubMed DOI PMC
Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:1209–1217. doi: 10.1093/gerona/glt046. PubMed DOI PMC
Roach HI, Mehta G, Oreffo RO, Clarke NM, Cooper C. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis. J. Histochem. Cytochem. 2003;51:373–383. doi: 10.1177/002215540305100312. PubMed DOI
Sipos W. Shifts in porcine PBMC populations from adolescence to adulthood. Vet. Immunol. Immunopathol. 2019;211:35–37. doi: 10.1016/j.vetimm.2019.04.002. PubMed DOI
Dai W, et al. Beta-ecdysone augments peak bone mass in mice of both sexes. Clin. Orthop. Relat. Res. 2015;473:2495–2504. doi: 10.1007/s11999-015-4246-5. PubMed DOI PMC
Malvi P, et al. High fat diet promotes achievement of peak bone mass in young rats. Biochem. Biophys. Res. Commun. 2014;455:133–138. doi: 10.1016/j.bbrc.2014.10.131. PubMed DOI
Swindle MM, Makin A, Herron AJ, Clubb FJ, Jr, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012;49:344–356. doi: 10.1177/0300985811402846. PubMed DOI
Mills LA, Simpson AH. In vivo models of bone repair. J. Bone Joint Surg. Br. 2012;94:865–874. doi: 10.1302/0301-620x.94b7.27370. PubMed DOI
Olah T, et al. Topographic modeling of early human osteoarthritis in sheep. Sci. Transl. Med. 2019 doi: 10.1126/scitranslmed.aax6775. PubMed DOI
Pound P, et al. Where is the evidence that animal research benefits humans? BMJ. 2004;328:514–517. doi: 10.1136/bmj.328.7438.514. PubMed DOI PMC
Graham ML, Prescott MJ. The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur. J. Pharmacol. 2015;759:19–29. doi: 10.1016/j.ejphar.2015.03.040. PubMed DOI PMC
Badyal DK, Desai C. Animal use in pharmacology education and research: the changing scenario. Indian J. Pharmacol. 2014;46:257–265. doi: 10.4103/0253-7613.132153. PubMed DOI PMC