Transfer-RNA-Derived Fragments Are Potential Prognostic Factors in Patients with Squamous Cell Carcinoma of the Head and Neck

. 2020 Nov 13 ; 11 (11) : . [epub] 20201113

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33202812

Transfer-RNA-derived fragments (tRFs) are a class of small non-coding RNAs that are functionally different from their parental transfer RNAs (tRNAs). tRFs can regulate gene expression by several mechanisms, and are involved in a variety of pathological processes. Here, we aimed at understanding the composition and abundance of tRFs in squamous cell carcinoma of the head and neck (SCCHN), and evaluated the potential of tRFs as prognostic markers in this cancer type. We obtained tRF expression data from The Cancer Genome Atlas (TCGA) HNSC cohort (523 patients) using MINTbase v2.0, and correlated to available TCGA clinical data. RNA-binding proteins were predicted according to the calculated Position Weight Matrix (PWM) score from the RNA-Binding Protein DataBase (RBPDB). A total of 10,158 tRFs were retrieved and a high diversity in expression levels was seen. Fifteen tRFs were found to be significantly associated with overall survival (Kaplan-Meier survival analysis, log rank test p-value < 0.01). The top prognostic marker, tRF-20-S998LO9D (p < 0.001), was further measured in tumor and tumor-free samples from 16 patients with squamous cell carcinoma of the oral tongue and 12 healthy controls, and was significantly upregulated in tumor compared to matched tumor-free tongue (p < 0.001). Results suggest that tRFs are useful prognostic markers in SCCHN.

Zobrazit více v PubMed

Haussecker D., Huang Y., Lau A., Parameswaran P., Fire A.Z., Kay M.A. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16:673–695. doi: 10.1261/rna.2000810. PubMed DOI PMC

Gebetsberger J.V., Wyss L., Mleczko A.M., Reuther J., Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–1373. doi: 10.1080/15476286.2016.1257470. PubMed DOI PMC

Kim H.K., Fuchs G., Wang S., Wei W., Zhang Y., Park H., Roy-Chaudhuri B., Cliff Z.Q., Xu J., Shengchun W., et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nat. Cell Biol. 2017;552:57–62. doi: 10.1038/nature25005. PubMed DOI PMC

Kuscu C., Kumar P., Kiran M., Su Z., Malik A., Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA. 2018;24:1093–1105. doi: 10.1261/rna.066126.118. PubMed DOI PMC

Boskovic A., Bing X.Y., Kaymak E., Rando O.J. Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev. 2020;34:118–131. doi: 10.1101/gad.332783.119. PubMed DOI PMC

Thompson D.M., Parker R. Stressing Out over tRNA Cleavage. Cell. 2009;138:215–219. doi: 10.1016/j.cell.2009.07.001. PubMed DOI

Telonis A.G., Loher P., Honda S., Jing Y., Palazzo J., Kirino Y., Rigoutsos I. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget. 2015;6:24797–24822. doi: 10.18632/oncotarget.4695. PubMed DOI PMC

Guzzi N., Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biol. 2020:1–9. doi: 10.1080/15476286.2020.1732694. PubMed DOI PMC

Sun C., Fu Z., Wang S., Li J., Li Y., Zhang Y., Yang F., Chu J., Wu H., Huang X., et al. Roles of tRNA-derived fragments in human cancers. Cancer Lett. 2018;414:16–25. doi: 10.1016/j.canlet.2017.10.031. PubMed DOI

Zhu L., Ge J., Li T., Shen Y., Guo J. tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Lett. 2019;452:31–37. doi: 10.1016/j.canlet.2019.03.012. PubMed DOI

Pliatsika V., Loher P., Telonis A.G., Rigoutsos I. MINTbase: A framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics. 2016;32:2481–2489. doi: 10.1093/bioinformatics/btw194. PubMed DOI PMC

Pliatsika V., Loher P., Magee R., Telonis A.G., Londin E., Shigematsu M., Kirino Y., Rigoutsos I. MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res. 2018;46:D152–D159. doi: 10.1093/nar/gkx1075. PubMed DOI PMC

Borek E., Baliga B.S., Gehrke C.W., Kuo C.W., Belman S., Troll W., Waalkes T.P. High turnover rate of transfer RNA in tumor tissue. Cancer Res. 1977;37:3362–3366. PubMed

Speer J., Gehrke C.W., Kuo K.C., Waalkes T.P., Borek E. tRNA breakdown products as markers for cancer. Cancer. 1979;44:2120–2123. doi: 10.1002/1097-0142(197912)44:6<2120::AID-CNCR2820440623>3.0.CO;2-6. PubMed DOI

Telonis A.G., Loher P., Magee R., Pliatsika V., Londin E., Kirino Y., Rigoutsos I. tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res. 2019;79:3034–3049. doi: 10.1158/0008-5472.CAN-19-0789. PubMed DOI PMC

Xie Y., Yao L., Yu X., Ruan Y., Li Z., Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct. Target. Ther. 2020;5:1–9. doi: 10.1038/s41392-020-00217-4. PubMed DOI PMC

Chen Q., Yan M., Cao Z., Li X., Zhang Y., Shi J., Feng G.-H., Peng H., Zhang X., Qian J., et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400. doi: 10.1126/science.aad7977. PubMed DOI

Qin C., Xu P.-P., Zhang X., Zhang C., Liu C.-B., Yang D.-G., Gao F., Yang M.-L., Du L.-J., Li J. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen. Res. 2020;15:212–221. doi: 10.4103/1673-5374.265560. PubMed DOI PMC

Pekarsky Y., Balatti V., Palamarchuk A., Rizzotto L., Veneziano D., Nigita G., Rassenti L.Z., Pass H.I., Kipps T.J., Liu C.-G., et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc. Natl. Acad. Sci. USA. 2016;113:5071–5076. doi: 10.1073/pnas.1604266113. PubMed DOI PMC

Olvedy M., Scaravilli M., Hoogstrate Y., Visakorpi T., Jenster G., Martens-Uzunova E.S. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget. 2016;7:24766–24777. doi: 10.18632/oncotarget.8293. PubMed DOI PMC

Balatti V., Nigita G., Veneziano D., Drusco A., Stein G.S., Messier T.L., Farina N.H., Lian J.B., Tomasello L., Liu C.-G., et al. tsRNA signatures in cancer. Proc. Natl. Acad. Sci. USA. 2017;114:8071–8076. doi: 10.1073/pnas.1706908114. PubMed DOI PMC

Honda S., Loher P., Shigematsu M., Palazzo J.P., Suzuki R., Imoto I., Rigoutsos I., Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA. 2015;112:E3816–E3825. doi: 10.1073/pnas.1510077112. PubMed DOI PMC

Goodarzi H., Liu X., Nguyen H.C., Zhang S., Fish L., Tavazoie S.F. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell. 2015;161:790–802. doi: 10.1016/j.cell.2015.02.053. PubMed DOI PMC

Huang B., Yang H., Cheng X., Wang D., Fu S., Shen W., Zhang Q., Zhang L., Xue Z., Li Y., et al. tRF/miR-1280 Suppresses Stem Cell–like Cells and Metastasis in Colorectal Cancer. Cancer Res. 2017;77:3194–3206. doi: 10.1158/0008-5472.CAN-16-3146. PubMed DOI

Chow L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020;382:60–72. doi: 10.1056/NEJMra1715715. PubMed DOI

Leemans C.R., Snijders P.J.F., Brakenhoff R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer. 2018;18:269–282. doi: 10.1038/nrc.2018.11. PubMed DOI

Cancer Genome Atlas Network Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–582. doi: 10.1038/nature14129. PubMed DOI PMC

Sgaramella N., Gu X., Boldrup L., Coates P.J., Fahraeus R., Califano L., Tartaro G., Colella G., Spaak L.N., Strom A., et al. Searching for New Targets and Treatments in the Battle Against Squamous Cell Carcinoma of the Head and Neck, with Specific Focus on Tumours of the Tongue. Curr. Top. Med. Chem. 2018;18:214–218. doi: 10.2174/1568026618666180116121624. PubMed DOI

Budach V., Tinhofer I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: A systematic review. Lancet Oncol. 2019;20:e313–e326. doi: 10.1016/S1470-2045(19)30177-9. PubMed DOI

Zhu P., Yu J., Zhou P. Role of tRNA-derived fragments in cancer: Novel diagnostic and therapeutic targets tRFs in cancer. Am. J. Cancer Res. 2020;10:393–402. PubMed PMC

Dhahbi J.M., Lopez Y.O.N., Schneider A., Victoria B., Saccon T., Bharat K., McClatchey T., Atamna H., Scierski W., Golusinski P., et al. Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5′ tRNA-Val-CAC-2-1 Half. Front. Oncol. 2019;9:959. doi: 10.3389/fonc.2019.00959. PubMed DOI PMC

Martinez B.V., Dhahbi J.M., Lopez Y.O.N., Lamperska K., Golusinski P., Luczewski L., Kolenda T., Atamna H., Spindler S.R., Golusinski W., et al. Circulating small non coding RNA signature in head and neck squamous cell carcinoma. Oncotarget. 2015;6:19246–19263. doi: 10.18632/oncotarget.4266. PubMed DOI PMC

Kaplan E.L., Meier P. Nonparametric-Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958;53:457–481. doi: 10.1080/01621459.1958.10501452. DOI

Kassambara A., Kosinski M., Biecek P. Survminer: Drawing Survival Curves Using ‘ggplot2’. R Core Team; Vienna, Austria: 2019.

Ivanov P., Emara M.M., Villen J., Gygi S.P., Anderson P. Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Mol. Cell. 2011;43:613–623. doi: 10.1016/j.molcel.2011.06.022. PubMed DOI PMC

Krishna S., Yim D.G., Lakshmanan V., Tirumalai V., Koh J.L., Park J.E., Cheong J.K., Low J.L., Lim M.J., Sze S.-K., et al. Dynamic expression of tRNA-derived small RNAs define cellular states. EMBO Rep. 2019;20:e47789. doi: 10.15252/embr.201947789. PubMed DOI PMC

Cook K.B., Kazan H., Zuberi K., Morris Q., Hughes T.R. RBPDB: A database of RNA-binding specificities. Nucleic Acids Res. 2011;39:D301–D308. doi: 10.1093/nar/gkq1069. PubMed DOI PMC

Gu X., Boldrup L., Coates P.J., Fahraeus R., Wang L., Wilms T., Norberg-Spaak L., Sgaramella N., Nylander K. High immune cytolytic activity in tumor-free tongue tissue confers better prognosis in patients with squamous cell carcinoma of the oral tongue. J. Pathol. Clin. Res. 2019;5:240–247. doi: 10.1002/cjp2.138. PubMed DOI PMC

Boldrup L., Gu X., Coates P.J., Norberg-Spaak L., Fåhraeus R., Laurell G., Wilms T., Nylander K. Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget. 2017;8:19389–19402. doi: 10.18632/oncotarget.14288. PubMed DOI PMC

Yamasaki S., Ivanov P., Hu G.-F., Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 2009;185:35–42. doi: 10.1083/jcb.200811106. PubMed DOI PMC

Ivanov P., O’Day E., Emara M.M., Wagner G., Lieberman J., Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. USA. 2014;111:18201–18206. doi: 10.1073/pnas.1407361111. PubMed DOI PMC

Hsieh J.C.-H., Wang H., Wu M., Chang K., Chang P., Liao C., Liau C. Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck. 2019;41(Suppl. 1):19–45. doi: 10.1002/hed.25932. PubMed DOI

Ang K.K., Harris J., Wheeler R., Weber R., Rosenthal D.I., Nguyen-Tân P.F., Westra W.H., Chung C.H., Jordan R.C., Lu C., et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010;363:24–35. doi: 10.1056/NEJMoa0912217. PubMed DOI PMC

Li H., Torabi S.J., Yarbrough W.G., Mehra S., Osborn H.A., Judson B.L. Association of Human Papillomavirus Status at Head and Neck Carcinoma Subsites with Overall Survival. JAMA Otolaryngol. Head Neck Surg. 2018;144:519–525. doi: 10.1001/jamaoto.2018.0395. PubMed DOI PMC

Wang Y., Begley M., Li Q., Huang H.-T., Lako A., Eck M.J., Gray N.S., Mitchison T.J., Cantley L.C., Zhao J.J. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival. Proc. Natl. Acad. Sci. USA. 2016;113:9810–9815. doi: 10.1073/pnas.1606862113. PubMed DOI PMC

Shahbazian D., Parsyan A., Petroulakis E., Hershey J.W.B., Sonenberg N. eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. Cell Cycle. 2010;9:4106–4109. doi: 10.4161/cc.9.20.13630. PubMed DOI PMC

Sobala A., Hutvagner G. Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol. 2013;10:553–563. doi: 10.4161/rna.24285. PubMed DOI PMC

Wang Z.L., Liang-Hu Q., Luo Y.-X., Lin Q., Liu S.-R., Zhang X.-Q., Zhou H., Yang J., Qu L. Comprehensive Genomic Characterization of RNA-Binding Proteins across Human Cancers. Cell Rep. 2018;22:286–298. doi: 10.1016/j.celrep.2017.12.035. PubMed DOI

Altman D.G., McShane L.M., Sauerbrei W., Taube S.E. Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Med. 2012;10:51. doi: 10.1186/1741-7015-10-51. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace