• This record comes from PubMed

Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin

. 2020 Nov 24 ; 9 (12) : . [epub] 20201124

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.

Erratum In

PubMed

See more in PubMed

Kim E.K., Kim H.O., Park Y.M., Park C.J., Yu D.S., Lee J.Y. Prevalence and risk factors of depression in geriatric patients with dermatological diseases. Ann. Dermatol. 2013;25:278–284. doi: 10.5021/ad.2013.25.3.278. PubMed DOI PMC

Draelos Z.D. Cosmetics and skin care products. A historical perspective. Dermatol. Clin. 2000;18:557–559. doi: 10.1016/S0733-8635(05)70206-0. PubMed DOI

Tundis R., Loizzo M.R., Bonesi M., Menichini F. Potential role of natural compounds against skin aging. Curr. Med. Chem. 2015;22:1515–1538. doi: 10.2174/0929867322666150227151809. PubMed DOI

Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI

Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI

Amler E., Filova E., Buzgo M., Prosecka E., Rampichova M., Necas A., Nooeaid P., Boccaccini A.R. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine. 2014;9:1083–1094. doi: 10.2217/nnm.14.57. PubMed DOI

Chakraborty S., Liao I.C., Adler A., Leong K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009;61:1043–1054. doi: 10.1016/j.addr.2009.07.013. PubMed DOI PMC

Chew S.Y., Hufnagel T.C., Lim C.T., Leong K.W. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology. 2006;17:3880–3891. doi: 10.1088/0957-4484/17/15/045. PubMed DOI PMC

Charles D.J. Antioxidant Properties of Spices, Herbs and Other Sources. Springer; New York, NY, USA: 2013. Myrtle; pp. 409–410.

Olga G., Stavros L., Ioanna C., John T. Revaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008;226:583–590.

Bachir R.G., Benali M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012;2:739–742. doi: 10.1016/S2221-1691(12)60220-2. PubMed DOI PMC

Evans W.C. Trease and Evans’ Pharmacognosy. 15th ed. W.B. Sanders; Nottingham, UK: 2002. p. 477.

Mendes M.M., Gazarini L.C., Rodrigues M.L. Acclimation of Myrtus communis to contrasting Mediterranean light environments-effects on structure and chemical composition of foliage and plant water relations. Env. Exp. Bot. 2001;45:165–178. doi: 10.1016/S0098-8472(01)00073-9. PubMed DOI

Elfellah M.S., Akhter M.H., Khan M.T. Anti-hyperglycaemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984;11:275–281. doi: 10.1016/0378-8741(84)90073-4. PubMed DOI

Cruciani S., Santaniello S., Garroni G., Fadda A., Balzano F., Bellu E., Sarais G., Fais G., Mulas M., Maioli M. Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Molecules. 2019;24:1515. doi: 10.3390/molecules24081515. PubMed DOI PMC

Saeidi S., Amini Boroujeni N., Ahmadi H., Hassanshahian M. Antibacterial Activity of Some Plant Extracts Against Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates. Jundishapur J. Microbiol. 2015;8:e15434. doi: 10.5812/jjm.15434. PubMed DOI PMC

Rossi A., Di Paola R., Mazzon E., Genovese T., Caminiti R., Bramanti P., Pergola C., Koeberle A., Werz O., Sautebin L., et al. Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J. Pharmacol. Exp. Ther. 2009;329:76–86. doi: 10.1124/jpet.108.143214. PubMed DOI

Amira S., Dade M., Schinella G., Ríos J.L. Anti-inflammatory, anti-oxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin. Pak. J. Pharm. Sci. 2012;25:65–72. PubMed

Cruciani S., Santaniello S., Fadda A., Sale L., Sarais G., Sanna D., Mulas M., Ginesu G.C., Cossu M.L., Serra P.A., et al. Extracts from Myrtle Liqueur Processing Waste Modulate Stem Cells Pluripotency under Stressing Conditions. Biomed Res. Int. 2019;2019:5641034. doi: 10.1155/2019/5641034. PubMed DOI PMC

Fiorini-Puybaret C., Aries M.-F., Fabre B., Mamatas S., Luc J., Degouy A., Ambonati M., Mejean C., Poli F. Pharmacological Properties of Myrtacine® and Its Potential Value in Acne Treatment. Planta Med. 2011;77:1582–1589. doi: 10.1055/s-0030-1270955. PubMed DOI

Lu C., Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb. Perspect. Med. 2014;4:a015222. doi: 10.1101/cshperspect.a015222. PubMed DOI PMC

Naylor E.C., Watson R.E., Sherratt M.J. Molecular aspects of skin ageing. Maturitas. 2011;69:249–256. doi: 10.1016/j.maturitas.2011.04.011. PubMed DOI

Trautinger F. Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin. Exp. Dermatol. 2001;26:573–577. doi: 10.1046/j.1365-2230.2001.00893.x. PubMed DOI

Shin J.W., Kwon S.H., Choi J.Y., Na J.I., Huh C.H., Choi H.R., Park K.C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019;20:2126. doi: 10.3390/ijms20092126. PubMed DOI PMC

Quan T., He T., Kang S., Voorhees J.J., Fisher G.J. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am. J. Pathol. 2004;165:741–751. doi: 10.1016/S0002-9440(10)63337-8. PubMed DOI PMC

Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC

Ahmed A.S., Sheng M.H., Wasnik S., Baylink D.J., Lau K.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC

Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC

Park I.K., Morrison S.J., Clarke M.F. Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 2004;113:175–179. doi: 10.1172/JCI200420800. PubMed DOI PMC

Wang Y., Lauer M.E., Anand S., Mack J.A., Maytin E.V. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J. Biol. Chem. 2014;289:32253–32265. doi: 10.1074/jbc.M114.578377. PubMed DOI PMC

Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI

Torreggiani E., Rossini M., Bononi I., Pietrobon S., Mazzoni E., Iaquinta M.R., Feo C., Rotondo J.C., Rizzo P., Tognon M., et al. Protocol for the long-term culture of human primary keratinocytes from the normal colorectal mucosa. J. Cell Physiol. 2019;234:9895–9905. doi: 10.1002/jcp.28300. PubMed DOI

Wei J.C.J., Edwards G.A., Martin D.J., Huang H., Crichton M.L., Kendall M.A.F. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans. Sci. Rep. 2017;7:15885. doi: 10.1038/s41598-017-15830-7. PubMed DOI PMC

Cruciani S., Garroni G., Ginesu G.C., Fadda A., Ventura C., Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology. 2020;9:57. doi: 10.3390/biology9030057. PubMed DOI PMC

Maioli M., Rinaldi S., Santaniello S., Castagna A., Pigliaru G., Delitala A., Lotti Margotti M., Bagella L., Fontani V., Ventura C. Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age (Dordr) 2014;36:9–20. doi: 10.1007/s11357-013-9537-8. PubMed DOI PMC

Maioli M., Contini G., Santaniello S., Bandiera P., Pigliaru G., Sanna R., Rinaldi S., Delitala A.P., Montella A., Bagella L., et al. Amniotic fluid stem cells morph into a cardiovascular lineage: Analysis of a chemically induced cardiac and vascular commitment. Drug Des. Devel. 2013;7:1063–1073. PubMed PMC

Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells Int. 2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC

Rebelo S.P., Costa R., Silva M.M., Marcelino P., Brito C., Alves P.M. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: Improved functionality in long-term bioreactor cultures. J. Tissue Eng. Regen. Med. 2017;11:2034–2045. doi: 10.1002/term.2099. PubMed DOI

Cruciani S., Santaniello S., Montella A., Ventura C., Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J. Stem Cells. 2019;11:464–475. doi: 10.4252/wjsc.v11.i8.464. PubMed DOI PMC

D’Arcangelo D., Tinaburri L., Dellambra E. The Role of p16INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int. J. Mol. Sci. 2017;18:1591. doi: 10.3390/ijms18071591. PubMed DOI PMC

Rando T.A. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–1086. doi: 10.1038/nature04958. PubMed DOI

Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI

Tzellos T.G., Klagas I., Vahtsevanos K., Triaridis S., Printza A., Kyrgidis A., Karakiulakis G., Zouboulis C.C., Papakonstantinou E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp. Dermatol. 2009;18:1028–1035. doi: 10.1111/j.1600-0625.2009.00889.x. PubMed DOI

Itahana K., Zou Y., Itahana Y., Martinez J.L., Beausejour C., Jacobs J.J., Van Lohuizen M., Band V., Campisi J., Dimri G.P. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell Biol. 2003;23:389–401. doi: 10.1128/MCB.23.1.389-401.2003. PubMed DOI PMC

Frankart A., Malaisse J., De Vuyst E., Minner F., de Rouvroit C.L., Poumay Y. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp. Derm. 2012;21:871–875. doi: 10.1111/exd.12020. PubMed DOI

Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 2018;60:506–532. doi: 10.1007/s12033-018-0084-5. PubMed DOI

Fathi-Azarbayjani A., Qun L., Chan Y.W., Chan S.Y. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. Aaps. Pharm. Sci. Tech. 2010;11:1164–1170. doi: 10.1208/s12249-010-9475-z. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...