Targeted Sequencing of Pancreatic Adenocarcinomas from Patients with Metachronous Pulmonary Metastases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33255265
PubMed Central
PMC7760784
DOI
10.3390/genes11121391
PII: genes11121391
Knihovny.cz E-zdroje
- Klíčová slova
- adenocarcinoma, metastases, next-generation sequencing, pancreas, pulmonary, survival,
- MeSH
- adenokarcinom genetika patologie MeSH
- filagriny MeSH
- frekvence genu genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory plic genetika patologie MeSH
- nádory slinivky břišní genetika patologie MeSH
- proteiny S100 genetika MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- filagriny MeSH
- FLG2 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- proteiny S100 MeSH
- protoonkogenní proteiny p21(ras) MeSH
Mutation spectra of 250 cancer driver, druggable, and actionable genes were analyzed in surgically resected pancreatic ductal adenocarcinoma (PDAC) patients who developed metachronous pulmonary metastases. Targeted sequencing was performed in DNA from blood and archival samples of 15 primary tumors and three paired metastases. Results were complemented with the determination of G12V mutation in KRAS by droplet digital PCR. The median number of protein-changing mutations was 52 per patient. KRAS and TP53 were significantly enriched in fractions of mutations in hotspots. Individual gene mutation frequencies or mutational loads accounting separately for drivers, druggable, or clinically actionable genes, did not significantly associate with patients' survival. LRP1B was markedly mutated in primaries of patients who generalized (71%) compared to those developing solitary pulmonary metastases (0%). FLG2 was mutated exclusively in primary tumors compared to paired metastases. In conclusion, signatures of prognostically differing subgroups of PDAC patients were generated for further utilization in precision medicine.
Biomedical Center Faculty of Medicine in Pilsen Charles University 306 05 Pilsen Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 42 Prague Czech Republic
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155. PubMed DOI
Strobel O., Neoptolemos J.P., Jäger D., Büchler M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019;16:11–26. doi: 10.1038/s41571-018-0112-1. PubMed DOI
Jameson G.S., Borazanci E., Babiker H.M., Poplin E., Niewiarowska A.A., Gordon M.S., Barrett M.T., Rosenthal A., Stoll-D’Astice A., Crowley J., et al. Response Rate Following Albumin-Bound Paclitaxel Plus Gemcitabine Plus Cisplatin Treatment Among Patients With Advanced Pancreatic Cancer. JAMA Oncol. 2020;6:125–132. doi: 10.1001/jamaoncol.2019.3394. PubMed DOI PMC
Conroy T., Hammel P., Hebbar M., Ben Abdelghani M., Wei A.C., Raoul J.-L., Choné L., Francois E., Artru P., Biagi J.J., et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018;379:2395–2406. doi: 10.1056/NEJMoa1809775. PubMed DOI
Neoptolemos J.P., Palmer D.H., Ghaneh P., Psarelli E.E., Valle J.W., Halloran C.M., Faluyi O., O’Reilly D.A., Cunningham D., Wadsley J., et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–1024. doi: 10.1016/S0140-6736(16)32409-6. PubMed DOI
Claire D., Marine G., Aurélie A., Olivier T., Sandrine O.-T., Flora P., Marc G., Patrice V., Juan I., Raoul J.L. Heterogeneity of metastatic pancreatic adenocarcinoma: Lung metastasis show better prognosis than liver metastasis—A case control study. Oncotarget. 2016;7:45649–45655. doi: 10.18632/oncotarget.9861. PubMed DOI PMC
Katz M.H.G., Hwang R.F., Fleming J.B., Sun C.C., Wolff R.A., Varadhachary G., Abbruzzese J.L., Crane C.H., Krishnan S., Vauthey J.-N., et al. Long-Term Survival After Multidisciplinary Management of Resected Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2009;16:836–847. doi: 10.1245/s10434-008-0295-2. PubMed DOI PMC
Lovecek M., Skalicky P., Chudacek J., Szkorupa M., Svebisova H., Lemstrova R., Ehrmann J., Melichar B., Yogeswara T., Klos D., et al. Different clinical presentations of metachronous pulmonary metastases after resection of pancreatic ductal adenocarcinoma: Retrospective study and review of the literature. World J. Gastroenterol. 2017;23:6420–6428. doi: 10.3748/wjg.v23.i35.6420. PubMed DOI PMC
Bailey P., Chang D.K., Nones K., Johns A.L., Patch A.M., Gingras M.C., Miller D.K., Christ A.N., Bruxner T.J., Quinn M.C., et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52. doi: 10.1038/nature16965. PubMed DOI
Biankin A.V., Waddell N., Kassahn K.S., Gingras M.C., Muthuswamy L.B., Johns A.L., Miller D.K., Wilson P.J., Patch A.M., Wu J., et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nat. Cell Biol. 2012;491:399–405. doi: 10.1038/nature11547. PubMed DOI PMC
Jones S., Zhang X., Parsons D.W., Lin J.C.-H., Leary R.J., Angenendt P., Mankoo P., Carter H., Kamiyama H., Jimeno A., et al. Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science. 2008;321:1801–1806. doi: 10.1126/science.1164368. PubMed DOI PMC
Waddell N., Pajic M., Patch A.-M., Chang D.K., Kassahn K.S., Bailey P., Johns A.L., Miller D., Nones K., Quek K., et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501. doi: 10.1038/nature14169. PubMed DOI PMC
Makohon-Moore A.P., Zhang M., Reiter J.G., Bozic I., Allen B., Kundu D., Chatterjee K., Wong F., Jiao Y., Kohutek Z.A., et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 2017;49:358–366. doi: 10.1038/ng.3764. PubMed DOI PMC
Yachida S., Jones S., Bozic I., Antal T., Leary R.J., Fu B., Kamiyama M., Hruban R.H., Eshleman J.R., Nowak M.A., et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nat. Cell Biol. 2010;467:1114–1117. doi: 10.1038/nature09515. PubMed DOI PMC
Pishvaian M.J., Bender R.J., Halverson D., Rahib L., Hendifar A., Mikhail S., Chung V., Picozzi V.J., Sohal D., Blais E.M., et al. Molecular Profiling of Patients with Pancreatic Cancer: Initial Results from the Know Your Tumor Initiative. Clin. Cancer Res. 2018;24:5018–5027. doi: 10.1158/1078-0432.CCR-18-0531. PubMed DOI
Topić E., Gluhak J. Isolation of restrictible DNA. Eur. J. Clin. Chem. Clin. Biochem. 1991;29:1892954. PubMed
Hlaváč V., Kovacova M., Elsnerova K., Brynychova V., Kozevnikovova R., Raus K., Kopeckova K., Mestakova S., Vrána D., Gatek J., et al. Use of Germline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers. 2018;10:511. doi: 10.3390/cancers10120511. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–2851. doi: 10.1093/bioinformatics/btu356. PubMed DOI PMC
Van Der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013;43:11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43. PubMed DOI PMC
McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:1–14. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC
Tamborero D., Lopez-Bigas N., Gonzalez-Perez A. OncodriveCLUST: Exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29:2238–2244. doi: 10.1093/bioinformatics/btt395. PubMed DOI
Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., Carter S.L., Stewart C., Mermel C.H., Roberts S.A., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nat. Cell Biol. 2013;499:214–218. doi: 10.1038/nature12213. PubMed DOI PMC
Broad_Institute_TCGA_Genome_Data_Analysis_Center . PAAD-TP Mutation Analysis (MutSig 2CV v3.1) Broad Institute of MIT and Harvard; Cambridge, MA, USA: 2016. DOI
Broad_Institute_TCGA_Genome_Data_Analysis_Center . LUAD-TP Mutation Analysis (MutSig 2CV v3.1) Broad Institute of MIT and Harvard; Cambridge, MA, USA: 2016. DOI
Grüning B., Bioconda The Bioconda Team. Dale R., Sjödin A., Chapman B.A., Rowe J., Tomkins-Tinch C.H., Valieris R., Köster J. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat. Methods. 2018;15:475–476. doi: 10.1038/s41592-018-0046-7. PubMed DOI PMC
Mayakonda A., Lin D.-C., Assenov Y., Plass C., Koeffler H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–1756. doi: 10.1101/gr.239244.118. PubMed DOI PMC
Robinson J.T., Thorvaldsdóttir H., Wenger A.M., Zehir A., Mesirov J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34. doi: 10.1158/0008-5472.CAN-17-0337. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Shyr C., Tarailo-Graovac M., Gottlieb M., Lee J.J.Y., Van Karnebeek C.D.M., Wasserman W.W. FLAGS, frequently mutated genes in public exomes. BMC Med. Genom. 2014;7:64. doi: 10.1186/s12920-014-0064-y. PubMed DOI PMC
Bailey M.H., Tokheim C., Porta-Pardo E., Sengupta S., Bertrand D., Weerasinghe A., Colaprico A., Wendl M.C., Kim J., Reardon B., et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;173:371–385.e18. doi: 10.1016/j.cell.2018.02.060. PubMed DOI PMC
Buchhalter I., Rempel E., Endris V., Allgäuer M., Neumann O., Volckmar A.-L., Kirchner M., Leichsenring J., Lier A., Von Winterfeld M., et al. Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int. J. Cancer. 2019;144:848–858. doi: 10.1002/ijc.31878. PubMed DOI
Huang J., Löhr J.-M., Nilsson M., Segersvärd R., Matsson H., Verbeke C., Heuchel R., Kere J., Iafrate A.J., Zheng Z., et al. Variant Profiling of Candidate Genes in Pancreatic Ductal Adenocarcinoma. Clin. Chem. 2015;61:1408–1416. doi: 10.1373/clinchem.2015.238543. PubMed DOI
Guo S., Shi X., Shen J., Gao S., Wang H., Shen S., Pan Y., Li B., Xu X., Shao Z., et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br. J. Cancer. 2020;122:857–867. doi: 10.1038/s41416-019-0704-2. PubMed DOI PMC
Schlitter A.M., Segler A., Steiger K., Michalski C.W., Jäger C., Konukiewitz B., Pfarr N., Endris V., Bettstetter M., Kong B., et al. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes. Sci. Rep. 2017;7:srep41064. doi: 10.1038/srep41064. PubMed DOI PMC
Yokose T., Kitago M., Matsuda S., Sasaki Y., Masugi Y., Nakamura Y., Shinoda M., Yagi H., Abe Y., Oshima G., et al. Combination of KRAS and SMAD4 mutations in formalin-fixed paraffin-embedded tissues as a biomarker for pancreatic cancer. Cancer Sci. 2020;111:2174–2182. doi: 10.1111/cas.14425. PubMed DOI PMC
Connor A.A., Denroche R.E., Jang G.H., Lemire M., Zhang A., Chan-Seng-Yue M., Wilson G., Grant R.C., Merico D., Lungu I., et al. Integration of Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell. 2019;35:267–282.e7. doi: 10.1016/j.ccell.2018.12.010. PubMed DOI PMC
Sinn M., Sinn B.V., Treue D., Keilholz U., Damm F., Schmuck R.B., Lohneis P., Klauschen F., Striefler J.K., Bahra M., et al. TP53 mutations predict sensitivity to adjuvant gemcitabine in patients with pancreatic ductal adenocarcinoma: Next-generation sequencing results from the CONKO-001 trial. Clin. Cancer Res. 2020;26:3732–3739. doi: 10.1158/1078-0432.CCR-19-3034. PubMed DOI
Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088. PubMed DOI PMC
Liu C.X., Musco S., Lisitsina N.M., Forgacs E., Minna J.D., Lisitsyn N.A. LRP-DIT, a putative endocytic receptor gene, is frequently inactivated in non-small cell lung cancer cell lines. Cancer Res. 2000;60:1961–1967. PubMed
Ni S., Hu J., Duan Y., Shi S., Li R., Wu H., Qu Y., Li Y. Down expression ofLRP1Bpromotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci. 2013;104:817–825. doi: 10.1111/cas.12157. PubMed DOI PMC
Ge W., Hu H., Cai W., Xu J., Hu W., Weng X., Qin X., Huang Y., Han W., Hu Y., et al. High-risk Stage III colon cancer patients identified by a novel five-gene mutational signature are characterized by upregulation of IL-23A and gut bacterial translocation of the tumor microenvironment. Int. J. Cancer. 2020;146:2027–2035. doi: 10.1002/ijc.32775. PubMed DOI
Ali S.M., Yao M., Yao J., Wang J., Cheng Y., Schrock A.B., Chirn G.-W., Chen H., Mu S., Gay L.M., et al. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy. Cancer. 2017;123:3628–3637. doi: 10.1002/cncr.30781. PubMed DOI
Johnson D.B., Frampton G.M., Rioth M.J., Yusko E., Xu Y., Guo X., Ennis R.C., Fabrizio D., Chalmers Z.R., Greenbowe J., et al. Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunol. Res. 2016;4:959–967. doi: 10.1158/2326-6066.CIR-16-0143. PubMed DOI PMC
Tucker M.D., Zhu J., Marin D., Gupta R.T., Gupta S., Berry W.R., Ramalingam S., Zhang T., Harrison M., Wu Y., et al. Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer. Cancer Med. 2019;8:4644–4655. doi: 10.1002/cam4.2375. PubMed DOI PMC
Reiter J.G., Baretti M., Gerold J.M., Makohon-Moore A.P., Daud A.I., Iacobuzio-Donahue C.A., Azad N.S., Kinzler K.W., Nowak M.A., Vogelstein B. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer. 2019;19:639–650. doi: 10.1038/s41568-019-0185-x. PubMed DOI PMC
Zhang J.N., Huang J.Y., Chen Y.N., Yuan F., Zhang H., Yan F.H., Wang M.J., Wang G., Su M., Lu G., et al. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep13750. PubMed DOI PMC
Gorlov I., Gorlova O.Y., Amos C.I. Untouchable genes in the human genome: Identifying ideal targets for cancer treatment. Cancer Genet. 2019;232:67–79. doi: 10.1016/j.cancergen.2019.01.005. PubMed DOI PMC
Sausen M., Phallen J., Adleff V., Jones S., Leary R.J., Barrett M.T., Anagnostou V., Parpart-Li S., Murphy D., Li Q.K., et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat. Commun. 2015;6:1–6. doi: 10.1038/ncomms8686. PubMed DOI PMC
Williams C., Pontén F., Moberg C., Söderkvist P., Uhlén M., Pontén J., Sitbon G., Lundeberg J. A High Frequency of Sequence Alterations Is Due to Formalin Fixation of Archival Specimens. Am. J. Pathol. 1999;155:1467–1471. doi: 10.1016/S0002-9440(10)65461-2. PubMed DOI PMC
Do H., Wong S.Q., Li J., Dobrovic A. Reducing Sequence Artifacts in Amplicon-Based Massively Parallel Sequencing of Formalin-Fixed Paraffin-Embedded DNA by Enzymatic Depletion of Uracil-Containing Templates. Clin. Chem. 2013;59:1376–1383. doi: 10.1373/clinchem.2012.202390. PubMed DOI
Peng Q., Satya R.V., Lewis M., Randad P., Wang Y. Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes. BMC Genom. 2015;16:1–12. doi: 10.1186/s12864-015-1806-8. PubMed DOI PMC
Mariani S., Bertero L., Coppola V., Saracco G., Arezzo A., Di Celle P.F., Metovic J., Marchiò C., Cassoni P. Awareness of mutational artefacts in suboptimal DNA samples: Possible risk for therapeutic choices. Expert Rev. Mol. Diagn. 2018;18:467–475. doi: 10.1080/14737159.2018.1468254. PubMed DOI
Kresse S.H., Namløs H.M., Lorenz S., Berner J.-M., Myklebost O., Bjerkehagen B., Meza-Zepeda L.A. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples. PLoS ONE. 2018;13:e0197456. doi: 10.1371/journal.pone.0197456. PubMed DOI PMC
Robbe P., Popitsch N., Knight F.S.J.L., Antoniou P., Becq J., Henderson S., Kanapin A., Samsonova A., Vavoulis D.V., Ross M.T., et al. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: Pilot study for the 100,000 Genomes Project. Genet. Med. 2018;20:1196–1205. doi: 10.1038/gim.2017.241. PubMed DOI PMC