Functional Analysis of Adipokinetic Hormone Signaling in Bombyx mori
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33322530
PubMed Central
PMC7764666
DOI
10.3390/cells9122667
PII: cells9122667
Knihovny.cz E-zdroje
- Klíčová slova
- BMSK0010951, Bommo-AKH1, Bommo-AKH2, NM_001043584, TALEN, silkworm, targeted mutagenesis,
- MeSH
- bourec růst a vývoj metabolismus MeSH
- energetický metabolismus MeSH
- hemolymfa metabolismus MeSH
- hmyzí hormony genetika metabolismus MeSH
- hmyzí proteiny genetika metabolismus MeSH
- kyselina pyrrolidonkarboxylová analogy a deriváty metabolismus MeSH
- larva metabolismus MeSH
- lipidy analýza MeSH
- mutageneze MeSH
- neuropeptidy genetika metabolismus MeSH
- oligopeptidy genetika metabolismus MeSH
- protein - isoformy genetika metabolismus MeSH
- receptory glukagonu genetika metabolismus MeSH
- regulace genové exprese MeSH
- sacharidy analýza MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adipokinetic hormone MeSH Prohlížeč
- corazonin protein, insect MeSH Prohlížeč
- hmyzí hormony MeSH
- hmyzí proteiny MeSH
- kyselina pyrrolidonkarboxylová MeSH
- lipidy MeSH
- neuropeptidy MeSH
- oligopeptidy MeSH
- protein - isoformy MeSH
- receptory glukagonu MeSH
- sacharidy MeSH
Insect adipokinetic hormones (AKHs) are short peptides produced in the corpora cardiaca and are responsible for mobilizing energy stores from the fat body to the hemolymph. Three related peptides, AKH1, AKH2, and AKH/corazonin-related peptide (ACP) as well as three AKH receptors have been reported in Bombyx mori. AKH1 and AKH2 are specific for the AKHR1 receptor, whereas ACP interacts with the other two AKHRs. To assess the effect of the two silkworm AKHs and ACP in the regulation of energy homeostasis we examined the expression pattern of the three peptides and their receptors as well as their effect on the level of carbohydrates and lipids in the hemolymph. Our results support the hypothesis that only AKH1 and AKH2 peptides together with the AKHR1 receptor are involved in the maintenance of energy homeostasis. Because Bombyx AKHR1 (BmAKHR1) seems to be a true AKHR we generated its mutation. The BmAKHR1 mutant larvae display significantly lower carbohydrate and lipid levels in the hemolymph and reduced sensitivity to starvation. Our study clarifies the role of BmAKHR1 in energy homeostasis.
Faculty of Science University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
National Institute of Agrobiological Sciences 1 2 Owashi Tsukuba Ibaraki 305 8634 Japan
Zobrazit více v PubMed
Gade G. The explosion of structural information on insect neuropeptides. Fortschr. Chem. Org. Naturst. 1997;71:1–128. PubMed
Kodrik D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI
Park Y., Kim Y.J., Adams M.E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc. Natl. Acad. Sci. USA. 2002;99:11423–11428. doi: 10.1073/pnas.162276199. PubMed DOI PMC
Zhu C., Huang H., Hua R., Li G., Yang D., Luo J., Zhang C., Shi L., Benovic J.L., Zhou N. Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBS Lett. 2009;583:1463–1468. doi: 10.1016/j.febslet.2009.03.060. PubMed DOI PMC
Conzelmann M., Williams E.A., Tunaru S., Randel N., Shahidi R., Asadulina A., Berger J., Offermanns S., Jekely G. Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc. Natl. Acad. Sci. USA. 2013;110:8224–8229. doi: 10.1073/pnas.1220285110. PubMed DOI PMC
Lindemans M., Liu F., Janssen T., Husson S.J., Mertens I., Gade G., Schoofs L. Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 2009;106:1642–1647. doi: 10.1073/pnas.0809881106. PubMed DOI PMC
Mirabeau O., Joly J.S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad Sci. USA. 2013;110:E2028–E2037. doi: 10.1073/pnas.1219956110. PubMed DOI PMC
Noyes B.E., Katz F.N., Schaffer M.H. Identification and expression of the Drosophila adipokinetic hormone gene. Mol. Cell. Endocrinol. 1995;109:133–141. doi: 10.1016/0303-7207(95)03492-P. PubMed DOI
Siegert K.J. Locust corpora cardiaca contain an inactive adipokinetic hormone. FEBS Lett. 1999;447:237–240. doi: 10.1016/S0014-5793(99)00299-9. PubMed DOI
Abdel-Latief M., Hoffmann K.H. The adipokinetic hormones in the fall armyworm, Spodoptera frugiperda: cDNA cloning, quantitative real time RT-PCR analysis, and gene specific localization. Insect Biochem. Mol. Biol. 2007;37:999–1014. doi: 10.1016/j.ibmb.2007.05.007. PubMed DOI
Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004;167:311–323. doi: 10.1534/genetics.167.1.311. PubMed DOI PMC
Galikova M., Diesner M., Klepsatel P., Hehlert P., Xu Y., Bickmeyer I., Predel R., Kuhnlein R.P. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics. 2015;201:665–683. doi: 10.1534/genetics.115.178897. PubMed DOI PMC
Sajwan S., Sidorov R., Staskova T., Zaloudikova A., Takasu Y., Kodrik D., Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochem. Mol. Biol. 2015;61:79–86. doi: 10.1016/j.ibmb.2015.01.011. PubMed DOI
Bharucha K.N., Tarr P., Zipursky S.L. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 2008;211:3103–3110. doi: 10.1242/jeb.016451. PubMed DOI PMC
Gronke S., Muller G., Hirsch J., Fellert S., Andreou A., Haase T., Jackle H., Kuhnlein R.P. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 2007;5:e137. doi: 10.1371/journal.pbio.0050137. PubMed DOI PMC
Gade G., Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 2003;132:10–20. doi: 10.1016/S0016-6480(03)00159-X. PubMed DOI
Ziegler R., Eckart K., Schwarz H., Keller R. Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. Biophys. Res. Commun. 1985;133:337–342. doi: 10.1016/0006-291X(85)91880-7. PubMed DOI
Ishibashi J., Kataoka H., Nagasawa H., Isogai A., Suzuki A. Isolation and Identification of Adipokinetic Hormone of the Silkworm, Bombyx-Mori. Biosci. Biotech. Bioch. 1992;56:66–70. doi: 10.1271/bbb.56.66. DOI
Jaffe H., Raina A.K., Riley C.T., Fraser B.A., Bird T.G., Tseng C.M., Zhang Y.S., Hayes D.K. Isolation and primary structure of a neuropeptide hormone from Heliothis zea with hypertrehalosemic and adipokinetic activities. Biochem. Biophys. Res. Commun. 1988;155:344–350. doi: 10.1016/S0006-291X(88)81091-X. PubMed DOI
Staubli F., Jorgensen T.J., Cazzamali G., Williamson M., Lenz C., Sondergaard L., Roepstorff P., Grimmelikhuijzen C.J. Molecular identification of the insect adipokinetic hormone receptors. Proc. Natl. Acad. Sci. USA. 2002;99:3446–3451. doi: 10.1073/pnas.052556499. PubMed DOI PMC
Roller L., Yamanaka N., Watanabe K., Daubnerova I., Zitnan D., Kataoka H., Tanaka Y. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem. Molec. 2008;38:1147–1157. doi: 10.1016/j.ibmb.2008.04.009. PubMed DOI
Gade G., Marco H.G., Simek P., Audsley N., Clark K.D., Weaver R.J. Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: A case study with beetles and moths. Peptides. 2008;29:1124–1139. doi: 10.1016/j.peptides.2008.03.002. PubMed DOI
Hansen K.K., Stafflinger E., Schneider M., Hauser F., Cazzamali G., Williamson M., Kollmann M., Schachtner J., Grimmelikhuijzen C.J. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J. Biol. Chem. 2010;285:10736–10747. doi: 10.1074/jbc.M109.045369. PubMed DOI PMC
Fan Y., Sun P., Wang Y., He X., Deng X., Chen X., Zhang G., Chen X., Zhou N. The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2010;40:581–591. doi: 10.1016/j.ibmb.2010.05.005. PubMed DOI
Yamanaka N., Yamamoto S., Zitnan D., Watanabe K., Kawada T., Satake H., Kaneko Y., Hiruma K., Tanaka Y., Shinoda T., et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE. 2008;3:e3048. doi: 10.1371/journal.pone.0003048. PubMed DOI PMC
Shi Y., Huang H., Deng X., He X., Yang J., Yang H., Shi L., Mei L., Gao J., Zhou N. Identification and functional characterization of two orphan G-protein-coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J. Biol. Chem. 2011;286:42390–42402. doi: 10.1074/jbc.M111.275602. PubMed DOI PMC
Takasu Y., Sajwan S., Daimon T., Osanai-Futahashi M., Uchino K., Sezutsu H., Tamura T., Zurovec M. Efficient TALEN construction for Bombyx mori gene targeting. PLoS ONE. 2013;8:e73458. doi: 10.1371/annotation/c544ae05-f54d-488a-912a-9c4a21eb9117. PubMed DOI PMC
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218. PubMed DOI PMC
Takasu Y., Kobayashi I., Beumer K., Uchino K., Sezutsu H., Sajwan S., Carroll D., Tamura T., Zurovec M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol. 2010;40:759–765. doi: 10.1016/j.ibmb.2010.07.012. PubMed DOI
Takasu Y., Kobayashi I., Tamura T., Uchino K., Sezutsu H., Zurovec M. Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors—A practical approach. Insect Biochem. Mol. Biol. 2016;78:29–38. doi: 10.1016/j.ibmb.2016.08.006. PubMed DOI
Peng R., Zhai Y., Ding H., Di T., Zhang T., Li B., Shen W., Wei Z. Analysis of reference gene expression for real-time PCR based on relative quantitation and dual spike-in strategy in the silkworm Bombyx mori. Acta Biochim. Biophys. Sin. 2012;44:614–622. doi: 10.1093/abbs/gms040. PubMed DOI
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Levine J.D., Sauman I., Imbalzano M., Reppert S.M., Jackson F.R. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI
Sauman I., Reppert S.M. Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth Antheraea pernyi: Developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev. Biol. 1996;178:418–429. doi: 10.1006/dbio.1996.0228. PubMed DOI
Carroll N.V., Longley R.W., Roe J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem. 1956;220:583–593. PubMed
Zölner N., Kirsch K. Über die quantitative Bestimmung von Lipoide (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin Reaktion. Ges. Exp. Med. 1962;135:545–561. doi: 10.1007/BF02045455. DOI
Oda Y., Uejuma M., Iwami M., Sakurai S. Involvement of adipokinetic hormone in the homeostatic control of hemolymph trehalose concentration in the larvae of Bombyx mori. Arch. Insect Biochem. 2000;45:156–165. doi: 10.1002/1520-6327(200012)45:4<156::AID-ARCH3>3.0.CO;2-E. PubMed DOI
Kaufmann C., Brown M.R. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor. Insect Biochem. Mol. Biol. 2006;36:466–481. doi: 10.1016/j.ibmb.2006.03.009. PubMed DOI
Ziegler R., Isoe J., Moore W., Riehle M.A., Wells M.A. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression. J. Insect Sci. 2011;11:40. doi: 10.1673/031.011.0140. PubMed DOI PMC
Jedlicka P., Steinbauerova V., Simek P., Zahradnickova H. Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum. Comp. Biochem. Phys. A. 2012;162:51–58. doi: 10.1016/j.cbpa.2012.02.004. PubMed DOI
Patel R.T., Soulages J.L., Arrese E.L. Adipokinetic hormone-induced mobilization of fat body triglyceride stores in Manduca sexta: Role of TG-lipase and lipid droplets. Arch. Insect Biochem. Physiol. 2006;63:73–81. doi: 10.1002/arch.20143. PubMed DOI
Andersson D.T. The Development of Holometabolous Insects. In: Counce S.J., Wadding C.H., editors. Developmental Systems—Insects. Volume 1. Academic Press; New York, NY, USA: 1972. pp. 165–242.
Pakkianathan B.C., Singh N.K., Krishnan M., Konig S. A proteomic view on the developmental transfer of homologous 30 kDa lipoproteins from peripheral fat body to perivisceral fat body via hemolymph in silkworm, Bombyx mori. BMC Biochem. 2012;13:5. doi: 10.1186/1471-2091-13-5. PubMed DOI PMC
Lorenz M.W. Adipokinetic hormone inhibits the formation of energy stores and egg production in the cricket Gryllus bimaculatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003;136:197–206. doi: 10.1016/S1096-4959(03)00227-6. PubMed DOI
Fukumura K., Konuma T., Tsukamoto Y., Nagata S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci. Rep. 2018;8:4737. doi: 10.1038/s41598-018-22987-2. PubMed DOI PMC
Golebiowski M., Cerkowniak M., Urbanek A., Slocinska M., Rosinski G., Stepnowski P. Adipokinetic hormone induces changes in the fat body lipid composition of the beetle Zophobas atratus. Peptides. 2014;58:65–73. doi: 10.1016/j.peptides.2014.05.013. PubMed DOI
Kodrik D., Goldsworthy G.J. Inhibition of Rna-Synthesis by Adipokinetic Hormones and Brain Factor in Adult Fat-Body of Locusta-Migratoria. J. Insect Physiol. 1995;41:127–133. doi: 10.1016/0022-1910(94)00096-Y. DOI
Candy D.J. Adipokinetic hormones concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem. Mol. 2002;32:1361–1367. doi: 10.1016/S0965-1748(02)00056-5. PubMed DOI