Study of Tetrahydroxylated Anthraquinones-Potential Tool to Assess Degradation of Anthocyanins Rich Food
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-17346S
Czech Science Foundation
PubMed
33374941
PubMed Central
PMC7792584
DOI
10.3390/molecules26010002
PII: molecules26010002
Knihovny.cz E-resources
- Keywords
- anthocyanin, degradation, hydroxyanthraquinone, phloroglucinaldehyde, wine,
- MeSH
- Food Analysis * methods MeSH
- Anthocyanins chemistry MeSH
- Anthraquinones analysis chemistry MeSH
- Chromatography, Liquid MeSH
- Mass Spectrometry MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Wine analysis MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anthocyanins MeSH
- Anthraquinones MeSH
Degradation of anthocyanins involves scission of the flavonoid skeleton yielding 2,4,6-trihydroxybenzaldehyde (phloroglucinaldehyde, PGA) and a phenolic acid. However, the process is not finished with the formation of PGA, as the consequent condensation of two PGA molecules providing colored hydroxylated anthraquinones was observed for the first time. This process was studied using a combination of preparative column chromatography, nuclear magnetic resonance, liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS2), and quantum calculations using density functional theory. 1,3,5,7-tetrahydroxyanthraquinone (anthrachrysone) and its isomers were found to rise during heating (95 °C) in a buffered PGA model solution (phosphate buffer, pH 7). These compounds were detected in heated red wine after an increase of its pH value. The concentration of the identified anthrachrysone in the red wine reached 0.01 mg·L-1. Presence of those compounds could therefore indicate involvement of certain steps in the processing of plant materials rich in anthocyanins (e.g., utilization of a higher temperature and/or reduction of acidity) or long-term transformation of anthocyanins (potentially, for instance, in archaeological findings such as wine or fruit residues). Additionally, measurement of wine-soil suspensions proved an increase of their pH to the values suitable for anthocyanin cleavage (neutral to slightly alkaline; reached using soil from archaeologically well-known Bull Rock Cave). Although not found in artificially prepared samples (imitations) or authentic materials so far, according to our results the above mentioned conditions are suitable for the formation of tetrahydroxylated anthraquinone derivatives and their monitoring would be beneficial.
See more in PubMed
Gris E.F., Ferreira E.A., Falcao L.D., Bordignon-Luiz M.T. affeic acid copigmentation of anthocyanins from Cabernet Sauvignon grape extracts in model systems. Food Chem. 2007;100:1289–1296. doi: 10.1016/j.foodchem.2005.10.014. DOI
Castañeda-Ovando A., Pacheco-Hernández M.D.L., Paez-Hernandez M.E., Rodriguez J.A., Galán-Vidal C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009;113:859–871. doi: 10.1016/j.foodchem.2008.09.001. DOI
Kučera L., Kurka O., Barták P., Bednář P. Liquid chromatography/high resolution tandem mass spectrometry—Tool for the study of polyphenol profile changes during micro-scale biogas digestion of grape marcs. Chemosphere. 2017;166:463–472. doi: 10.1016/j.chemosphere.2016.09.124. PubMed DOI
Bener M., Shen Y., Apak R., Finley J.W., Xu Z. Release and degradation of anthocyanins and phenolics from blueberry pomace during thermal acid hydrolysis and dry heating. J. Agric. Food Chem. 2013;61:6643–6649. doi: 10.1021/jf401983c. PubMed DOI
Sadilova E., Stintzing F.C., Carle R. Thermal degradation of acylated and nonacylated anthocyanins. J. Food Sci. 2006;71:C504–C512. doi: 10.1111/j.1750-3841.2006.00148.x. DOI
McMurry J. Organic Chemistry, Brooks/Cole Cengage Learning—VUTIUM. Brno University of Technology Vutium Press; Brno, Czech Republic: 2011.
Briggs L.H., Nicholls G.A. Some hydroxyanthraquinones and derivatives. J. Chem. Soc. 1951:1138–1139.
Diaz-Muñoz G., Miranda I.L., Sartori S.K., de Rezende D.C., Diaz M.A.N. Chapter 11—Anthraquinones: An overview. In: Attaur R., editor. Studies in Natural Products Chemistry. Elsevier; Amsterdam, The Netherlands: 2018. pp. 313–338.
Keppler K., Humpf H.-U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic Med. Chem. 2005;13:5195–5205. doi: 10.1016/j.bmc.2005.05.003. PubMed DOI
Crozier A., Del Rio D., Clifford M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010;31:446–467. doi: 10.1016/j.mam.2010.09.007. PubMed DOI
Ramezani A.M., Yousefinejad S., Nazifi M., Absalan G. Response surface approach for isocratic separation of some natural anthraquinone dyes by micellar liquid chromatography. J. Mol. Liq. 2017;242:1058–1065. doi: 10.1016/j.molliq.2017.07.090. DOI
Nishimura N., Takai M., Yamamoto E., Hasumi K. Purpurin as a specific inhibitor of spermidine-induced autoactivation of the protease plasma hyaluronan-binding protein. Biol. Pharm. Bull. 2010;33:1430–1433. doi: 10.1248/bpb.33.1430. PubMed DOI
Biswas R., Mukherjee P.K., Dalai M.K., Mandal P.K., Nag M. Tyrosinase inhibitory potential of purpurin in Rubia cordifolia—A bioactivity guided approach. Ind. Crop. Prod. 2015;74:319–326. doi: 10.1016/j.indcrop.2015.04.066. DOI
Takahashi E., Fujita K.I., Kamataki T., Arimoto-Kobayashi S., Okamoto K., Negishi T. Inhibition of human cytochrome P450 1B1, 1A1 and 1A2 by antigenotoxic compounds, purpurin and alizarin. Mutat. Res. 2002;508:147–156. doi: 10.1016/S0027-5107(02)00212-9. PubMed DOI
Westendorf J., Pfau W., Schulte A. Carcinogenicity and DNA adduct formation observed in ACI rats after long-term treatment with madder root, Rubia tinctorum L. Carcinogenesis. 1998;19:2163–2168. doi: 10.1093/carcin/19.12.2163. PubMed DOI
Chen Y.L., Lu H.F., Hung F.-M., Huang A.C., Hsueh S.C., Liu C.M., Yang J., Yu C.C., Chiang J.H., Lu C.C., et al. Danthron inhibits murine WEHI-3 cells in vivo, and enhances macrophage phagocytosis and natural killer cell cytotoxic activity in leukemic mice. In Vivo. 2011;25:393–398. PubMed
Stodůlková E., Kolařík M., Křesinová Z., Kuzma M., Šulc M., Man P., Novák P., Maršík P., Landa P., Olšovská J., et al. Hydroxylated anthraquinones produced by Geosmithia species. Folia Microbiol. 2009;54:179–187. doi: 10.1007/s12223-009-0028-3. PubMed DOI
Stodůlková E., Man P., Kolařík M., Flieger M. High-performance liquid chromatography–off line mass spectrometry analysis of anthraquinones produced by Geosmithia lavendula. J. Chromatogr. A. 2010;1217:6296–6302. doi: 10.1016/j.chroma.2010.08.009. PubMed DOI
Song K.Y., Hyeonbin O., Zhang Y., Kim Y.S. Quality characteristics and antioxidant properties of sponge cakes containing black carrot (Daucus carota ssp. sativus var. atrorubens Alef) flour. Prog. Nutr. 2016;18:176–183.
Pérez-Vicente A., Gil-Izquierdo A., García-Viguera C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002;50:2308–2312. doi: 10.1021/jf0113833. PubMed DOI
Lluveras-Tenorio A., Mazurek J., Restivo A., Colombini M.P., Bonaduce I. The development of a new analytical model for the identification of saccharide binders in paint samples. PLoS ONE. 2012;7:e49383. doi: 10.1371/journal.pone.0049383. PubMed DOI PMC
Degano I., Biesaga M., Colombini M.P., Trojanowicz M. Historical and archaeological textiles: An insight on degradation products of wool and silk yarns. J. Chromatogr. A. 2011;1218:5837–5847. doi: 10.1016/j.chroma.2011.06.095. PubMed DOI
Clementi C., Nowik W., Romani A., Cibin F., Favaro G. A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Anal. Chim. Acta. 2007;596:46–54. doi: 10.1016/j.aca.2007.05.036. PubMed DOI
Merry R.H. In: Environmental and Ecological Chemistry. Sabljic A., editor. EOLSS Publications; Paris, France: 2009. pp. 115–131.
Motilva M.J., Serra A., Macià A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A. 2013;1292:66–82. doi: 10.1016/j.chroma.2013.01.012. PubMed DOI
López-Fernández O., Domínguez R., Pateiro M., Munekata P.E.S., Rocchetti G., Lorenzo J.M. Determination of polyphenols using liquid chromatography–tandem mass spectrometry technique (LC–MS/MS): A review. Antioxidants. 2020;9:479. doi: 10.3390/antiox9060479. PubMed DOI PMC
Merken H.M., Beecher G.R. Measurement of food flavonoids by high-performance liquid chromatography: A review. J. Agric. Food Chem. 2000;48:577–599. doi: 10.1021/jf990872o. PubMed DOI
Papousková B., Bednář P., Hron K., Stávek J., Balík J., Myjavcová R., Barták P., Tománková E., Lemr K. Advanced liquid chromatography/mass spectrometry profiling of anthocyanins in relation to set of red wine varieties certified in Czech Republic. J. Chromatogr. A. 2011;1218:7581–7591. doi: 10.1016/j.chroma.2011.07.027. PubMed DOI
Sádecká J., Polonský J. Electrophoretic methods in the analysis of beverages. J. Chromatogr. A. 2000;880:243–279. doi: 10.1016/S0021-9673(00)00426-X. PubMed DOI
Fonayet J.V., Millán S., Martí M.P., Borràs E., Arola L. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatogr. A. 2009;1216:7143–7172. doi: 10.1016/j.chroma.2009.07.030. PubMed DOI
Nolvachai Y., Marriott P.J. GC for flavonoids analysis: Past, current, and prospective trends. J. Sep. Sci. 2013;36:20–36. doi: 10.1002/jssc.201200846. PubMed DOI
Tzachristas A., Pasvanka K., Calokerinos A.C., Proestos C. Polyphenols: Natural antioxidants to be used as a quality tool in wine authenticity. Appl. Sci. 2020;10:28. doi: 10.3390/app10175908. DOI
Ricci A., Parpinello G.P., Palma A.S., Teslic N., Brilli C., Pizzi A., Versari A. Analytical profiling of food-grade extracts from grape (Vitis vinifera sp.) seeds and skins, green tea (Camellia sinensis) leaves and Limousin oak (Quercus robur) heartwood using MALDI-TOF-MS, ICP-MS and spectrophotometric methods. J. Food Compos. Anal. 2017;59:95–104. doi: 10.1016/j.jfca.2017.01.014. DOI
Páscoa R.N., Gomes M.J., Sousa C. Antioxidant activity of blueberry (Vaccinium spp.) cultivar leaves: Differences across the vegetative stage and the application of near infrared spectroscopy. Molecules. 2019;24:15. doi: 10.3390/molecules24213900. PubMed DOI PMC
Fain V.Y., Zaitsev B.E., Ryabov M. Anthraquinones tautomerism: VII. Hydroxy-substituted anthraquinones. Russ. J. Org. Chem. 2007;43:1460–1465. doi: 10.1134/S1070428007100089. DOI
Zhu L., Wang W., Miao J., Yin X., Hu X., Yuan Y. Synthesis, NMR and computational studies on tautomerism of dichloroacetate of hydroxyanthraquinone. J. Mol. Struct. 2017;1141:462–468. doi: 10.1016/j.molstruc.2017.03.101. DOI
Popescu-Mitroi I., Radu D., Stoica F. The monitoring of physicochemical parameters of red wines during malolactic fermentation, annals of west university of Timişoara. Ser. Chem. 2010;19:42–50.
Van Rensburg H.J., Claassens A., Beukes D. Relationships between soil buffer capacity and selected soil properties in a resource-poor farming area in the Mpumalanga Province of South Africa. South Afr. J. Plant. Soil. 2009;26:237–243. doi: 10.1080/02571862.2009.10639961. DOI
Karg S., Märkle T. Continuity and changes in plant resources during the Neolithic period in western Switzerland. Veg. Hist. Archaeobot. 2002;11:169–176. doi: 10.1007/s003340200018. DOI
Golec M. Landscape, Cave and Mankind. Univerzita Palackého v Olomouci; Olomouc, Czech Republic: 2017. The Phenomenon of Býčí Skála Cave.
Fundamental Physical Constants—Hartree energy in eV. [(accessed on 7 December 2020)]; Available online: https://physics.nist.gov/cgi-bin/cuu/Value?hrev.