Turning preference in dogs: North attracts while south repels
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33507979
PubMed Central
PMC7842976
DOI
10.1371/journal.pone.0245940
PII: PONE-D-20-31110
Knihovny.cz E-resources
- MeSH
- Behavior, Animal physiology MeSH
- Magnetic Fields * MeSH
- Cues * MeSH
- Spatial Behavior physiology MeSH
- Dogs MeSH
- Orientation, Spatial physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
It was shown earlier that dogs, when selecting between two dishes with snacks placed in front of them, left and right, prefer to turn either clockwise or counterclockwise or randomly in either direction. This preference (or non-preference) is individually consistent in all trials but it is biased in favor of north if they choose between dishes positioned north and east or north and west, a phenomenon denoted as "pull of the north". Here, we replicated these experiments indoors, in magnetic coils, under natural magnetic field and under magnetic field shifted 90° clockwise. We demonstrate that "pull of the north" was present also in an environment without any outdoor cues and that the magnetic (and not topographic) north exerted the effect. The detailed analysis shows that the phenomenon involves also "repulsion of the south". The clockwise turning preference in the right-preferring dogs is more pronounced in the S-W combination, while the counterclockwise turning preference in the left-preferring dogs is pronounced in the S-E combination. In this way, south-placed dishes are less frequently chosen than would be expected, while the north-placed dishes are apparently more preferred. Turning preference did not correlate with the motoric paw laterality (Kong test). Given that the choice of a dish is visually guided, we postulate that the turning preference was determined by the dominant eye, so that a dominant right eye resulted in clockwise, and a dominant left eye in counterclockwise turning. Assuming further that magnetoreception in canines is based on the radical-pair mechanism, a "conflict of interests" may be expected, if the dominant eye guides turning away from north, yet the contralateral eye "sees the north", which generally acts attractive, provoking body alignment along the north-south axis.
See more in PubMed
Adámková J, Svoboda J, Benediktová K, Martini S, Nováková P, Tůma D, et al. Directional preference in dogs: Laterality and "pull of the north". PLOS ONE. 2017; 12(9): e0185243 10.1371/journal.pone.0185243 PubMed DOI PMC
Hart V, Nováková P, Begall S, Malkemper EP, Hanzal V, Ježek M, et al. Dogs are sensitive to small variations of the Earth's magnetic field. Front Zool. 2013; 10: 80 10.1186/1742-9994-10-80 PubMed DOI PMC
Yosef R, Raz M, Ben-Baruch N, Shmueli L, Kosicki JZ, Fratczak M, et al., Directional preferences of dogs’ changes in the presence of a bar magnet: Educational experiments in Israel. J Vet Behav. 2020; 35: 34e37 10.1016/j.jveb.2019.10.003. DOI
Martini S, Begall S, Findeklee T, Schmitt M, Malkemper EP, Burda H. Dogs can be trained to find a bar magnet. PeerJ. 2018; 6: e6117 10.7717/peerj.6117 PubMed DOI PMC
Benediktová K, Adámková J, Svoboda J, Painter MS, Bartoš L, Nováková P, et al. Magnetic alignment enhances homing efficiency of hunting dogs. eLife. 2020. 9: e55080 10.7554/eLife.55080 PubMed DOI PMC
Rogers LJ. Laterality in animals. Internat J Comp Psychol. 1989; 3: 5–25. https://escholarship.org/content/qt9h15z1vr/qt9h15z1vr.pdf.
Rogers LJ. Lateralization in vertebrates: its early evolution, general pattern, and development. Adv Study Behav. 2002; 31: 107–161. 10.1016/S0065-3454(02)80007-9
Rogers LJ, Vallortigara G, Andrew R.J. Divided brains The biology and behaviour of brain asymmetries. 2013; Cambridge University Press, New York. ISBN: 9781107005358.
Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TG. Epigenesis of behavioural lateralization in humans and other animals. Phil Trans Roy Soc B. 2009; 364: 915–927. 10.1098/rstb.2008.0244 PubMed DOI PMC
Warren JM. Handedness and laterality in humans and other animals. Physiol. 1980; 8:351–359. 10.3758/BF03337470. DOI
Batt L, Batt M, McGreevy P. Two tests for motor laterality in dogs. J Vet Behav. 2007; 2(2): 47–51. 10.1016/j.jveb.2007.01.002. DOI
McGreevy PD, Brueckner A, Thomson PC, Branson NJ. Motor laterality in 4 breeds of dog, J Vet Behav. 2010; 5(6): 318323 10.1016/j.jveb.2010.05.001. DOI
Lee S, Konno A, Hasegawa T. Asymmetrical paw preference and personality. J Vet Behav. 2011; 6(1): 84–85. 10.1016/j.jveb.2010.09.002. DOI
Plueckhahn TC, Schneider LA, Delfabbro PH. Assessing lateralization in domestic dogs: Performance by Canis familiaris on the Kong test. J Vet Behav. 2016; 15: 25–30. 10.1016/j.jveb.2016.08.004. DOI
Ocklenburg S, Isparta S, Peterburs J, Papadatou-Pastou M. Paw preferences in cats and dogs: Meta-analysis. Laterality. 2019; 24(6): 647–677. 10.1080/1357650X.2019.1578228. PubMed DOI
Siniscalchi M, d'Ingeo S, Formelli S, Quaranta A. Relationship between visuospatial attention and paw preference in dogs. Sci Reps. 2016; 6: 31682 10.1038/srep31682 PubMed DOI PMC
Siniscalchi M, d’Ingeo S, Minunno M, Quaranta A. Communication in dogs. Animals. 2018; 8(8): 131 10.3390/ani8080131 PubMed DOI PMC
Tomkins LM, Thomson PC, McGreevy PD. Associations between motor, sensory and structural lateralisation and guide dog success, Vet J. 2012; 192(3): 359–367. 10.1016/j.tvjl.2011.09.010 PubMed DOI
Pongrácz P., Ujvári V, Faragó T, Miklósi À, Péter A. Do you see what I see? The difference between dog and human visual perception may affect the outcome of experiments, Behav Proc. 2017; 140: 53–60. 10.1016/j.beproc.2017.04.002. PubMed DOI
Batt LS, Batt MS, Baguley JA, McGreevy PD. The relationships between motor lateralization, salivary cortisol concentrations and behavior in dogs. J Vet Behav. 2009; 4(6), 216–222. 10.1016/j.jveb.2009.02.001. DOI
Schneider LA, Delfabbro PH, Burns NR. Temperament and lateralization in the domestic dog (Canis familiaris). J Vet Behav. 2013; 8(3): 124–134. 10.1016/j.jveb.2012.06.004. DOI
Siniscalchi M, d’Ingeo S, Formelli S, Quaranta A. Lateralized behavior and cardiac activity of dogs in response to human emotional vocalizations. Sci Reps, 2018; 8(1): 77 10.1038/s41598-017-18417-4 PubMed DOI PMC
Sorensen H. Inside the mind of the shopper 2nd ed 2017; Pearson Education, Old Tappan, New Jersey. ISBN: 9780137013005.
Scharine AA, McBeath MK. Right-handers and Americans favor turning to the right. Human Factors. 2002; 44(2): 248–256. 10.1518/0018720024497916 PubMed DOI
Eber A. Clandestine Curses: Hidden dangers to charioteers Roman spectacles and entertainment. 2010; Available at: https://www.brown.edu/academics/archaeology/sites/academics-archaeology/files/publication/document/Eber2010.pdf.
Tavakkoli MH, Jose TP. The reason why do athletes run around the track counter- clockwise? 2013; Internat Edu E-J. 2(4): 23–30. https://www.oiirj.org/ejournal/oct-nov-dec2013/phy-edu/04.pdf.
Nordmann GC, Hochstoeger T, Keays DA. Unsolved mysteries: Magnetoreception—A sense without a receptor. PLoS Biol. 2017; 15(10): 1–10. 10.1371/journal.pbio.2003234. PubMed DOI PMC
Gagliardo A, Flannino C, Ioalè P, Pecchia T, Wikleski M, Vallortigara G. Olfactory lateralization in homing pigeons: A GPS study on birds released with unilateral olfactory inputs’, J Exp Biol. 2011; 214(4), 593–598. 10.1242/jeb.049510. PubMed DOI
Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R. Lateralization of magnetic compass orientation in a migratory bird. Nature. 2002; 419: 467–470. 10.1038/nature00958 PubMed DOI
Gehring D, Wiltschko W, Güntürkün O, Denzau S, Wiltschko R. Development of lateralization of the magnetic compass in a migratory bird. Proc Roy Soc B. 2012; 279(1745), 4230–4235. 10.1098/rspb.2012.1654. PubMed DOI PMC
Wilzeck C., Wiltschko W, Güntürkün O, Buschmann J-U, Wiltschko R, Prior H. Learning of magnetic compass directions in pigeons. Anim Cogn. 2010; 13(3): 443–451. 10.1007/s10071-009-0294-0 PubMed DOI
Kirschvink JK. Uniform Magnetic Fields and Double-Wrapped Coil Systems: Improved Techniques for the Design of Bioelectromagnetic Experiments. Biectromagnetix. 1992; 13: 401–411. 10.1002/bem.2250130507 PubMed DOI
Tomkins LM, Thomson PC, McGreevy PD. First-stepping Test as a measure of motor laterality in dogs (Canis familiaris). J Vet Behav. 2010; 5(5): 247–255. 10.1016/j.jveb.2010.03.001. DOI
Sokal RR, Rohlf FJ. Biometry 1981; W. H. Freeman, San Francisco.
Tomkins LM, Williams KA, Thomson PC, McGreevy PD. Sensory Jump Test as a measure of sensory (visual) lateralization in dogs (Canis familiaris). J Vet Behav. 2010. 5: 256–267.
Begall S, Malkemper EP, Červený J, Němec P, Burda H. Magnetic alignment in mammals and other animals. Mammal Biol. 2013; 78(1): 10–20. 10.1016/j.mambio.2012.05.005. DOI
Malkemper EP, Painter MS, Landler L. Shifted magnetic alignment in vertebrates: Evidence for neural lateralization? J Theor Biol. 2016; 399:141–147. 10.1016/j.jtbi.2016.03.040 PubMed DOI
Burda H, Begall S, Hart V, Malkemper EP, Painter MS, Phillips JB, 2020. Magnetoreception in Mammals In: Fritzsch B (ed.) and Bleckmann H (Volume ed.), The Senses: A Comprehensive Reference, vol. 7 Elsevier, Academic Press, pp. 421–444.
Yorke ED. A possible magnetic transducer in birds. J Theor Biol. 1979; 77(1): 101–105. 10.1016/0022-5193(79)90140-1 PubMed DOI
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J. 2000; 78: 707–718. 10.1016/S0006-3495(00)76629-X PubMed DOI PMC
Hore PJ, Mouritsen H. The radical-pair mechanism of magnetoreception. Ann Rev Biophys. 2016; 45(1): 299–344. 10.1146/annurev-biophys-032116-094545. PubMed DOI
Liedvogel M, Mouritsen H. Cryptochromes—A potential magnetoreceptor: What do we know and what do we want to know? J Roy Soc Interface. 2010; 7: S147–S162. 10.1098/rsif.2009.0411.focus PubMed DOI PMC
Worster S, Kattnig DR, Hore PJ. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception. J Chem Phys. 2016; 145(3): 1–13. 10.1063/1.4958624 PubMed DOI
Phillips JB, Jorge PE, Muheim R. Light-dependent magnetic compass orientation in amphibians and insects: Candidate receptors and candidate molecular mechanisms, J Roy Soc Interface. 2010; 7: S241–S256. 10.1098/rsif.2009.0459.focus. PubMed DOI PMC
Solov’yov IA, Mouritsen H, Schulten K. Acuity of a cryptochrome and vision-based magnetoreception system in birds, Biophys J. 2010; 99(1): 40–49. 10.1016/j.bpj.2010.03.053 PubMed DOI PMC
Červený J, Begall S, Koubek P, Nováková P, Burda H. Directional preference may enhance hunting accuracy in foraging foxes. Biol Letters. 2011; 7:355–357. 10.1098/rsbl.2010.1145 PubMed DOI PMC
Niessner C, Denzau S, Malkemper EP, Gross JC, Burda H, Winklhofer M, et al. Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Sci Reps. 2016; 6: 21848 10.1038/srep21848 PubMed DOI PMC