A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images

. 2021 Jan-Mar ; 41 (1) : 239-254. [epub] 20210116

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33518878
Odkazy

PubMed 33518878
PubMed Central PMC7837255
DOI 10.1016/j.bbe.2021.01.002
PII: S0208-5216(21)00003-6
Knihovny.cz E-zdroje

The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time.

Zobrazit více v PubMed

COVID-19 Dashboard by the Centre for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)". ArcGIS. Johns Hopkins University. Retrieved 16th September 2020. (Web Link: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6).

Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC

Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC

Bernheim A., Mei X., Huang M., Yang Y., Fayad Z.A., Zhang N. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295 doi: 10.1148/radiol.2020200463. PubMed DOI PMC

Rodrigues J.C., Hare S.S., Edey A., Devaraj A., Jacob J., Johnstone A. An update on COVID-19 for the radiologist—a British society of thoracic imaging statement. Clin Radiol. 2020;75(May (5)):323–325. PubMed PMC

Bai Y., Yao L., Wei T., Tian F., Jin D.-Y., Chen L. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323:1406. doi: 10.1001/jama.2020.2565. PubMed DOI PMC

Whiting P., Singatullina N., Rosser J.H. Computed tomography of the chest: I. basic principles. Contin Educ Anaesth Crit Care Pain. 2015;15(6):299–304.

Li M., Lei P., Zeng B., Li Z., Yu P., Fan B. Coronavirus disease (COVID-19): spectrum of CT findings and temporal progression of the disease. Acad Radiol. 2020;27:603–608. doi: 10.1016/j.acra.2020.03.003. PubMed DOI PMC

LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. PubMed

Ulhaq A., Khan A., Gomes D., Paul M. Computer vision for COVID‐19 control: a survey. engrXiv. 2020:1–24. PubMed PMC

Shi F., Wang J., Shi J., Wu Z., Wang Q., Tang Z. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2020:1. doi: 10.1109/RBME.2020.2987975. PubMed DOI

Narin A., Kaya C., Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv. 2003 2020. (Zonguldak Bulent Ecevit University, Turkey) PubMed PMC

Zhang J., Xie Y., Li Y., Shen C., Xia Y. COVID-19 screening on chest X-ray images using deep learning based anomaly detection. arXiv. 2003 2020. (China)

Khalid, et al. “Automated Methods for Detection and Classification Pneumonia based on X-Ray Images Using Deep Learning”. https://arxiv.org/abs/2003.14363v1.

Khan Asif Iqbal, Shah Junaid Latief, Bhat Mohammad Mudasir. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput Methods Programs Biomed. 2020 doi: 10.1016/j.cmpb.2020.105581. ISSN 0169-2607. PubMed DOI PMC

Wang Linda, Lin Zhong Qiu, Wong Alexander. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv. 2003 [eess.IV] 15 April 2020. PubMed PMC

Ucar F., Korkmaz D. Covidiagnosis-net: deep bayes-squeezenet based diagnostic of the coronavirus disease 2019 (covid-19) from X-ray images. Med Hypotheses. 2020;109761 PubMed PMC

Ghoshal B., Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv. 2003 2020. (Brunel University, London, United Kingdom)

Vaid S., Kalantar R., Bhandari M. Deep learning covid-19 detection bias: accuracy through artificial intelligence. Int Orthop. 2020:1. PubMed PMC

Brunese L., Mercaldo F., Reginelli A., Santone A. Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-rays. Comput Methods Prog Biomed. 2020:105608. PubMed PMC

Shi F., Xia L., Shan F., Wu D., Wei Y., Yuan H. Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification. arXiv. 2003 2020. (China) PubMed

Khobahi S., Agarwal C., Soltanalian M. CoroNet: a deep network architecture for semi-supervised task-based identification of COVID-19 from chest X-ray images. medRxiv. 2020;(January) doi: 10.1101/2020.04.14.20065722. 2020.04.14.20065722. (University of Illinois, Chicago) DOI

Ozturk T., Talo M., Yildirim E.A., Baloglu U.B., Yildirim O., Acharya U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020 PubMed PMC

Abbas A., Abdelsamea M.M., Gaber M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl Intell. 2020;(September) doi: 10.1007/s10489-020-01829-7. PubMed DOI PMC

Panwar H., Gupta P., Siddiqui M.K., Morales-Menendez R., Singh V. Application of deep learning for fast detection of covid19 in X-rays using ncovnet. Chaos Solitons Fractals. 2020 PubMed PMC

Sarker L., Islam M.M., Hannan T., Ahmed Z. COVID-DenseNet: a deep learning architecture to detect COVID-19 from chest radiology images. Preprints. 2020 doi: 10.20944/preprints202005.0151.v1. 2020050151. DOI

Yoo S.H., Geng H., Chiu T.L., Yu S.K., Cho D.C., Heo J. Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Front Med. 2020;7 doi: 10.3389/fmed.2020.00427. PubMed DOI PMC

Panwar H., Gupta P.K., Siddiqui M.K., Morales-Menendez R., Bhardwaj P., Singh V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos Solitons Fractals. 2020;140(November) doi: 10.1016/j.chaos.2020.110190. PubMed DOI PMC

Apostolopoulos I.D., Aznaouridis S.I., Tzani M.A. Extracting possibly representative covid-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. J Med Biol Eng. 2020:1. PubMed PMC

Elasnaoui K., Chawki Y. Using X-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn. 2020:1–22. no. just-accepted. PubMed PMC

Apostolopoulos I.D., Mpesiana T.A. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020:1. PubMed PMC

Rahimzadeh M., Attar A. A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest X-ray images based on the concatenation of xception and resnet50v2. Informn Med Unlocked. 2020 PubMed PMC

Brunese L., Mercaldo F., Reginelli A., Santone A. Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from X-rays. Comput Methods Prog Biomed. 2020 PubMed PMC

Mahmud T., Rahman M.A., Fattah S.A. Covxnet: a multidilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest X-ray images with transferable multireceptive feature optimization. Comput Biol Med. 2020 PubMed PMC

Cohen Joseph Paul, Morrison Paul, Dao Lan. COVID-19 image data collection. arXiv. 2003 https://github.com/ieee8023/COVID-chestxray-dataset 2020.

Chest X-Ray Images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.

Kobayashi Y., Mitsudomi T. Management of ground-glass opacities: should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res. 2013;2(5):354–363. PubMed PMC

Vilar J., Domingo M.L., Soto C., Cogollos J. Radiology of bacterial pneumonia. Eur J Radiol. 2004 doi: 10.1016/j.ejrad.2004.03.010. PubMed DOI

Wong H.Y.F., Lam H.Y.S., Fong A.H.-T., Leung S.T., Chin T.W.-Y., Lo C.S.Y. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology. 2020;296:E72–E78. doi: 10.1148/radiol.2020201160. PubMed DOI PMC

Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. Am J Roentgenol. 2020;215:87–93. doi: 10.2214/AJR.20.23034. PubMed DOI

Alom M.Z., Taha T.M., Yakopcic C., Westberg S., Hasan S.M., Van Esesn B.C. The history began from AlexNet: a comprehensive survey on deep learning approaches. arXiv preprintarXiv. 2018

Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. PubMed

Krizhevsky A., Sutskever I., Hinton G. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems; Lake Tahoe, NV, USA, 3 – 6 December; 2012. pp. 1097–1105.

Redmon J., Farhadi A. Yolov3: an incremental improvement. arXiv preprint arXiv. 2018 1804.02767.

Lin T.-Y., Dollar P., Girshick R., He K., Hariharan B., Belongie S. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017. Feature pyramid networks for object detection. DOI

Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.C. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2018. MobileNetV2: inverted residuals and linear bottlenecks. DOI

Simonyan K., Zisserman A. 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings. 2015. Very deep convolutional networks for large-scale image recognition.

Ren S., He K., Girshick R., Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017 doi: 10.1109/TPAMI.2016.2577031. PubMed DOI

He K., Zhang X., Ren S., Sun J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016. Deep residual learning for image recognition. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...