• This record comes from PubMed

Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date

. 2021 Feb 03 ; 11 (2) : . [epub] 20210203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
Progres Q35 Univerzita Karlova v Praze

Links

PubMed 33546386
PubMed Central PMC7913557
DOI 10.3390/diagnostics11020231
PII: diagnostics11020231
Knihovny.cz E-resources

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by gradual loss of upper and lower motor neurons and their pathways, usually without affecting the extraocular and sphincter muscles. The cause of the disease is not yet known. It is a chain of subsequent events, ending in programmed cell death in selective neuronal subpopulations. The prognosis for survival is rather short with a median of 2 to 4 years. Survival may be prolonged based on prompt diagnosis, ALS subtype and proper management with supportive treatment (tracheostomy, gastrostomy, etc.). According to the clinical picture, the typical form of ALS with upper and lower motoneuron involvement and progressive bulbar paralysis with bulbar muscle involvement is observed. The ALS form with progressive muscle atrophy, where only the lower motoneuron is affected, and primary lateral sclerosis with only upper motoneuron damage are rare. Familiar forms of ALS (FALS) associated with specific genes (the most common is C9orf72) have been discovered. FALS is usually associated with dementia (frontotemporal lobar dementia, FTLD), behavioral disorders, cognitive dysfunction and impairment of executive functions. The diagnosis of ALS is determined by excluding other conditions and utilizing clinical examinations, laboratory and genetic tests and nerve conduction/needle electromyography studies (EMG). Needle EMG records abnormal activities at rest and looks for neurogenic patterns during muscle contraction. Motor evoked potentials after transcranial magnetic stimulation remain the test of choice to identify impairment of upper motor neurons. New biochemical, neurophysiological and morphological biomarkers are extensively studied as early diagnostic and prognostic factors and have implications for clinical trials, research and drug development.

See more in PubMed

Brown R.H., Al-Chalabi A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2017;377:162–172. doi: 10.1056/NEJMra1603471. PubMed DOI

Mathis S., Couratier P., Julian A., Corcia P., Le Masson G. Current view and perspectives in amyotrophic lateral sclerosis. Neural. Regen. Res. 2017;12:181–184. doi: 10.4103/1673-5374.200794. PubMed DOI PMC

Jaiswal M.K. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: Implications for motoneurons specific calcium dysregulation. Mol. Cell. Ther. 2014;2:26. doi: 10.1186/2052-8426-2-26. PubMed DOI PMC

Federico A., Cardaioli E., Da Pozzo P., Formichi P., Gallus G.N., Radi E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci. 2012;322:254–262. doi: 10.1016/j.jns.2012.05.030. PubMed DOI

Hardiman O., Al-Chalabi A., Chio A., Corr E.M., Logroscino G., Robberecht W., Shaw P.J., Simmons Z., van den Berg L.H. Amyo-trophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017;3:17071. doi: 10.1038/nrdp.2017.71. PubMed DOI

Masrori P., Van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020;27:1918–1929. doi: 10.1111/ene.14393. PubMed DOI PMC

MacKenzie I.R., Rademakers R., Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9:995–1007. doi: 10.1016/S1474-4422(10)70195-2. PubMed DOI

Ling S.-C., Polymenidou M., Cleveland D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron. 2013;79:416–438. doi: 10.1016/j.neuron.2013.07.033. PubMed DOI PMC

Štětkářová I., Matěj R., Ehler E. New insights in the diagnosis and treatment of amyotrophic lateral sclerosis. Česká Slov. Neurol. Neurochir. 2018;81:546–554. doi: 10.14735/amcsnn2018546. DOI

Gentile F., Scarlino S., Falzone Y.M., Lunetta C., Tremolizzo L., Quattrini A., Riva N. The peripheral nervous system in amyo-trophic lateral sclerosis: Opportunities for translational research. Front. Neurosci. 2019;13:601. doi: 10.3389/fnins.2019.00601. PubMed DOI PMC

Suzuki N., Akiyama T., Warita H., Aoki M. Omics approach to axonal dysfunction of motor neurons in Amyotrophic Lateral Sclerosis (ALS) Front. Neurosci. 2020;14:194. doi: 10.3389/fnins.2020.00194. PubMed DOI PMC

Facco E., Micaglio G., Liviero M.C., Ceccato M.B., Toffoletto F., Martinuzzi A., Angelini C. Sensory-motor conduction time in amy-otrophic lateral sclerosis. Riv. Neurol. 1989;59:108–112. PubMed

Vucic S., Kiernan M.C. Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiolo-gy. Handb. Clin. Neurol. 2013;116:561–575. PubMed

Iglesias C., Sangari S., Mendili M.M.E., Benali H., Marchand-Pauvert V., Pradat P.F. Electrophysiological and spinal imaging evidences for sensory dysfunction in amyotrophic lateral sclerosis. BMJ Open. 2015;5:e007659. doi: 10.1136/bmjopen-2015-007659. PubMed DOI PMC

Nardone R., Golaszewski S., Thomschewski A., Sebastianelli L., Versace V., Brigo F., Orioli A., Saltuari L., Höller Y., Trinka E. Disinhibition of sensory cortex in patients with amyotrophic lateral sclerosis. Neurosci. Lett. 2020;722:134860. doi: 10.1016/j.neulet.2020.134860. PubMed DOI

Shimizu T., Nakayama Y., Funai A., Morishima R., Hayashi K., Bokuda K., Nakata Y., Isozaki E. Progressive deterioration of sensory cortex excitability in advanced amyotrophic lateral sclerosis with invasive ventilation. Amyotroph. Lateral Scler. Front. Degener. 2019;21:147–149. doi: 10.1080/21678421.2019.1704015. PubMed DOI

Höffken O., Schmelz A., Lenz M., Gruhn K., Grehl T., Tegenthoff M., Sczesny-Kaiser M. Excitability in somatosensory cortex correlates with motoric impairment in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2019;20:192–198. doi: 10.1080/21678421.2019.1570270. PubMed DOI

Tao Q., Wei Q., Wu Z.-Y. Sensory nerve disturbance in amyotrophic lateral sclerosis. Life Sci. 2018;203:242–245. doi: 10.1016/j.lfs.2018.04.052. PubMed DOI

Riancho J., Paz-Fajardo L., López de Munaín A. Clinical and preclinical evidence of somatosensory involvement in amyo-trophic lateral sclerosis. Br. J. Pharmacol. 2020:1–12. doi: 10.1111/bph.15202. PubMed DOI

Strong M.J., Abrahams S., Goldstein L.H., Woolley S., Mclaughlin P., Snowden J., Mioshi E., Roberts-South A., Benatar M., Hor-tobáGyi T., et al. Amyotrophic lateral Sclerosis—Frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017;18:153–174. doi: 10.1080/21678421.2016.1267768. PubMed DOI PMC

Fang T., Jozsa F., Al-Chalabi A. International Review of Neurobiology. Volume 134. Elsevier BV; Amsterdam, The Netherlands: 2017. Nonmotor symptoms in amyotrophic lateral sclerosis: A systematic review; pp. 1409–1441. PubMed

Zucchi E., Ticozzi N., Mandrioli J. Psychiatric symptoms in amyotrophic lateral sclerosis: Beyond a motor neuron disorder. Front. Neurosci. 2019;13:175. doi: 10.3389/fnins.2019.00175. PubMed DOI PMC

Turner M.R., Goldacre R., Talbot K., Goldacre M.J. Psychiatric disorders prior to amyotrophic lateral sclerosis. Ann. Neurol. 2016;80:935–938. doi: 10.1002/ana.24801. PubMed DOI PMC

Mantovan M.C., Baggio L., Dalla Barba G., Smith P., Pegoraro E., Soraru’ G., Bonometto P., Angelini C. Memory deficits and re-trieval processes in ALS. Eur. J. Neurol. 2003;10:221–227. doi: 10.1046/j.1468-1331.2003.00607.x. PubMed DOI

Al-Chalabi A., Hardiman O., Kiernan M.C., Chiò A., Rix-Brooks B., Berg L.H.V.D. Amyotrophic lateral sclerosis: Moving towards a new classification system. Lancet Neurol. 2016;15:1182–1194. doi: 10.1016/S1474-4422(16)30199-5. PubMed DOI

Chiò A., Logroscino G., Traynor B., Collins J., Simeone J., Goldstein L., White L. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology. 2013;41:118–130. doi: 10.1159/000351153. PubMed DOI PMC

Chipika R.H., Siah W.F., Shing S.L.H., Finegan E., McKenna M.C., Christidi F., Chang K.M., Karavasilis E., Vajda A., Hengeveld J.C., et al. MRI data confirm the selective involvement of thalamic and amygdalar nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief. 2020;32:106246. doi: 10.1016/j.dib.2020.106246. PubMed DOI PMC

Shoesmith C.L., Findlater K., Rowe A., Strong M.J. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J. Neurol. Neurosurg. Psychiatry. 2007;78:629–631. doi: 10.1136/jnnp.2006.103564. PubMed DOI PMC

Radunovic A., Annane D., Rafiq M.K., Brassington R., Mustfa N. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 2017;10:CD004427. doi: 10.1002/14651858.CD004427.pub4. PubMed DOI PMC

Geser F., Brandmeir N.J., Kwong L.K. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyo-trophic lateral sclerosis. Arch. Neurol. 2008;65:636–641. doi: 10.1001/archneur.65.5.636. PubMed DOI

Geser F., Martinez-Lage M., Robinson J., Uryu K., Neumann M., Brandmeir N.J., Xie S.X., Kwong L.K., Elman L., McCluskey L., et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch. Neurol. 2009;66:180–189. doi: 10.1001/archneurol.2008.558. PubMed DOI PMC

Bräuer S., Zimyanin V., Hermann A. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J. Neural. Transm. 2018;125:591–613. doi: 10.1007/s00702-018-1851-y. PubMed DOI

Aulas A., Velde C.V. Alterations in stress granule dynamics driven by TDP-43 and FUS: A link to pathological inclusions in ALS? Front. Cell. Neurosci. 2015;9:423. doi: 10.3389/fncel.2015.00423. PubMed DOI PMC

Marin B., Couratier P., Arcuti S., Copetti M., Fontana A., Nicol M.P., Raymondeau M., Logroscino G., Preux P.-M. Stratification of ALS patients’ survival: A population-based study. J. Neurol. 2015;263:100–111. doi: 10.1007/s00415-015-7940-z. PubMed DOI

Niedermeyer S., Murn M., Choi P.J. Respiratory failure in amyotrophic lateral sclerosis. Chest. 2019;155:401–408. doi: 10.1016/j.chest.2018.06.035. PubMed DOI

Zoccolella S., Beghi E., Palagano G., Fraddosio A., Guerra V., Samarelli V., Lepore V., Simone I.L., Lamberti P., Serlenga L., et al. Predictors of long survival in amyotrophic lateral sclerosis: A population-based study. J. Neurol. Sci. 2008;268:28–32. doi: 10.1016/j.jns.2007.10.023. PubMed DOI

Millul A., Beghi E., Logroscino G., Micheli A., Vitelli E., Zardi A. Survival of patients with amyotrophic lateral sclerosis in a population-based registry. Neuroepidemiology. 2005;25:114–119. doi: 10.1159/000086353. PubMed DOI

Ahmed R.M., Devenney E.M., Strikwerda-Brown C., Hodges J.R., Piguet O., Kiernan M.C. COG-01 Phenotypic variation in ALS-FTD and effect on survival. Amyotroph. Lateral Scler. Front. Degener. 2019;20(Suppl. S1):301–308. PubMed

Ahmed R.M., Devenney E.M., Strikwerda-Brown C., Hodges J.R., Piguet O., Kiernan M.C. Phenotypic variability in ALS-FTD and effect on survival. Neurology. 2020;94:e2005–e2013. doi: 10.1212/WNL.0000000000009398. PubMed DOI

Steyn F.J., Ioannides Z.A., Van Eijk R.P., Heggie S., Thorpe K.A., Ceslis A., Heshmat S., Henders A.K., Wray N.R., Berg L.H.V.D., et al. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J. Neurol. Neurosurg. Psychiatry. 2018;89:1016–1023. doi: 10.1136/jnnp-2017-317887. PubMed DOI PMC

Burkhardt C., Neuwirth C., Sommacal A., Andersen P.M., Weber M. Is survival improved by the use of NIV and PEG in amyo-trophic lateral sclerosis (ALS)? A post-mortem study of 80 ALS patients. PLoS ONE. 2017;12:e0177555. doi: 10.1371/journal.pone.0177555. PubMed DOI PMC

Govaarts R., Beeldman E., Kampelmacher M.J., Van Tol M.-J., Berg L.H.V.D., Van Der Kooi A.J., Wijkstra P.J., Zijnen-Suyker M., Cobben N.A.M., Schmand B.A., et al. The frontotemporal syndrome of ALS is associated with poor survival. J. Neurol. 2016;263:2476–2483. doi: 10.1007/s00415-016-8290-1. PubMed DOI PMC

Mehta P., Kaye W., Raymond J., Punjani R., Larson T., Cohen J., Muravov O., Horton K. Prevalence of amyotrophic lateral sclerosis—United States, 2014. MMWR. Morb. Mortal. Wkly. Rep. 2018;67:1285–1289. doi: 10.15585/mmwr.mm6746a1. PubMed DOI PMC

Logroscino G., Piccininni M. Amyotrophic lateral sclerosis descriptive epidemiology: The origin of geographic difference. Neuroepidemiology. 2019;52:93–103. doi: 10.1159/000493386. PubMed DOI

Marin B., Boumédiene F., Logroscino G., Couratier P., Babron M.-C., Leutenegger A.L., Copetti M., Preux P.-M., Beghi E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol. 2016;46:57–74. doi: 10.1093/ije/dyw061. PubMed DOI PMC

Doi Y., Atsuta N., Sobue G., Morita M., Nakano I. Prevalence and incidence of amyotrophic lateral sclerosis in Japan. J. Epidemiol. 2014;24:494–499. doi: 10.2188/jea.JE20140059. PubMed DOI PMC

Sajjadi M., Etemadifar M., Nemati A., Ghazavi H., Basiri K., Khoundabi B., Mousavi S.A., Kabiri P., Maghzi A.-H. Epidemiology of amyotrophic lateral sclerosis in Isfahan, Iran. Eur. J. Neurol. 2010;17:984–989. doi: 10.1111/j.1468-1331.2010.02972.x. PubMed DOI

Longinetti E., Fang F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019;32:771–776. doi: 10.1097/WCO.0000000000000730. PubMed DOI PMC

Talbott E., Malek A., Lacomis D. The Epidemiology of Amyotrophic Lateral Sclerosis. Volume 138. Elsevier; Amsterdam, The Netherlands: 2016. pp. 225–238. PubMed

Zhan Y., Fang F. Smoking and amyotrophic lateral sclerosis: A mendelian randomization study. Ann. Neurol. 2019;85:482–484. doi: 10.1002/ana.25443. PubMed DOI

Zeng P., Zhou X. Causal effects of blood lipids on amyotrophic lateral sclerosis: A Mendelian randomization study. Hum. Mol. Genet. 2019;28:688–697. doi: 10.1093/hmg/ddy384. PubMed DOI PMC

Seals R.M., Hansen J., Gredal O., Weisskopf M.G. Physical trauma and amyotrophic lateral sclerosis: A population-based study using Danish national registries. Am. J. Epidemiol. 2016;183:294–301. doi: 10.1093/aje/kwv169. PubMed DOI PMC

McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., Santini V.E., Lee H.-S., Kubilus C.A., Stern R.A. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 2009;68:709–735. doi: 10.1097/NEN.0b013e3181a9d503. PubMed DOI PMC

Armon C., Nelson L.M. Is head trauma a risk factor for amyotrophic lateral sclerosis? An evidence based review. Amyotroph. Lateral Scler. 2012;13:351–356. doi: 10.3109/17482968.2012.660954. PubMed DOI

Majounie E., Renton A.E., Mok K. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyo-trophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. Lancet Neurol. 2012;11:323–330. doi: 10.1016/S1474-4422(12)70043-1. PubMed DOI PMC

Boeve B.F., Boylan K.B., Graff-Radford N.R., DeJesus-Hernandez M., Knopman D.S., Pedraza O., Vemuri P., Jones D., Lowe V., Murray M.E., et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF. Brain. 2012;135:765–783. doi: 10.1093/brain/aws004. PubMed DOI PMC

Simón-Sánchez J., Dopper E.G., Cohn-Hokke P.E., Hukema R.K., Nicolaou N., Seelaar H., de Graaf J.R., de Koning I., van Schoor N.M., Deeg D.J., et al. The clinical and pathological phenotype of C9ORF72 hexanu-cleotide repeat expansions. Brain. 2012;135 Pt 3:723–735. doi: 10.1093/brain/awr353. PubMed DOI

Wu C.H., Fallini C., Ticozzi N., Keagle P.J., Sapp P.C., Piotrowska K., Lowe P., Koppers M., McKenna-Yasek D., Baron D.M., et al. Mutations in the profilin 1 gene cause familial amyo-trophic lateral sclerosis. Nature. 2012;488:499–503. doi: 10.1038/nature11280. PubMed DOI PMC

Corcia P., Gordon P.H., Camdessanché J.-P. Is there a paraneoplastic ALS? Amyotroph. Lateral Scler. Front. Degener. 2014;16:252–257. doi: 10.3109/21678421.2014.965178. PubMed DOI

Gorges M., Vercruysse P., Müller H.-P., Huppertz H.-J., Rosenbohm A., Nagel G., Weydt P., Petersén Å., Ludolph A.C., Kassubek J., et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry. 2017;88:1033–1041. doi: 10.1136/jnnp-2017-315795. PubMed DOI

Eisen A., Braak H., Del Tredici K., Lemon R., Ludolph A.C., Kiernan M.C. Cortical influences drive amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry. 2017;88:917–924. doi: 10.1136/jnnp-2017-315573. PubMed DOI

Traynor B.J., Codd M.B., Corr B., Forde C., Frost E., Hardiman O. Amyotrophic lateral sclerosis mimic syndromes: A population-based study. Arch. Neurol. 2000;57:109–113. doi: 10.1001/archneur.57.1.109. PubMed DOI

Amato A.A., Russell J.A. Neuromuscular Disorders. Mc Graw Gill; New York, NY, USA: 2008.

Oskarsson B., Gendron T.F., Staff N.P. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin. Proc. 2018;93:1617–1628. doi: 10.1016/j.mayocp.2018.04.007. PubMed DOI

De Carvalho M. Electrodiagnosis of amyotrophic lateral sclerosis: A review of existing guidelines. J. Clin. Neurophysiol. 2020;37:294–298. doi: 10.1097/WNP.0000000000000682. PubMed DOI

Liu J., Zhang X., Ding X., Song M., Sui K. Analysis of clinical and electrophysiological characteristics of 150 patients with amyotrophic lateral sclerosis in China. Neurol. Sci. 2018;40:363–369. doi: 10.1007/s10072-018-3633-6. PubMed DOI

Menon P., Kiernan M.C., Yiannikas C., Stroud J., Vucic S. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin. Neurophysiol. 2013;124:410–416. doi: 10.1016/j.clinph.2012.07.025. PubMed DOI

Kiernan M.C., Vucic S., Cheah B.C., Turner M.R., Eisen A., Hardiman O., Burrell J.R., Zoing M.C. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–955. doi: 10.1016/S0140-6736(10)61156-7. PubMed DOI

De Carvalho M., Dengler R., Eisen A., England J.D., Kaji R., Kimura J., Mills K., Mitsumoto H., Nodera H., Shefne J., et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008;119:497–503. doi: 10.1016/j.clinph.2007.09.143. PubMed DOI

Jenkins T.M., Alix J.P., Kandler R.H., Shaw P., McDermott C.J. The role of cranial and thoracic electromyography within diagnostic criteria for amyotrophic lateral sclerosis. Muscle Nerve. 2016;64:378–385. doi: 10.1002/mus.25062. PubMed DOI

De Carvalho M., Swash M. Fasciculation potentials and earliest changes in motor unit physiology in ALS. J. Neurol. Neurosugery Psychiatry. 2013;84:963–968. doi: 10.1136/jnnp-2012-304545. PubMed DOI

Nandedkar S.D., Barkhaus P.E., Stålberg E.V. Form factor analysis of the surface electromyographic interference pattern. Muscle Nerve. 2020;62:233–238. doi: 10.1002/mus.26922. PubMed DOI

Schrooten M., Smetcoren C., Robberecht W., Van Damme P. Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Ann. Neurol. 2011;70:79–83. doi: 10.1002/ana.22380. PubMed DOI

Vucic S., Kiernan M.C. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics. 2017;14:91–106. doi: 10.1007/s13311-016-0487-6. PubMed DOI PMC

Cengiz B., Fidanci H., Kiyak Keçeli Y., Baltaci H., Kuruoglu R. Impaired short- and long-latency afferent inhibition in amyo-trophic lateral sclerosis. Muscle Nerve. 2019;59:699–704. doi: 10.1002/mus.26464. PubMed DOI

Van den Bos M.A.J., Higashihara M., Geevasinga N., Menon P., Kiernan M.C., Vucic S. Pathophysiological associations of trans-callosal dysfunction in ALS. Eur. J. Neurol. 2020 doi: 10.1111/ene.14653. PubMed DOI

Vucic S., van den Bos M., Menon P., Howells J., Dharmadasa T., Kiernan M.C. Utility of threshold tracking transcranial magnet-ic stimulation in ALS. Clin. Neurophysiol. Pract. 2018;3:164–172. doi: 10.1016/j.cnp.2018.10.002. PubMed DOI PMC

Vucic S., Rutkove S.B. Neurophysiological biomarkers in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2018;31:640–647. doi: 10.1097/WCO.0000000000000593. PubMed DOI

Pradat P., El Mendili M.-M. Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. BioMed Res. Int. 2014;2014:1–10. doi: 10.1155/2014/467560. PubMed DOI PMC

Wang S., Melhem E.R. Amyotrophic lateral sclerosis and primary lateral sclerosis: The role of diffusion tensor imaging and other advanced mr-based techniques as objective upper motor neuron markers. Ann. N. Y. Acad. Sci. 2005;1064:61–77. doi: 10.1196/annals.1340.013. PubMed DOI

Rocha A.J., Maia Júnior A.C. Is magnetic resonance imaging a plausible biomarker for upper motor neuron degeneration in amyotrophic lateral sclerosis/primary lateral sclerosis or merely a useful paraclinical tool to exclude mimic syndromes? A crit-ical review of imaging applicability in clinical routine. Arq. Neuropsiquiatr. 2012;70:532–539. PubMed

Baldaranov D., Khomenko A., Kobor I., Bogdahn U., Gorges M., Kassubek J., Müller H.-P. Longitudinal diffusion tensor imaging-based assessment of tract alterations: An application to amyotrophic lateral sclerosis. Front. Hum. Neurosci. 2017;11:567. doi: 10.3389/fnhum.2017.00567. PubMed DOI PMC

Grolez G., Moreau C., Danel-Brunaud V., Delmaire C., Lopes R., Pradat P., El Mendili M.M., Defebvre L., Devos D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: A systematic review. BMC Neurol. 2016;16:1–17. doi: 10.1186/s12883-016-0672-6. PubMed DOI PMC

Kasai T., Kojima Y., Ohmichi T., Tatebe H., Tsuji Y., Noto Y., Kitani-Morii F., Shinomoto M., Allsop D., Mizuno T., et al. Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. Ann. Clin. Transl. Neurol. 2019;6:2489–2502. doi: 10.1002/acn3.50943. PubMed DOI PMC

Scarafino A., D’Errico E., Introna A., Fraddosio A., Distaso E., Tempesta I., Morea A., Mastronardi A., Leante R., Ruggieri M., et al. Diagnostic and prognostic power of CSF Tau in amyotrophic lateral sclerosis. J. Neurol. 2018;265:2353–2362. doi: 10.1007/s00415-018-9008-3. PubMed DOI

González De Aguilar J.L. Lipid biomarkers for amyotrophic lateral sclerosis. Front. Neurol. 2019;10:284. doi: 10.3389/fneur.2019.00284. PubMed DOI PMC

Poesen K., Van Damme P. Diagnostic and prognostic performance of neurofilaments in ALS. Front. Neurol. 2019;9:1167. doi: 10.3389/fneur.2018.01167. PubMed DOI PMC

Moreno-Martínez L., Calvo A.C., Muñoz M.J., Osta R. Are circulating cytokines reliable biomarkers for amyotrophic lateral sclerosis? Int. J. Mol. Sci. 2019;20:2759. doi: 10.3390/ijms20112759. PubMed DOI PMC

Tasca E., Pegoraro V., Merico A., Angelini C. Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin. Neuropathol. 2016;35:22–30. doi: 10.5414/NP300889. PubMed DOI

Pegoraro V., Merico A., Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J. Neurol. Sci. 2017;380:58–63. doi: 10.1016/j.jns.2017.07.008. PubMed DOI PMC

Pegoraro V., Marozzo R., Angelini C. MicroRNAs and HDAC4 protein expression in the skeletal muscle of ALS patients. Clin. Neuropathol. 2020;39:105–114. doi: 10.5414/NP301233. PubMed DOI

Ferreira G.D., Costa A.C., Plentz R.D., Coronel C.C., Sbruzzi G. Respiratory training improved ventilatory function and respirato-ry muscle strength in patients with multiple sclerosis and lateral amyotrophic sclerosis: Systematic review and meta-analysis. Physiotherapy. 2016;102:221–228. doi: 10.1016/j.physio.2016.01.002. PubMed DOI

Rosa Silva J.P., Santiago Júnior J.B., Dos Santos E.L., de Carvalho F.O., de França Costa I.M.P., Mendonça D.M.F. Quality of life and functional independence in amyotrophic lateral sclerosis: A systematic review. Neurosci. Biobehav. Rev. 2020;111:1–11. doi: 10.1016/j.neubiorev.2019.12.032. PubMed DOI

Dalbello-Haas V., Florence J.M., Krivickas L.S. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neu-ron disease. Cochrane Database Syst. Rev. 2013;2013:CD005229. PubMed

Epton J., Harris R., Jenkinson C. Quality of life in amyotrophic lateral sclerosis/motor neuron disease: A structured review. Amyotroph. Lateral Scler. 2009;10:15–26. doi: 10.1080/17482960802163721. PubMed DOI

Jenkinson C., Fitzpatrick R., Brennan C., Bromberg M., Swash M. Development and validation of a short measure of health status for individuals with amyotrophic lateral sclerosis/motor neurone disease: The ALSAQ-40. J. Neurol. 1999;246(Suppl. S3):III16–III21. doi: 10.1007/BF03161085. PubMed DOI

Palmieri A., Sorarù G., Lombardi L., D’Ascenzo C., Baggio L., Ermani M., Pegoraro E., Angelini C. Quality of life and motor im-pairment in ALS: Italian validation of ALSAQ. Neurol. Res. 2010;32:32–40. doi: 10.1179/174313209X385734. PubMed DOI

Maessen M., Post M.W.M., Maillé R., Lindeman E., Mooij R., Veldink J.H., Berg L.H.V.D. Validity of the Dutch version of the Amyotrophic Lateral Sclerosis Assessment Questionnaire, ALSAQ-40, ALSAQ-5. Amyotroph. Lateral Scler. 2007;8:96–100. doi: 10.1080/17482960601012541. PubMed DOI

Salas T., Mora J., Esteban J., Rodríguez F., Díaz-Lobato S., Fajardo M. Spanish adaptation of the Amyotrophic Lateral Sclerosis Questionnaire ALSAQ-40 for ALS patients. Amyotroph. Lateral Scler. 2008;9:168–172. doi: 10.1080/17482960801934072. PubMed DOI

Hobson E.V., McDermott C.J. Supportive and symptomatic management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2016;12:526–538. doi: 10.1038/nrneurol.2016.111. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...