Structural and Thermodynamic Analysis of the Resistance Development to Pimodivir (VX-787), the Clinical Inhibitor of Cap Binding to PB2 Subunit of Influenza A Polymerase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)
PubMed
33673017
PubMed Central
PMC7917969
DOI
10.3390/molecules26041007
PII: molecules26041007
Knihovny.cz E-zdroje
- Klíčová slova
- VX-787, antivirals, influenza A polymerase, pimodivir, resistance,
- MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- mutantní proteiny metabolismus MeSH
- podjednotky proteinů antagonisté a inhibitory chemie metabolismus MeSH
- proteinové domény MeSH
- pyridiny chemie farmakologie MeSH
- pyrimidiny chemie farmakologie MeSH
- pyrroly chemie farmakologie MeSH
- RNA-dependentní RNA-polymerasa antagonisté a inhibitory chemie metabolismus MeSH
- termodynamika MeSH
- virová léková rezistence účinky léků MeSH
- virové proteiny antagonisté a inhibitory chemie metabolismus MeSH
- virus chřipky A účinky léků enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mutantní proteiny MeSH
- PB2 protein, Influenzavirus A MeSH Prohlížeč
- pimodivir MeSH Prohlížeč
- podjednotky proteinů MeSH
- pyridiny MeSH
- pyrimidiny MeSH
- pyrroly MeSH
- RNA-dependentní RNA-polymerasa MeSH
- virové proteiny MeSH
Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.
Zobrazit více v PubMed
Taubenberger J.K., Kash J.C. Influenza Virus Evolution, Host Adaptation, and Pandemic Formation. Cell Host Microbe. 2010;7:440–451. doi: 10.1016/j.chom.2010.05.009. PubMed DOI PMC
Mertz D., Kim T.H., Johnstone J., Lam P.-P., Science M., Kuster S.P., Fadel S., Tran D., Fernandez E., Bhatnagar N., et al. Populations at risk for severe or complicated influenza illness: Systematic review and meta-analysis. BMJ. 2013;347:f5061. doi: 10.1136/bmj.f5061. PubMed DOI PMC
Shi F., Xie Y., Shi L., Xu W. Viral RNA polymerase: A promising antiviral target for influenza A virus. Curr. Med. Chem. 2013;20:3923–3934. doi: 10.2174/09298673113209990208. PubMed DOI
Peng Q., Liu Y., Peng R., Wang M., Yang W., Song H., Chen Y., Liu S., Han M., Zhang X., et al. Structural insight into RNA synthesis by influenza D polymerase. Nat. Microbiol. 2019;4:1750–1759. doi: 10.1038/s41564-019-0487-5. PubMed DOI
Pflug A., Guilligay D., Reich S., Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nat. Cell Biol. 2014;516:355–360. doi: 10.1038/nature14008. PubMed DOI
Dias A.T., Bouvier D., Crépin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nat. Cell Biol. 2009;458:914–918. doi: 10.1038/nature07745. PubMed DOI
Reich S., Guilligay D., Pflug A., Malet H., Berger I., Crépin T., Hart D.J., Lunardi T., Nanao M., Ruigrok R.W.H., et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nat. Cell Biol. 2014;516:361–366. doi: 10.1038/nature14009. PubMed DOI
Hayden F.G., Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019;32:176–186. doi: 10.1097/QCO.0000000000000532. PubMed DOI PMC
Clark M.P., Ledeboer M.W., Davies I., Byrn R.A., Jones S.M., Perola E., Tsai A., Jacobs M., Nti-Addae K., Bandarage U.K., et al. Discovery of a Novel, First-in-Class, Orally Bioavailable Azaindole Inhibitor (VX-787) of Influenza PB2. J. Med. Chem. 2014;57:6668–6678. doi: 10.1021/jm5007275. PubMed DOI
Byrn R.A., Jones S.M., Bennett H.B., Bral C., Clark M.P., Jacobs M.D., Kwong A.D., Ledeboer M.W., Leeman J.R., McNeil C.F., et al. Preclinical Activity of VX-787, a First-in-Class, Orally Bioavailable Inhibitor of the Influenza Virus Polymerase PB2 Subunit. Antimicrob. Agents Chemother. 2015;59:1569–1582. doi: 10.1128/AAC.04623-14. PubMed DOI PMC
Finberg R.W., Lanno R., Anderson D., Fleischhackl R., Van Duijnhoven W., Kauffman R.S., Kosoglou T., Vingerhoets J., Leopold L. Phase 2b Study of Pimodivir (JNJ-63623872) as Monotherapy or in Combination with Oseltamivir for Treatment of Acute Uncomplicated Seasonal Influenza A: TOPAZ Trial. J. Infect. Dis. 2018;219:1026–1034. doi: 10.1093/infdis/jiy547. PubMed DOI
Gubareva L.V., Bethell R., Hart G.J., Murti K.G., Penn C.R., Webster R.G. Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J. Virol. Mar. 1996;70:1818–1827. doi: 10.1128/JVI.70.3.1818-1827.1996. PubMed DOI PMC
Gubareva L., Mishin V., Patel M., Chesnokov A., Cruz J.D.L., Nguyen H., Lollis L., Hodges E., Jang Y., Barnes J., et al. Seasonal and other influenza viruses with reduced susceptibility to Baloxavir and Pimodivir; Proceedings of the OPTIONS X for the Control of Influenza; Suntec City, Singapore. 28 August–1 September 2019; No. 10750.
Zhu W., Zhu Y., Qin K., Yu Z., Gao R., Yu H., Zhou J., Shu Y. Mutations in Polymerase Genes Enhanced the Virulence of 2009 Pandemic H1N1 Influenza Virus in Mice. PLoS ONE. 2012;7:e33383. doi: 10.1371/journal.pone.0033383. PubMed DOI PMC
Fechter P., Mingay L., Sharps J., Chambers A., Fodor E., Brownlee G.G. Two Aromatic Residues in the PB2 Subunit of Influenza a RNA Polymerase Are Crucial for Cap Binding. J. Biol. Chem. 2003;278:20381–20388. doi: 10.1074/jbc.M300130200. PubMed DOI
Trevejo J.M., Asmal M., Vingerhoets J., Polo R., Robertson S., Jiang Y., Kieffer T.L., Leopold L. Pimodivir treatment in adult volunteers experimentally inoculated with live influenza virus: A Phase IIa, randomized, double-blind, placebo-controlled study. Antivir Ther. 2018;23:335–344. doi: 10.3851/IMP3212. PubMed DOI
Lee S., Jacobson I., Xiao H., Sanchez E., Feese M., Lin B., Adolphson J., Uher L. Development of a new class of broad spectrum influenza PB2 inhibitors; Proceedings of the OPTIONS X for the Control of Influenza; Suntec City, Singapore. 28 August–1 September 2019; No. 11025.
Darby J.F., Hopkins A.P., Shimizu S., Roberts S.M., Brannigan J.A., Turkenburg J.P., Thomas G.H., Hubbard R.E., Fischer M. Water Networks Can Determine the Affinity of Ligand Binding to Proteins. J. Am. Chem. Soc. 2019;141:15818–15826. doi: 10.1021/jacs.9b06275. PubMed DOI
Fox J.M., Kang K., Sastry M., Sherman W., Sankaran B., Zwart P.H., Whitesides G.M. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase. Angew. Chem. Int. Ed. 2017;56:3833–3837. doi: 10.1002/anie.201609409. PubMed DOI
Pokorná J., Pachl P., Karlukova E., Hejdánek J., Řezáčová P., Machara A., Hudlický J., Konvalinka J., Kožíšek M. Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses. 2018;10:339. doi: 10.3390/v10070339. PubMed DOI PMC
Krimmer S.G., Klebe G. Thermodynamics of protein–ligand interactions as a reference for computational analysis: How to assess accuracy, reliability and relevance of experimental data. J. Comput. Mol. Des. 2015;29:867–883. doi: 10.1007/s10822-015-9867-y. PubMed DOI
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
A Vagin A., Teplyakov A. MOLREP: An Automated Program for Molecular Replacement. J. Appl. Crystallogr. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of theCCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Murshudov G.N., Skubák P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Delano W.L. The PyMOL Molecular Graphics System. [(accessed on 10 March 2020)]; Available online: http://www.pymol.org.
Case D., Babin V., Berryman J.T., Betz R.M. Amber 2014. [(accessed on 10 June 2020)];2014 Available online: http://ambermd.org.
Olsson M.H.M., Søndergaard C.R., Rostkowski M., Jensen J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2010;7:525–537. doi: 10.1021/ct100578z. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Fanfrlík J., Bronowska A.K., ŘezáčJ P., Konvalinka J., Hobza P. A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. J. Phys. Chem. B. 2010;114:12666–12678. doi: 10.1021/jp1032965. PubMed DOI
Lepšík M., Řezáč J., Kolář M.H., Pecina A., Hobza P., Fanfrlík J. The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design. ChemPlusChem. 2013;78:921–931. doi: 10.1002/cplu.201300199. PubMed DOI
Pecina A., Eyrilmez S.M., Köprülüoğlu C., Miriyala V.M., Lepšík M., Fanfrlík J., Řezáč J., Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. ChemPlusChem. 2020;85:2362–2371. doi: 10.1002/cplu.202000120. PubMed DOI
Stewart J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007;13:1173–1213. doi: 10.1007/s00894-007-0233-4. PubMed DOI PMC
Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI
Stewart J.J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI
Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI
Řezáč J. Cuby—Ruby Framework for Computational Chemistry, Version 4. [(accessed on 15 November 2020)]; Available online: http://cuby4.molecular.cz.
Kříž K., Řezáč J. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2018;59:229–235. doi: 10.1021/acs.jcim.8b00681. PubMed DOI