Emerging glyco-based strategies to steer immune responses
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33752265
PubMed Central
PMC8453523
DOI
10.1111/febs.15830
Knihovny.cz E-zdroje
- Klíčová slova
- autoimmunity, cancer, glycosylation, immune system, vaccination,
- MeSH
- autoimunita imunologie MeSH
- chimerické antigenní receptory imunologie MeSH
- lidé MeSH
- mezibuněčná komunikace imunologie MeSH
- nanočástice chemie MeSH
- polysacharidy chemie imunologie MeSH
- posttranslační úpravy proteinů MeSH
- T-lymfocyty imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chimerické antigenní receptory MeSH
- polysacharidy MeSH
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Blood Transfusion Center of Slovenia Ljubljana Slovenia
Chair of Pharmaceutical Chemistry Faculty of Pharmacy University of Ljubljana Slovenia
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Biotechnology and Food Microbiology Warsaw University of Life Sciences SGGW Poland
Department of Chemistry 'Ugo Schiff' University of Florence Florence Italy
Department of Chemistry and CRC Materiali Polimerici University of Milan Italy
Department of Chemistry Faculty of Arts and Sciences Recep Tayyip Erdogan University Rize Turkey
Department of Medical Biotechnology and Translational Medicine University of Milan Italy
Department of Microbiology and Parasitology Jan Kochanowski University Kielce Poland
Department of Organic Chemistry Faculty of Sciences University of Malaga Spain
I3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
National Research Council CNR SCITEC Milan Italy
Zobrazit více v PubMed
Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96, 683–720. PubMed
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard RLet al. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. PubMed
Varki A (2017) Biological roles of glycans. Glycobiology 27, 3–49. PubMed PMC
Pinho SS & Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15, 540–555. PubMed
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Å, Dias AM & Pinho SS (2018) Glycans as key checkpoints of T cell activity and function. Front Immunol 9, 2754. PubMed PMC
Silva M, Videira PA & Sackstein R (1878) Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front Immunol 2018, 8. PubMed PMC
Rabinovich GA, van Kooyk Y & Cobb BA (2012) Glycobiology of immune responses. Ann N Y Acad Sci 1253, 1–15. PubMed PMC
Dekkers G, Rispens T & Vidarsson G (2018) Novel concepts of altered immunoglobulin G galactosylation in autoimmune diseases. Front Immunol 9, 553. PubMed PMC
Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR & Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57, 1–13. PubMed PMC
Hafkenscheid L, de Moel E, Smolik I, Tanner S, Meng X, Jansen BC, Bondt A, Wuhrer M, Huizinga TWJ, Toes REMet al. (2019) N‐linked glycans in the variable domain of IgG anti‐citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol 71, 1626–1633. PubMed PMC
Mereiter S, Balmaña M, Campos D, Gomes J & Reis CA (2019) Glycosylation in the era of cancer‐targeted therapy: where are we heading? Cancer Cell 36, 6–16. PubMed
Groux‐Degroote S, Guérardel Y & Delannoy P (2017) Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 18, 1146–1154. PubMed
RodrÍguez E, Schetters STT & van Kooyk Y (2018) The tumour glyco‐code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18, 204–211. PubMed
Li RJE, van Vliet SJ & van Kooyk Y (2018) Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr Opin Biotechnol 51, 24–31. PubMed
Rao M, Valentini D, Dodoo E, Zumla A & Maeurer M (2017) Anti‐PD‐1/PD‐L1 therapy for infectious diseases: learning from the cancer paradigm. Int J Infect Dis 56, 221–228. PubMed
Wykes MN & Lewin SR (2018) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18, 91–104. PubMed PMC
Bucktrout SL, Bluestone JA & Ramsdell F (2018) Recent advances in immunotherapies: from infection and autoimmunity, to cancer, and back again. Genome Med 10, 79. PubMed PMC
Paulson KG, Lahman MC, Chapuis AG & Brownell I (2019) Immunotherapy for skin cancer. Int Immunol 31, 465–475. PubMed PMC
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264. PubMed PMC
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK & Iyer AK (2017) PD‐1 and PD‐L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8, 561. PubMed PMC
Borcherding N, Kolb R, Gullicksrud J, Vikas P, Zhu Y & Zhang W (2018) Keeping tumors in check: a mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. J Mol Biol 430, 2014–2029. PubMed PMC
Mukherjee S & Mukherjee U (2009) A comprehensive review of immunosuppression used for liver transplantation. J Transplant 2009, 701464. PubMed PMC
Huskey J, Gralla J & Wiseman AC (2011) Long‐term outcomes in patients with acute kidney injury. Clin J Am Soc Nephrol 6, 423–429. PubMed PMC
Qian C & Cao X (2018) Dendritic cells in the regulation of immunity and inflammation. Semin Immunol 35, 3–11. PubMed
Brubaker SW, Bonham KS, Zanoni I & Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33, 257–290. PubMed PMC
Varki A (2011) Letter to the Glyco‐Forum: Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self‐associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21, 1121–1124. PubMed PMC
Lewis KL & Reizis B (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4, a007401. PubMed
Gringhuis SI, Kaptein TM, Wevers BA, van der Vlist M, Klaver EJ, van Die I, Vriend LEM, de Jong MAWP & Geijtenbeek TBH (2014) Fucose‐based PAMPs prime dendritic cells for follicular T helper cell polarization via DC‐SIGN‐dependent IL‐27 production. Nat Commun 5, 5074. PubMed
Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M & Geijtenbeek TBH (2009) Carbohydrate‐specific signaling through the DC‐SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV‐1 and Helicobacter pylori . Nat Immunol 10, 1081–1088. PubMed
van der Vlist M, van der Aar AMG, Gringhuis SI & Geijtenbeek TBH (2011) Innate signaling in HIV‐1 infection of dendritic cells. Curr Opin HIV AIDS 6, 348–352. PubMed
Švajger U, Anderluh M, Jeras M & Obermajer N (2010) C‐type lectin DC‐SIGN: an adhesion, signalling and antigen‐uptake molecule that guides dendritic cells in immunity. Cell Signal 22, 1397–1405. PubMed PMC
Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, Dalod M, Soumelis V & Amigorena S (2013) Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348. PubMed
Pulendran B, Tang H & Manicassamy S (2010) Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 11, 647–655. PubMed
Rengarajan J, Szabo SJ & Glimcher LH (2000) Climate change: an enduring challenge for vector‐borne disease prevention and control. Immunol Today 21, 479–483. PubMed PMC
Crome SQ, Wang AY & Levings MK (2010) Translational mini‐review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 159, 109–119. PubMed PMC
Everts B, Smits HH, Hokke CH & Yazdanbakhsh M (2010) Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. Eur J Immunol 40, 1525–1537. PubMed
Lutz MB & Schuler G (2002) Immature, semi‐mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23, 445–449. PubMed
Christensen HR, Frøkiær H & Pestka JJ (2002) The decline in B lymphopoiesis in aged mice reflects loss of very early B‐lineage precursors. J Immunol 168, 171–178. PubMed
Menges M, Rössner S, Voigtländer C, Schindler H, Kukutsch NA, Bogdan C, Erb K, Schuler G & Lutz MB (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen‐specific protection of mice from autoimmunity. J Exp Med 195, 15–21. PubMed PMC
Frick J‐S, Grünebach F & Autenrieth IB (2010) Immunomodulation by semi‐mature dendritic cells: a novel role of Toll‐like receptors and interleukin‐6. Int J Med Microbiol 300, 19–24. PubMed
Xia C‐Q, Peng R, Beato F & Clare‐Salzler MJ (2005) Dexamethasone induces IL‐10‐producing monocyte‐derived dendritic cells with durable immaturity. Scand J Immunol 62, 45–54. PubMed
Pedersen AE, Gad M, Walter MR & Claesson MH (2004) Induction of regulatory dendritic cells by dexamethasone and 1alpha,25‐Dihydroxyvitamin D(3). Immunol Lett 91, 63–69. PubMed
Agace WW & Persson EK (2012) How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends Immunol 33, 42–48. PubMed
Klein L, Robey EA & Hsieh C‐S (2019) Central CD4 + T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol 19, 7–18. PubMed
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD & den Haan JMM (2017) Leukocyte immunoglobulin‐like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol 102, 1017–1034. PubMed PMC
Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly Jet al. (2014) Induction of antigen‐specific immunity with a vaccine targeting NY‐ESO‐1 to the dendritic cell receptor DEC‐205. Sci Transl Med 6, 232ra51. PubMed PMC
Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler‐Thurner B, Schuler G, Schaft N & Dörrie J (2010) Targeting of DEC‐205 on human dendritic cells results in efficient MHC class II‐restricted antigen presentation. Blood 116, 2277–2285. PubMed
Johnson T, Mahnke K, Storn V, Schönfeld K, Ring S, Nettelbeck D, Haisma H, Gall F, Kontermann R & Enk A (2008) Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 14, 8169–8177. PubMed
Badillo‐Godinez O, Gutierrez‐Xicotencatl L, Plett‐Torres T, Pedroza‐Saavedra A, Gonzalez‐Jaimes A, Chihu‐Amparan L, Maldonado‐Gama M, Espino‐Solis G, Bonifaz LC & Esquivel‐Guadarrama F (2015) Targeting of rotavirus VP6 to DEC‐205 induces protection against the infection in mice. Vaccine 33, 4228–4237. PubMed
Sancho D, Mourão‐Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR & Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel, DC‐restricted C‐type lectin. J Clin Invest 118, 2098–2110. PubMed PMC
Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JCY, Rizzitelli A, Wu L, Vremec D, van Dommelen SLHet al. (2008) The dendritic cell subtype‐restricted C‐type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273. PubMed PMC
Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee C‐N, Phipson B, Shi W, Smyth GK, Lew AMet al. (2011) Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol 187, 842–850. PubMed
Lahoud MH, Proietto AI, Ahmet F, Kitsoulis S, Eidsmo L, Wu L, Sathe P, Pietersz S, Chang H‐W, Walker IDet al. (2009) The C‐type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J Immunol 182, 7587–7594. PubMed
Romani N, Clausen BE & Stoitzner P (2010) Langerhans cells and more: langerin‐expressing dendritic cell subsets in the skin. Immunol Rev 234, 120–141. PubMed PMC
Donadei A, Gallorini S, Berti F, O’Hagan DT, Adamo R & Baudner BC (2015) Optimizing adjuvants for intradermal delivery of MenC glycoconjugate vaccine. Mol Pharm 12, 1662–1672. PubMed
Lipinski T, Fitieh A, St Pierre J, Ostergaard HL, Bundle DR & Touret N (2013) Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin‐1 by incorporating β‐glucan. J Immunol 190, 4116–4128. PubMed
Xie J, Guo L, Ruan Y, Zhu H, Wang L, Zhou L, Yun X & Gu J (2010) Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 391, 958–962. PubMed PMC
Fehres CM, Kalay H, Bruijns SCM, Musaafir SAM, Ambrosini M, van Bloois L, van Vliet SJ, Storm G, Garcia‐Vallejo JJ & van Kooyk Y (2015) Cross‐presentation through langerin and DC‐SIGN targeting requires different formulations of glycan‐modified antigens. J Control Release 203, 67–76. PubMed
Apostolopoulos V, Pietersz GA & McKenzie IFC (1996) Cell‐mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine 14, 930–938. PubMed
Fehres CM, van Beelen AJ, Bruijns SCM, Ambrosini M, Kalay H, van Bloois L, Unger WWJ, Garcia‐Vallejo JJ, Storm G, de Gruijl TDet al. (2015) In situ delivery of antigen to DC‐SIGN(+)CD14(+) dermal dendritic cells results in enhanced CD8(+) T‐cell responses. J Invest Dermatol 135, 2228–2236. PubMed
Chappell CP, Giltiay NV, Draves KE, Chen C, Hayden‐Ledbetter MS, Shlomchik MJ, Kaplan DH & Clark EA (2014) Targeting antigens through blood dendritic cell antigen 2 on plasmacytoid dendritic cells promotes immunologic tolerance. J Immunol 192, 5789–5801. PubMed PMC
Robert C (2020) Nat Commun 11, 10–12. PubMed PMC
De Vries J & Figdor C (2016) Immunotherapy: cancer vaccine triggers antiviral‐type defences. Nature 534, 329–331. PubMed
Sabado RL, Balan S & Bhardwaj N (2017) Dendritic cell‐based immunotherapy. Cell Res 27, 74–95. PubMed PMC
Koshy ST & Mooney DJ (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40, 1–8. PubMed PMC
Zhang Y, Lin S, Wang X‐Y & Zhu G (2019) The consolidation of nanomedicine. WIREs Nanomed Nanobiotechnol 11, e1559. PubMed PMC
Johannssen T & Lepenies B (2017) Glycan‐based cell targeting to modulate immune responses. Trends Biotechnol 35, 334–346. PubMed
Geijtenbeek TBH & Gringhuis SI (2009) Signalling through C‐type lectin receptors: shaping immune responses. Nat Rev Immunol 9, 465–479. PubMed PMC
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC & Geijtenbeek TBH (2020) Various tastes of sugar: the potential of glycosylation in targeting and modulating human immunity via C‐type lectin receptors. Front Immunol 11, 134. PubMed PMC
Valverde P, Martínez JD, Cañada FJ, Ardá A & Jiménez‐Barbero J (2020) Molecular recognition in C‐type lectins: the cases of DC‐SIGN, Langerin, MGL, and L‐sectin. ChemBioChem, 21, 2999–3025. PubMed PMC
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S & Plana M (2018) Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV‐peptides and mannosides enhance HIV‐specific T cell responses. Nanomedicine 14, 339–351. PubMed
Sirvent S, Soria I, Cirauqui C, Cases B, Manzano AI, Diez‐Rivero CM, Reche PA, López‐Relaño J, Martínez‐Naves E, Cañada FJet al. (2016) Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J Allergy Clin Immunol 138, 558–567.e11. PubMed
Sedaghat B, Stephenson RJ, Giddam AK, Eskandari S, Apte SH, Pattinson DJ, Doolan DL & Toth I (2016) Triggered drug release from an antibody‐drug conjugate using fast "Click‐to‐Release" chemistry in mice. Bioconjug Chem 27, 533–548. PubMed
Glaffig M, Stergiou N, Hartmann S, Schmitt E & Kunz H (2018) A Synthetic MUC1 anticancer vaccine containing mannose ligands for targeting macrophages and dendritic cells. ChemMedChem 13, 25–29. PubMed
McIntosh JD, Brimble MA, Brooks AES, Dunbar PR, Kowalczyk R, Tomabechi Y & Fairbanks AJ (2015) Convergent chemo‐enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem Sci 6, 4636–4642. PubMed PMC
Ahlén G, Strindelius L, Johansson T, Nilsson A, Chatzissavidou N, Sjöblom M, Rova U & Holgersson J (2012) Mannosylated mucin‐type immunoglobulin fusion proteins enhance antigen‐specific antibody and T lymphocyte responses. PLoS One 7, e46959. PubMed PMC
Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen WE, Camps MG, Valentijn ARPM, Ossendorp F, Drijfhout JW, Arens Ret al. (2014) Enhanced cross‐presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS One 9, e103755. PubMed PMC
Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V & Florindo HF (2015) In vivo delivery of peptides and Toll‐like receptor ligands by mannose‐functionalized polymeric nanoparticles induces prophylactic and therapeutic anti‐tumor immune responses in a melanoma model. J Control Release 198, 91–103. PubMed
Shi G‐N, Zhang C‐N, Xu R, Niu J‐F, Song H‐J, Zhang X‐Y, Wang W‐W, Wang Y‐M, Li C, Wei X‐Qet al. (2017) Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate‐loaded chitosan nanoparticles vaccine. Biomaterials 113, 191–202. PubMed
Hamdy S, Haddadi A, Shayeganpour A, Samuel J & Lavasanifar A (2011) Activation of antigen‐specific T cell‐responses by mannan‐decorated PLGA nanoparticles. Pharm Res 28, 2288. PubMed
Moku G, Vangala S, Gulla SK & Yakati V (2020) In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long‐lasting immunity against melanoma. ChemBioChem 22, 523–531. PubMed
Ye J, Yang Y, Dong W, Gao Y, Meng Y, Wang H, Li L, Jin J, Ji M, Xia Xet al. (2019) Drug‐free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor‐associated macrophages. Int J Nanomed 14, 3203–3220. PubMed PMC
Qian B‐Z & Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51. PubMed PMC
Zhang C, Yu X, Gao L, Zhao Y, Lai J, Lu D, Bao R, Jia B, Zhong L, Wang Fet al. (2017) Noninvasive imaging of CD206‐positive M2 macrophages as an early biomarker for post‐chemotherapy tumor relapse and lymph node metastasis. Theranostics 7, 4276–4288. PubMed PMC
Tiwari S (2018) Mannosylated constructs as a platform for cell‐specific delivery of bioactive agents. Crit Rev Ther Drug Carrier Syst 35, 157–194. PubMed
Vera DR, Wallace AM, Hoh CK & Mattrey RF (2001) A synthetic macromolecule for sentinel node detection: (99m)Tc‐DTPA‐mannosyl‐dextran. J Nucl Med 42, 951–959. PubMed
Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SPL, Faries MB, Averbook BJ, Martinez SR, Puleo CAet al. (2013) Combined analysis of phase III trials evaluating [99mTc]Tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node‐negative cutaneous melanoma. Ann Surg Oncol 20, 680–688. PubMed PMC
Vidal‐Sicart S, Rioja ME, Prieto A, Goñi E, Gómez I, Albala MD, Lumbreras L, León LF, Gómez JR & Campos F (2020) Sentinel lymph node biopsy in breast cancer with 99m Tc‐tilmanocept: a novel tracer in the real life. A multicenter study. J Nucl Med, 10.2967/jnumed.120.252064 PubMed DOI
Vassilaros S, Tsibanis A, Tsikkinis A, Pietersz GA, McKenzie IFC & Apostolopoulos V (2013) Up to 15‐year clinical follow‐up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan‐MUC1. Immunotherapy 5, 1177–1182. PubMed
Mitchell DA, Fadden AJ & Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C‐type lectins DC‐SIGN and DC‐SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276, 28939–28945. PubMed
Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke‐Grauls CMJE, Geijtenbeek TBH & van Kooyk Y (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell‐specific ICAM‐3‐grabbing nonintegrin on dendritic cells. J Immunol 170, 1635–1639. PubMed
Unger WWJ, van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, van Bloois L, Verstege MI, Ambrosini M, Kalay H, Nazmi Ket al. (2012) Glycan‐modified liposomes boost CD4+ and CD8+ T‐cell responses by targeting DC‐SIGN on dendritic cells. J Control Release 160, 88–95. PubMed
Li R‐JE, Hogervorst TP, Achilli S, Bruijns SC, Arnoldus T, Vivès C, Wong CC, Thépaut M, Meeuwenoord NJ, van den Elst Het al. (2019) Systematic dual targeting of dendritic cell C‐type lectin receptor DC‐SIGN and TLR7 using a trifunctional mannosylated antigen. Front Chem 7, 650. PubMed PMC
Duinkerken S, Horrevorts SK, Kalay H, Ambrosini M, Rutte L, de Gruijl TD, Garcia‐Vallejo JJ & van Kooyk Y (2019) Glyco‐dendrimers as intradermal anti‐tumor vaccine targeting multiple skin DC subsets. Theranostics 9, 5797–5809. PubMed PMC
Horrevorts SK, Duinkerken S, Bloem K, Secades P, Kalay H, Musters RJ, van Vliet SJ, García‐Vallejo JJ & van Kooyk Y (2018) Toll‐like receptor 4 triggering promotes cytosolic routing of DC‐SIGN‐targeted antigens for presentation on MHC class I. Front Immunol 9, 1231. PubMed PMC
He L‐Z, Weidlick J, Sisson C, Marsh HC & Keler T (2015) Toll‐like receptor agonists shape the immune responses to a mannose receptor‐targeted cancer vaccine. Cell Mol Immunol 12, 719–728. PubMed PMC
Alam MM, Jarvis CM, Hincapie R, McKay CS, Schimer J, Sanhueza CA, Xu K, Diehl RC, Finn MG & Kiessling LL (2021) Glycan‐modified virus‐like particles evoke T helper type 1‐like immune responses. ACS Nano 15, 309–321. PubMed PMC
Lu X, Nagata M & Yamasaki S (2018) Mincle: 20 years of a versatile sensor of insults. Int Immunol 30, 233–239. PubMed
Wells CA, Salvage‐Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo Y‐L‐S, Manzanero S, Cobbold Cet al. (2008) The macrophage‐inducible C‐type lectin, mincle, is an essential component of the innate immune response to Candida albicans . J Immunol 180, 7404–7413. PubMed
El Halawani ME & Waibel PE (1975) The relative importance of monoamine oxidase and catechol‐O‐methyl transferase on the physiologic response to administered norepinephrine in the turkey. Comp Biochem Physiol Part C Comp Pharmacol 52, 35–39. PubMed
Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K & Saito T (2008) Mincle is an ITAM‐coupled activating receptor that senses damaged cells. Nat Immunol 9, 1179–1188. PubMed
Kodar K, Harper JL, McConnell MJ, Timmer MSM & Stocker BL (2017) The Mincle ligand trehalose dibehenate differentially modulates M1‐like and M2‐like macrophage phenotype and function via Syk signaling. Immunity Inflamm Dis 5, 503–514. PubMed PMC
Werninghaus K, Babiak A, Gross O, Hölscher C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger Ket al. (2009) Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma‐Syk‐Card9‐dependent innate immune activation. J Exp Med 206, 89–97. PubMed PMC
Decout A, Silva‐Gomes S, Drocourt D, Barbe S, André I, Cueto FJ, Lioux T, Sancho D, Pérouzel E, Vercellone Aet al. (2017) Rational design of adjuvants targeting the C‐type lectin Mincle. Proc Natl Acad Sci USA 114, 2675–2680. PubMed PMC
Bird JH, Khan AA, Nishimura N, Yamasaki S, Timmer MSM & Stocker BL (2018) Synthesis of branched trehalose glycolipids and their mincle agonist activity. J Org Chem 83, 7593–7605. PubMed
Rasheed OK, Ettenger G, Buhl C, Child R, Miller SM, Evans JT & Ryter KT (2020) 6,6'‐Aryl trehalose analogs as potential Mincle ligands. Bioorg Med Chem 28, 115564. PubMed PMC
Huber A, Kallerup RS, Korsholm KS, Franzyk H, Lepenies B, Christensen D, Foged C & Lang R (2016) Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages in vitro and adjuvant activity in vivo . Innate Immun 22, 405–418. PubMed PMC
Rasheed OK, Buhl C, Evans JT & Ryter KT (2021) Design of trehalose‐based amide/sulfonamide C‐type lectin receptor signaling compounds. ChemMedChem, 10.1002/cmdc.202000775. PubMed DOI PMC
Abdelwahab WM, Riffey A, Buhl C, Johnson C, Ryter K, Evans JT & Burkhart DJ (2021) Co‐adsorption of synthetic Mincle agonists and antigen to silica nanoparticles for enhanced vaccine activity: a formulation approach to co‐delivery. Int J Pharm 593, 120119. PubMed PMC
Thakur A, Andrea A, Mikkelsen H, Woodworth JS, Andersen P, Jungersen G & Aagaard C (2018) Targeting the Mincle and TLR3 receptor using the dual agonist cationic adjuvant formulation 9 (CAF09) induces humoral and polyfunctional memory T cell responses in calves. PLoS One 13, e0201253. PubMed PMC
Lee MJ, Jo H, Shin SH, Kim S‐M, Kim B, Shim HS & Park J‐H (2019) T cells in adipose tissue: critical players in immunometabolism. Front Immunol 10, 2509. PubMed PMC
Hao L, Wu Y, Zhang Y, Zhou Z, Lei Q, Ullah N, Banga Ndzouboukou J‐L, Lin X & Fan X (2020) Combinational PRR agonists in liposomal adjuvant enhances immunogenicity and protective efficacy in a tuberculosis subunit vaccine. Front Immunol 11, 575504. PubMed PMC
Smith AJ, Miller SM, Buhl C, Child R, Whitacre M, Schoener R, Ettenger G, Burkhart D, Ryter K & Evans JT (2019) Species‐specific structural requirements of alpha‐branched Trehalose Diester mincle agonists. Front Immunol 10, 338. PubMed PMC
Malamud M, Carasi P, Assandri MH, Freire T, Lepenies B & Serradell MLÁ (2019) S‐layer glycoprotein from Lactobacillus kefiri exerts its immunostimulatory activity through glycan recognition by mincle. Front Immunol 10, 1422. PubMed PMC
Ryter KT, Ettenger G, Rasheed OK, Buhl C, Child R, Miller SM, Holley D, Smith AJ & Evans JT (2020) Aryl Trehalose Derivatives as Vaccine Adjuvants for Mycobacterium tuberculosis . J Med Chem 63, 309–320. PubMed PMC
Foster AJ, Kodar K, Timmer MSM & Stocker BL (2020) ortho‐Substituted lipidated Brartemicin derivative shows promising Mincle‐mediated adjuvant activity. Org. Biomol. Chem. 18, 1095–1103. PubMed
Foster AJ, Nagata M, Lu X, Lynch AT, Omahdi Z, Ishikawa E, Yamasaki S, Timmer MSM & Stocker BL (2018) Lipidated brartemicin analogues are potent Th1‐stimulating vaccine adjuvants. J Med Chem 61, 1045–1060. PubMed
Wamhoff E‐C, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger FF, Rademacher J, Hermann M, Del Frari B, van Dalen Ret al. (2019) A specific, glycomimetic langerin ligand for human langerhans cell targeting. ACS Cent Sci 5, 808–820. PubMed PMC
Patnaik SK, Stanley P (2006) Lectin‐resistant CHO glycosylation mutants. Methods Enzymol 416, 159–182. PubMed
Tejwani V, Andersen MR, Nam JH & Sharfstein ST (2018) Glycoengineering in CHO cells: advances in systems biology. Biotechnol J 13, 1700234. PubMed
Steentoft C, Bennett EP, Schjoldager KT‐BG, Vakhrushev SY, Wandall HH & Clausen H (2014) Precision genome editing: a small revolution for glycobiology. Glycobiology 24, 663–680. PubMed
Blanas A, Cornelissen LAM, Kotsias M, van der Horst JC, van de Vrugt HJ, Kalay H, Spencer DIR, Kozak RP & van Vliet SJ (2019) Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR‐dCas9‐VPR technology reveals potent N‐glycome alterations in colorectal cancer cells. Glycobiology 29, 137–150. PubMed PMC
Narimatsu Y, Joshi HJ, Yang Z, Gomes C, Chen Y‐H, Lorenzetti FC, Furukawa S, Schjoldager KT, Hansen L, Clausen Het al. (2018) A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology 28, 295–305. PubMed
Furbish FS, Steer CJ, Krett NL & Barranger JA (1981) Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim Biophys Acta Gen Subj 673, 425–434. PubMed
Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CEet al. (1991) Replacement therapy for inherited enzyme deficiency‐‐macrophage‐targeted glucocerebrosidase for Gaucher's disease. J Med 324, 1464–1470. PubMed
Tian W, Ye Z, Wang S, Schulz MA, Van Coillie J, Sun L, Chen Y‐H, Narimatsu Y, Hansen L, Kristensen Cet al. (2019) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 10, 1785. PubMed PMC
Martin TC, Šimurina M, Ząbczyńska M, Martinic Kavur M, Rydlewska M, Pezer M, Kozłowska K, Burri A, Vilaj M, Turek‐Jabrocka Ret al. (2020) Decreased immunoglobulin G core fucosylation, a player in antibody‐dependent cell‐mediated cytotoxicity, is associated with autoimmune thyroid diseases. Mol Cell Proteomics 19, 774–792. PubMed PMC
Larsen MD, de Graaf EL , Sonneveld ME, Plomp HR, Nouta J, Hoepel W, Chen H‐J, Linty F, Visser R, Brinkhaus Met al. (2020) Afucosylated IgG characterizes enveloped viral responses and correlates with COVID‐19 severity. Science, eabc8378. PubMed PMC
Kaneko Y, Nimmerjahn F & Ravetch JV (2006) Anti‐inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673. PubMed
Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC & Ravetch JV (2008) Recapitulation of IVIG anti‐inflammatory activity with a recombinant IgG Fc. Science 320, 373–376. PubMed PMC
Pagan JD, Kitaoka M & Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172, 564–577.e13. PubMed PMC
Russell A, Adua E, Ugrina I, Laws S & Wang W (2018) Unravelling immunoglobulin G Fc N‐glycosylation: a dynamic marker potentiating predictive, preventive and personalised medicine. Int J Mol Sci 19, 390. PubMed PMC
Tobinai K, Klein C, Oya N & Fingerle‐Rowson G (2017) A review of obinutuzumab (GA101), a novel type II Anti‐CD20 monoclonal antibody, for the treatment of patients with B‐cell malignancies. Adv Ther 34, 324–356. PubMed PMC
Bohnacker S, Hildenbrand K, Aschenbrenner I, Müller SI, Bieren JE & Feige MJ (2020) Influence of glycosylation on IL‐12 family cytokine biogenesis and function. Mol Immunol 126, 120–128. PubMed
Ceaglio N, Etcheverrigaray M, Kratje R & Oggero M (2008) Novel long‐lasting interferon alpha derivatives designed by glycoengineering. Biochimie 90, 437–449. PubMed
Lee S, Son WS, Bin Yang H, Rajasekaran N, Kim S‐S, Hong S, Choi J‐S, Choi JY, Song K & Shin YK (2019) A glycoengineered interferon‐β Mutein (R27T) generates prolonged signaling by an altered receptor‐binding kinetics. Front Pharmacol 9, 1568. PubMed PMC
Christophi GP, Christophi JA, Gruber RC, Mihai C, Mejico LJ, Massa PT & Jubelt B (2011) Quantitative differences in the immunomodulatory effects of Rebif and Avonex in IFN‐β 1a treated multiple sclerosis patients. J Neurol Sci 307, 41–45. PubMed PMC
Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert Vet al. (2014) Semisynthesis of biologically active glycoforms of the human cytokine interleukin 6. Angew Chemie Int Ed 53, 12125–12131. PubMed
Roberts AG, Johnston EV, Shieh J‐H, Sondey JP, Hendrickson RC, Moore MAS & Danishefsky SJ (2015) Fully synthetic granulocyte colony‐stimulating factor enabled by isonitrile‐mediated coupling of large, side‐chain‐unprotected peptides. J Am Chem Soc 137, 13167–13175. PubMed PMC
Tsujikawa T, Crocenzi T, Durham JN, Sugar EA, Wu AA, Onners B, Nauroth JM, Anders RA, Fertig EJ, Laheru DAet al. (2020) Evaluation of cyclophosphamide/GVAX pancreas followed by listeria‐mesothelin (CRS‐207) with or without nivolumab in patients with pancreatic cancer. Clin Cancer Res 26, 3578–3588. PubMed PMC
Xia L, Schrump DS & Gildersleeve JC (2016) Whole‐cell cancer vaccines induce large antibody responses to carbohydrates and glycoproteins. Cell Chem Biol 23, 1515–1525. PubMed PMC
Horrevorts SK, Stolk DA, van de Ven R, Hulst M, van Het Hof B, Duinkerken S, Heineke MH, Ma W, Dusoswa SA, Nieuwland Ret al. (2019) Glycan‐modified melanoma‐derived apoptotic extracellular vesicles as antigen source for anti‐tumor vaccination. Cancers 11, 1266. PubMed PMC
Ben‐Akiva E, Est Witte S, Meyer RA, Rhodes KR & Green JJ (2019) Polymeric micro‐ and nanoparticles for immune modulation. Biomater Sci 7, 14–30. PubMed PMC
Barclay TG, Day CM, Petrovsky N & Garg S (2019) Review of polysaccharide particle‐based functional drug delivery. Carbohydr Polym 221, 94–112. PubMed PMC
Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, Okumura S, Imai H, Shiraishi T, Masuya Met al. (2006) HER2‐specific T‐cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res 12, 7397–7405. PubMed
Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H, Shiraishi T, Akiyoshi K, Scott AM, Murphy R, Hoffman EWet al. (2008) Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci. 99, 601–607. PubMed PMC
Kageyama S, Wada H, Muro K, Niwa Y, Ueda S, Miyata H, Takiguchi S, Sugino SH, Miyahara Y, Ikeda Het al. (2013) Dose‐dependent effects of NY‐ESO‐1 protein vaccine complexed with cholesteryl pullulan (CHP‐NY‐ESO‐1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med 11, 246. PubMed PMC
Kim S‐Y, Heo MB, Hwang G‐S, Jung Y, Choi DY, Park Y‐M & Lim YT (2015) Multivalent polymer nanocomplex targeting endosomal receptor of immune cells for enhanced antitumor and systemic memory response. Angew Chemie Int Ed 54, 8139–8143. PubMed
Lee Y‐H, Yoon HY, Shin JM, Saravanakumar G, Noh KH, Song K‐H, Jeon J‐H, Kim D‐W, Lee K‐M, Kim Ket al. (2015) A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo . J Control Release 199, 98–105. PubMed
Zhu L, Ge F, Yang L, Li W, Wei S, Tao Y & Du G (2017) Alginate particles with ovalbumin (OVA) peptide can serve as a carrier and adjuvant for immune therapy in B16‐OVA cancer model. Med Sci Monit Basic Res 23, 166–172. PubMed PMC
Chen PG, Huang ZH, Sun ZY, Gao Y, Liu YF, Shi L, Chen YX, Zhao YF & Li YM (2017) Chitosan nanoparticles based nanovaccines for cancer immunotherapy. Pure Appl Chem 89, 931–939.
Zhang C, Shi G, Zhang J, Song H, Niu J, Shi S, Huang P, Wang Y, Wang W, Li Cet al. (2017) Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J Control Release 256, 170–181. PubMed
Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH, Kim MG, Pack CG, Kang TH, Jung ID, Lim YTet al. (2016) In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci Rep 6, 1–13. PubMed PMC
He X, Abrams SI & Lovell JF (2018) The peptide vaccine of the future. Adv Ther 1, 1800060.
Calderon‐Gonzalez R, Terán‐Navarro H, García I, Marradi M, Salcines‐Cuevas D, Yañez‐Diaz S, Solis‐Angulo A, Frande‐Cabanes E, Fariñas MC, Garcia‐Castaño Aet al. (2017) Gold glyconanoparticles coupled to listeriolysin O 91‐99 peptide serve as adjuvant therapy against melanoma. Nanoscale 9, 10721–10732. PubMed
Xu Z, Ramishetti S, Tseng Y‐C, Guo S, Wang Y & Huang L (2013) Multifunctional nanoparticles co‐delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T‐lymphocyte response against melanoma and its lung metastasis. J Control Release 172, 259–265. PubMed
Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, Kleiner R, Moura LIF, Zupančič E, Viana ASet al. (2019) Immunization with mannosylated nanovaccines and inhibition of the immune‐suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat Nanotechnol 14, 891–901. PubMed
June CH, O’Connor RS, Kawalekar OU, Ghassemi S & Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359, 1361–1365. PubMed
Steentoft C, Migliorini D, King TR, Mandel U, June CH & Posey AD Jr (2018) Glycan‐directed CAR‐T cells. Glycobiology 28, 656–669. PubMed
Seif M, Einsele H & Löffler J (2019) CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front Immunol 10, 2711. PubMed PMC
Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Kruis W, Pohl C & Abken H (1997) T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody‐like specificity for a carbohydrate epitope. Gastroenterology 113, 1163–1170. PubMed
Mcguinness RP, Ge Y, Patel SD, Kashmiri SVS, Lee H‐S, Hand PH, Schlom J, Finer MH & Mcarthur JG (1999) Highly purified recombinant adeno‐associated virus vectors are biologically active and free of detectable helper and wild‐type viruses. Hum Gene Ther 10, 165–173. PubMed
Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Zet al. (2008) Virus‐specific T cells engineered to coexpress tumor‐specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14, 1264–1270. PubMed PMC
Westwood JA, Smyth MJ, Teng MWL, Moeller M, Trapani JA, Scott AM, Smyth FE, Cartwright GA, Power BE, Hönemann Det al. (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis‐Y‐expressing tumors in mice. Proc Natl Acad Sci USA 102, 19051–19056. PubMed PMC
Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Hönemann Det al. (2013) Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21, 2122–2129. PubMed PMC
Heczey A, Courtney AN, Montalbano A, Robinson S, Liu K, Li M, Ghatwai N, Dakhova O, Liu B, Raveh‐Sadka Tet al. (2020) Anti‐GD2 CAR‐NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat Med, 26, 1686–1690. PubMed
Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, Arif S, Mather SJ, Taylor‐Papadimitriou J, Burchell JMet al. (2008) Retargeting of human T cells to tumor‐associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180, 4901–4909. PubMed
Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KMet al. (2016) Engineered CAR T cells targeting the cancer‐associated Tn‐glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44, 1444–1454. PubMed PMC
He Y, Schreiber K, Wolf SP, Wen F, Steentoft C, Zerweck J, Steiner M, Sharma P, Shepard HM, Posey Aet al. (2019) Multiple cancer‐specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI insight 4, e130416. PubMed PMC
Sharma P, Marada VVVR, Cai Q, Kizerwetter M, He Y, Wolf SP, Schreiber K, Clausen H, Schreiber H & Kranz DM (2020) Structure‐guided engineering of the affinity and specificity of CARs against Tn‐glycopeptides. Proc Natl Acad Sci USA 117, 15148–15159. PubMed PMC
Pellegatta S, Savoldo B, Di Ianni N, Corbetta C, Chen Y, Patané M, Sun C, Pollo B, Ferrone S, DiMeco Fet al. (2018) Constitutive and TNFα‐inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: implications for CAR‐T cell therapy. Sci Transl Med 10, eaao2731. PubMed PMC
Ghanem MH, Bolivar‐Wagers S, Dey B, Hajduczki A, Vargas‐Inchaustegui DA, Danielson DT, Bundoc V, Liu L & Berger EA (2018) Bispecific chimeric antigen receptors targeting the CD4 binding site and high‐mannose Glycans of gp120 optimized for anti‐human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 20, 407–419. PubMed
Kumaresan P, Manuri P, Albert N, Maiti S, Singh H, Mi T, Roszik J, Rabinovich B, Olivares S, Krishnamurthy Jet al. (2014) Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA 111, 10660–10665. PubMed PMC
Mondal N, Silva M, Castano AP, Maus MV & Sackstein R (2019) Glycoengineering of chimeric antigen receptor (CAR) T‐cells to enforce E‐selectin binding. J Biol Chem 294, 18465–18474. PubMed PMC
Sackstein R (2019) The first step in adoptive cell immunotherapeutics: assuring cell delivery via glycoengineering. Front Immunol 9, 3084. PubMed PMC
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola‐Visner M, Josephson CD & Stowell SR (2015) Innate immunity against molecular mimicry: examining galectin‐mediated antimicrobial activity. BioEssays 37, 1327–1337. PubMed PMC
Chmiela M & Gonciarz W (2017) Molecular mimicry in Helicobacter pylori infections. World J Gastroenterol 23, 3964–3977. PubMed PMC
Oerlemans MMP, Moons SJ, Heming JJA, Boltje TJ, de Jonge MI & Langereis JD (2019) Uptake of sialic acid by nontypeable haemophilus influenzae increases complement resistance through decreasing IgM‐dependent complement activation. Infect Immun 87, e00077–19. PubMed PMC
Lewis LA, Gulati S, Burrowes E, Zheng B, Ram S & Rice PA (2015) α‐2,3‐sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of neisseria gonorrhoeae to colonize the murine genital tract. MBio 6, e02465–14. PubMed PMC
Serichantalergs O, Wassanarungroj P, Khemnu N, Poly F, Guerry P, Bodhidatta L, Crawford J & Swierczewski B (2020) Distribution of genes related to Type 6 secretion system and lipooligosaccharide that induced ganglioside mimicry among Campylobacter jejuni isolated from human diarrhea in Thailand. Gut Pathog 12, 18. PubMed PMC
Rodríguez Y, Rojas M, Pacheco Y, Acosta‐Ampudia Y, Ramírez‐Santana C, Monsalve DM, Gershwin ME & Anaya J‐M (2018) Guillain‐Barré syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol 15, 547–562. PubMed PMC
Bäcklund J, Carlsen S, Höger T, Holm B, Fugger L, Kihlberg J, Burkhardt H & Holmdahl R (2002) Predominant selection of T cells specific for the glycosylated collagen type II epitope (263‐270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci USA 99, 9960–9965. PubMed PMC
Corthay A, Bäcklund J, Broddefalk J, Michaëlsson E, Goldschmidt TJ, Kihlberg J & Holmdahl R (1998) Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen‐induced arthritis. Eur J Immunol 28, 2580–2590. PubMed
Broddefalk J, Bäcklund J, Almqvist F, Johansson M, Holmdahl R & Kihlberg J (1998) T cells recognize a glycopeptide derived from type II collagen in a model for rheumatoid arthritis. J Am Chem Soc 120, 7676–7683.
Michaëlsson E, Malmström V, Reis S, Engström A, Burkhardt H & Holmdahl R (1994) T cell recognition of carbohydrates on type II collagen. J Exp Med 180, 745–749. PubMed PMC
Raposo B, Merky P, Lundqvist C, Yamada H, Urbonaviciute V, Niaudet C, Viljanen J, Kihlberg J, Kyewski B, Ekwall Oet al. (2018) T cells specific for post‐translational modifications escape intrathymic tolerance induction. Nat. Commun. 9, 353. PubMed PMC
Kyewski B & Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24, 571–606. PubMed
Dzhambazov B, Holmdahl M, Yamada H, Lu S, Vestberg M, Holm B, Johnell O, Kihlberg J & Holmdahl R (2005) The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. Eur J Immunol 35, 357–366. PubMed
Bäcklund J, Treschow A, Bockermann R, Holm B, Holm L, Issazadeh‐Navikas S, Kihlberg J & Holmdahl R (2002) Glycosylation of type?II collagen is of major importance for T cell tolerance and pathology in collagen‐induced arthritis. Eur J Immunol 32, 3776–3784. PubMed
Dzhambazov B, Nandakumar KS, Kihlberg J, Fugger L, Holmdahl R & Vestberg M (2006) Therapeutic vaccination of active arthritis with a glycosylated collagen type II peptide in complex with MHC class II molecules. J Immunol 176, 1525–1533. PubMed
Batsalova T, Dzhambazov B, Klaczkowska D & Holmdahl R (2010) Mice producing less reactive oxygen species are relatively resistant to collagen glycopeptide vaccination against arthritis. J Immunol 185, 2701–2709. PubMed
Herrendorff R, Hänggi P, Pfister H, Yang F, Demeestere D, Hunziker F, Frey S, Schaeren‐Wiemers N, Steck AJ & Ernst B (2017) Selective in vivo removal of pathogenic anti‐MAG autoantibodies, an antigen‐specific treatment option for anti‐MAG neuropathy. Proc Natl Acad Sci USA 114, E3689–E3698. PubMed PMC
Steck AJ, Murray N, Meier C, Page N & Perruisseau G (1983) Demyeliating neuropathy and monoclonal IgM antibody to myelin‐associated glycoprotein. Neurology 33, 19–23. PubMed
Ritz M‐F, Erne B, Ferracin F, Vital A, Vital C & Steck AJ (1999) Anti‐MAG IgM penetration into myelinated fibers correlates with the extent of myelin widening. Muscle Nerve 22, 1030–1037. PubMed
Steck AJ, Stalder AK & Renaud S (2006) Anti‐myelin‐associated glycoprotein neuropathy. Curr Opin Neurol 19, 458–463. PubMed
Fink MP & Warren HS (2014) Strategies to improve drug development for sepsis. Nat Rev Drug Discov 13, 741–758. PubMed
Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss Jet al. (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497, 498–502. PubMed PMC
Läubli H & Varki A (2020) Sialic acid‐binding immunoglobulin‐like lectins (Siglecs) detect self‐associated molecular patterns to regulate immune responses. Cell Mol Life Sci 77, 593–605. PubMed PMC
Lübbers J, Rodríguez E & van Kooyk Y (2018) Modulation of immune tolerance via Siglec‐sialic acid interactions. Front Immunol 9, 2807. PubMed PMC
Lewis AL, Hensler ME, Varki A & Nizet V (2006) The Group B streptococcal sialic acid O‐acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters. J Biol Chem 281, 11186–11192. PubMed
Uchiyama S, Sun J, Fukahori K, Ando N, Wu M, Schwarz F, Siddiqui SS, Varki A, Marth JD & Nizet V (2019) Dual actions of group BStreptococcuscapsular sialic acid provide resistance to platelet‐mediated antimicrobial killing. Proc Natl Acad Sci USA 116, 7465–7470. PubMed PMC
Chang Y‐C, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A & Nizet V (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo . PLoS Pathog 10, e1003846. PubMed PMC
Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, Tzankov A, Tietze L, Lardinois D, Heinzelmann‐Schwarz Vet al. (2018) Self‐associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest 128, 4912–4923. PubMed PMC
Büll C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, Bloemendal VR, Boon L, van der Vlag J, Heise Tet al. (2018) Sialic acid blockade suppresses tumor growth by enhancing T‐cell‐mediated tumor immunity. Cancer Res 78, 3574–3588. PubMed
Perdicchio M, Cornelissen LAM, Streng‐Ouwehand I, Engels S, Verstege MI, Boon L, Geerts D, van Kooyk Y & Unger WWJ (2016) Tumor sialylation impedes T cell mediated anti‐tumor responses while promoting tumor associated‐regulatory T cells. Oncotarget 7, 8771–8782. PubMed PMC
Wratil PR, Rigol S, Solecka B, Kohla G, Kannicht C, Reutter W, Giannis A & Nguyen LD (2014) A novel approach to decrease sialic acid expression in cells by a C‐3‐modified N‐Acetylmannosamine. J Biol Chem 289, 32056–32063. PubMed PMC
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn Get al. (2020) Targeted glycan degradation potentiates the anticancer immune response in vivo . Nat Chem Biol 16, 1376–1384. PubMed PMC
Prescher H, Frank M, Gütgemann S, Kuhfeldt E, Schweizer A, Nitschke L, Watzl C & Brossmer R (2017) Design, synthesis, and biological evaluation of small, high‐affinity Siglec‐7 ligands: toward novel inhibitors of cancer immune evasion. J Med Chem 60, 941–956. PubMed
Hudak JE, Canham SM & Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec‐based mechanism for NK cell immunoevasion. Nat Chem Biol 10, 69–75. PubMed PMC
Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LAM, Schetters STT, Engels S, Ambrosini M, Kalay H, Veninga H, den Haan JMMet al. (2016) Sialic acid‐modified antigens impose tolerance via inhibition of T‐cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci USA 113, 3329–3334. PubMed PMC
Läubli H, Pearce OMT, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, Deng L, Verhagen A, Secrest P, Lusk Cet al. (2014) Engagement of myelomonocytic Siglecs by tumor‐associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci USA 111, 14211–14216. PubMed PMC
Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, Fitzgerald M, Beck J, Bains BK, Smyth Pet al. (2015) Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Sci Transl Med 7, 303ra140. PubMed
Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A & Paulson JC (2013) Antigenic liposomes displaying CD22 ligands induce antigen‐specific B cell apoptosis. J Clin Invest 123, 3074–3083. PubMed PMC
Orgel KA, Duan S, Wright BL, Maleki SJ, Wolf JC, Vickery BP, Burks AW, Paulson JC, Kulis MD, Macauley MS (2017) Exploiting CD22 on antigen‐specific B cells to prevent allergy to the major peanut allergen Ara h 2. J Allergy Clin Immunol 139, 366–369.e2. PubMed PMC
Pang L, Macauley MS, Arlian BM, Nycholat CM & Paulson JC (2017) Encapsulating an immunosuppressant enhances tolerance induction by Siglec‐engaging tolerogenic liposomes. ChemBioChem 18, 1226–1233. PubMed PMC
Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung‐Leung W‐P, Macauley MS (2019) Exploiting CD22 to selectively tolerize autoantibody producing B‐cells in rheumatoid arthritis. ACS Chem Biol 14, 644–654. PubMed PMC
Brandl C, Angermüller S & Nitschke L (2020) Humanized CD22 transgenic mouse model for in vivo analysis of anti‐CD22‐based immunotherapy. Eur J Immunol 50, 1834–1837. PubMed
Dellon ES, Peterson KA, Murray JA, Falk GW, Gonsalves N, Chehade M, Genta RM, Leung J, Khoury P, Klion ADet al. (2020) Anti–Siglec‐8 antibody for eosinophilic gastritis and duodenitis. J Med 383, 1624–1634. PubMed PMC
Nycholat CM, Duan S, Knuplez E, Worth C, Elich M, Yao A, O’Sullivan J, McBride R, Wei Y, Fernandes SMet al. (2019) A sulfonamide sialoside analogue for targeting Siglec‐8 and ‐F on immune cells. J Am Chem Soc 141, 14032–14037. PubMed PMC
Duan S, Koziol‐White CJ, Jester WF Jr, Smith SA, Nycholat CM, Macauley MS, Panettieri RA Jr & Paulson JC (2019) CD33 recruitment inhibits IgE‐mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest 129, 1387–1401. PubMed PMC