Associations of Brain Atrophy and Cerebral Iron Accumulation at MRI with Clinical Severity in Wilson Disease
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Atrophy MeSH
- Hepatolenticular Degeneration diagnostic imaging drug therapy metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain diagnostic imaging metabolism pathology MeSH
- Prospective Studies MeSH
- Case-Control Studies MeSH
- Severity of Illness Index MeSH
- Iron metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron MeSH
Background Abnormal findings at brain MRI in patients with neurologic Wilson disease (WD) are characterized by signal intensity changes and cerebral atrophy. T2 signal hypointensities and atrophy are largely irreversible with treatment; their relationship with permanent disability has not been systematically investigated. Purpose To investigate associations of regional brain atrophy and iron accumulation at MRI with clinical severity in participants with neurologic WD who are undergoing long-term anti-copper treatment. Materials and Methods Participants with WD and controls were compared in a prospective study performed from 2015 to 2019. MRI at 3.0 T included three-dimensional T1-weighted and six-echo multigradient-echo pulse sequences for morphometry and quantitative susceptibility mapping, respectively. Neurologic severity was assessed with the Unified WD Rating Scale (UWDRS). Automated multi-atlas segmentation pipeline with dual contrast (susceptibility and T1) was used for the calculation of volumes and mean susceptibilities in deep gray matter nuclei. Additionally, whole-brain analysis using deformation and surface-based morphometry was performed. Least absolute shrinkage and selection operator regression was used to assess the association of regional volumes and susceptibilities with the UWDRS score. Results Twenty-nine participants with WD (mean age, 47 years ± 9 [standard deviation]; 15 women) and 26 controls (mean age, 45 years ± 12; 14 women) were evaluated. Whole-brain analysis demonstrated atrophy of the deep gray matter nuclei, brainstem, internal capsule, motor cortex and corticospinal pathway, and visual cortex and optic radiation in participants with WD (P < .05 at voxel level, corrected for family-wise error). The UWDRS score was negatively correlated with volumes of putamen (r = -0.63, P < .001), red nucleus (r = -0.58, P = .001), globus pallidus (r = -0.53, P = .003), and substantia nigra (r = -0.50, P = .006) but not with susceptibilities. Only the putaminal volume was identified as a stable factor associated with the UWDRS score (R2 = 0.38, P < .001) using least absolute shrinkage and selection operator regression. Conclusion Individuals with Wilson disease (WD) had widespread brain atrophy most pronounced in the central structures. The putaminal volume was associated with the Unified WD Rating Scale score and can be used as a surrogate imaging marker of clinical severity. © RSNA, 2021 Supplemental material is available for this article. See also the editorial by Du and Bydder in this issue.
References provided by Crossref.org
Brain morphometry in hepatic Wilson disease patients
Whole brain pattern of iron accumulation in REM sleep behavior disorder