Inhibition of Fungal Strains Isolated from Cereal Grains via Vapor Phase of Essential Oils

. 2021 Mar 01 ; 26 (5) : . [epub] 20210301

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33804452

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund
QK21010064 Národní Agentura pro Zemědělský Výzkum
LM2018100 Ministerstvo Školství, Mládeže a Tělovýchovy

Fungal contamination in stored food grains is a global concern and affects food economics and human and animal health. It is clear that there is a need to develop new technologies with improved performances that are also eco-friendly in nature. Due to the bioactivity of essential oils (EOs) in the vapor phase, their low toxicity for humans, and their biodegradability and antifungal properties, EOs could be a suitable solution. In this study, we explored the potential of thyme, oregano, lemongrass, clove, and cajeput EOs in the vapor phase. For 17 days, inhibitory activity was assessed against five strains of postharvest pathogens-Aspergillus spp., Fusarium s. l. spp., and Penicilliumochrochloron-isolated from cereal grains. A modified disc volatilization method was used, which is more effective in comparison to traditional screening methods. Three concentrations were tested (250, 125, and 62.5 μL/L). The two highest concentrations resulted in complete inhibition of fungal growth; however, even 62.5 μL/L showed a significant antifungal effect. The efficiency of EOs followed this order: thyme > oregano > lemongrass > clove > cajeput. From our findings, it appears that the use of EOs vapors is a better option not only for laboratory experiments, but for subsequent practice.

Zobrazit více v PubMed

Mohapatra D., Kumar S., Kotwaliwale N., Singh K.K. Critical factors responsible for fungi growth in stored food grains and non-chemical approaches for their control. Ind. Crops Prod. 2017;108:162–182. doi: 10.1016/j.indcrop.2017.06.039. DOI

Roselló J., Sempere F., Sanz-Berzosa I., Chiralt A., Santamarina M.P. Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. J. Essent. Oil Bearing Plants. 2015;18:359–367. doi: 10.1080/0972060X.2015.1010601. DOI

Raila A., Lugauskas A., Steponavičius D., Railienė M., Steponavičienė A., Zvicevicius E. E. Application of Ozone for Reduction of Mycological Infection. Ann. Agric. Environ. Med. 2006;13:287–294. PubMed

Ishaq M., Tahira R., Javed A., Jamal A., Raja M.U., Munir A., Ur-Rehman A. Lemongrass essential oil as an alternate approach to manage seed associated fungi of wheat and rice. Int. J. Agric. Biol. 2017;19:1301–1306. doi: 10.17957/IJAB/15.0278. DOI

Kedia A., Prakash B., Mishra P.K., Dubey N.K. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. Int. J. Food Microbiol. 2014;168–169:1–7. doi: 10.1016/j.ijfoodmicro.2013.10.008. PubMed DOI

Kumar S.A., Chandrabhan S., Shriram P. Isolation of Aspergillus flavus from stored food commodities and Thymus vulgaris (L.) essential oil used as a safe plant based preservative. Pharmacogn. Mag. 2009;5:343–349. doi: 10.4103/0973-1296.58564. DOI

Schrenk D., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., Leblanc J.C., Nebbia C.S., Nielsen E., et al. Risk assessment of ochratoxin A in food. EFSA J. 2020;18 doi: 10.2903/j.efsa.2020.6113. PubMed DOI PMC

Sreenivasa M.Y., Dass R.S., Charith Raj A.P., Nagendra Prasad M.N., Achar P.N., Janardhana G.R. Assessment of the growth inhibiting effect of some plant essential oils on different Fusarium species isolated from sorghum and maize grains. J. Plant Dis. Prot. 2011;118:208–213. doi: 10.1007/BF03356405. DOI

Anžlovar S., Likar M., Koce J.D. Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Bot. Croat. 2017;76:64–71. doi: 10.1515/botcro-2016-0044. DOI

Sumalan R.M., Alexa E., Poiana M.A. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chem. Cent. J. 2013;7:1–12. doi: 10.1186/1752-153X-7-32. PubMed DOI PMC

Matusinsky P., Zouhar M., Pavela R., Novy P. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Ind. Crops Prod. 2015;67:208–215. doi: 10.1016/j.indcrop.2015.01.022. DOI

Gutiérrez L., Sánchez C., Batlle R., Nerín C. New antimicrobial active package for bakery products. Trends Food Sci. Technol. 2009;20:92–99. doi: 10.1016/j.tifs.2008.11.003. DOI

Božik M., Císarová M., Tančinová D., Kouřimská L., Hleba L., Klouček P. Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind. Crops Prod. 2017;98:146–152. doi: 10.1016/j.indcrop.2016.11.044. DOI

Císarová M., Hleba L., Medo J., Tančinová D., Mašková Z., Čuboň J., Kováčik A., Foltinová D., Božik M., Klouček P. The in vitro and in situ effect of selected essential oils in vapour phase against bread spoilage toxicogenic aspergilli. Food Control. 2020;110 doi: 10.1016/j.foodcont.2019.107007. DOI

Garcia D., Ramos A.J., Sanchis V., Marín S. Equisetum arvense hydro-alcoholic extract: Phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize. J. Sci. Food Agric. 2013;93:2248–2253. doi: 10.1002/jsfa.6033. PubMed DOI

Tzortzakis N.G., Economakis C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007;8:253–258. doi: 10.1016/j.ifset.2007.01.002. DOI

Kumar P., Mishra S., Kumar A., Sharma A.K. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp. J. Food Sci. Technol. 2016;53:3725–3734. doi: 10.1007/s13197-016-2347-0. PubMed DOI PMC

Maxia A., Falconieri D., Piras A., Porcedda S., Marongiu B., Frau M.A., Gonçalves M.J., Cabral C., Cavaleiro C., Salgueiro L. Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2Extracts of Apium nodiflorum (L.) Lag. Mycopathologia. 2012;174:61–67. doi: 10.1007/s11046-011-9519-2. PubMed DOI

Alexa E., Sumalan R.M., Danciu C., Obistioiu D., Negrea M., Poiana M.A., Rus C., Radulov I., Pop G., Dehelean C. Synergistic antifungal, allelopatic and anti-proliferative potential of salvia officinalis L., and thymus vulgaris L. Essential oils. Molecules. 2018;23:185. doi: 10.3390/molecules23010185. PubMed DOI PMC

Tang X., Shao Y.L., Tang Y.J., Zhou W.W. Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (aspergillus flavus and aspergillus ochraceus) Molecules. 2018;23:2108. doi: 10.3390/molecules23092108. PubMed DOI PMC

Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI

Morcia C., Malnati M., Terzi V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012;29:415–422. doi: 10.1080/19440049.2011.643458. PubMed DOI

Pandey A.K., Kumar P., Singh P., Tripathi N.N., Bajpai V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017;7:1–14. doi: 10.3389/fmicb.2016.02161. PubMed DOI PMC

Oliveira R.C., Carvajal-Moreno M., Correa B., Rojo-Callejas F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chem. 2020;315 doi: 10.1016/j.foodchem.2019.126096. PubMed DOI

Mateo E.M., Gómez J.V., Domínguez I., Gimeno-Adelantado J.V., Mateo-Castro R., Gavara R., Jiménez M. Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize. Int. J. Food Microbiol. 2017;254:36–46. doi: 10.1016/j.ijfoodmicro.2017.05.007. PubMed DOI

Singh G., Maurya S., de Lampasona M.P., Catalan C. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control. 2006;17:745–752. doi: 10.1016/j.foodcont.2005.03.010. PubMed DOI

Tullio V., Nostro A., Mandras N., Dugo P., Banche G., Cannatelli M.A., Cuffini A.M., Alonzo V., Carlone N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007;102:1544–1550. doi: 10.1111/j.1365-2672.2006.03191.x. PubMed DOI

Vilela G.R., de Almeida G.S., D’Arce M.A.B.R., Moraes M.H.D., Brito J.O., da Silva M.F.d.G.F., Silva S.C., de Stefano Piedade S.M., Calori-Domingues M.A., da Gloria E.M. Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J. Stored Prod. Res. 2009;45:108–111. doi: 10.1016/j.jspr.2008.10.006. DOI

Gómez J.V., Tarazona A., Mateo-Castro R., Gimeno-Adelantado J.V., Jiménez M., Mateo E.M. Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018;35:1581–1595. doi: 10.1080/19440049.2017.1419287. PubMed DOI

Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011;126:228–235. doi: 10.1016/j.foodchem.2010.11.002. DOI

Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control. 2011;22:1707–1714. doi: 10.1016/j.foodcont.2011.04.002. DOI

Yahyazadeh M., Omidbaigi R., Zare R., Taheri H. Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J. Microbiol. Biotechnol. 2008;24:1445–1450. doi: 10.1007/s11274-007-9636-8. DOI

Yigit F., Özcan M., Akgül A. Inhibitory effect of some spice essential oils on Penicillium digitatum causing postharvest rot in citrus. Grasas Aceites. 2000;51:237–240. doi: 10.3989/gya.2000.v51.i4.417. DOI

Bluma R., Landa M.F., Etcheverry M. Impact of volatile compounds generated by essential oils on Aspergillus section Flavi growth parameters and aflatoxin accumulation. J. Sci. Food Agric. 2009;89:1473–1480. doi: 10.1002/jsfa.3611. DOI

Linde G.A., Gazim Z.C., Cardoso B.K., Jorge L.F., Tešević V., Glamoćlija J., Soković M., Colauto N.B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016;15:1–11. doi: 10.4238/gmr.15038538. PubMed DOI

Jahani M., Pira M., Aminifard M.H. Antifungal effects of essential oils against Aspergillus niger in vitro and in vivo on pomegranate (Punica granatum) fruits. Sci. Hortic. 2020;264:109188. doi: 10.1016/j.scienta.2020.109188. DOI

Kohiyama C.Y., Yamamoto Ribeiro M.M., Mossini S.A.G., Bando E., Bomfim N.D.S., Nerilo S.B., Rocha G.H.O., Grespan R., Mikcha J.M.G., Machinski M. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015;173:1006–1010. doi: 10.1016/j.foodchem.2014.10.135. PubMed DOI

Krzyśko-Łupicka T., Sokół S., Piekarska-Stachowiak A. Evaluation of fungistatic activity of eight selected essential oils on four heterogeneous Fusarium isolates obtained from cereal grains in southern Poland. Molecules. 2020;25:292. doi: 10.3390/molecules25020292. PubMed DOI PMC

O’Donnell K., Kistlerr H.C., Cigelnik E., Ploetz R.C. Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA. 1998;95:2044–2049. doi: 10.1073/pnas.95.5.2044. PubMed DOI PMC

Hubka V., Kolarik M. β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: Primer specificity testing and taxonomic consequences. Persoonia Mol. Phylogeny Evol. Fungi. 2012;29:1–10. doi: 10.3767/003158512X658123. PubMed DOI PMC

Glass N.L., Donaldson G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995;61:1323–1330. doi: 10.1128/AEM.61.4.1323-1330.1995. PubMed DOI PMC

Madden T. The NCBI Handbook. National Center for Biotechnology Information; Bethesda, MD, USA: 2013. NCBI_blast Information; pp. 1–15.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...