Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition
Jazyk angličtina Země Jižní Korea Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Candida enzymologie genetika MeSH
- dusík metabolismus MeSH
- endopeptidasy metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- Saccharomyces cerevisiae enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- endopeptidasy MeSH
Secreted aspartic proteinase Sapp1p of Candida parapsilosis represents one of the factors contributing to the pathogenicity of the fungus. The proteinase is synthesized as an inactive pre-pro-enzyme, but only processed Sapp1p is secreted into extracellular space. We constructed a plasmid containing the SAPP1 coding sequence under control of the ScGAL1 promoter and used it for proteinase expression in a Saccharomyces cerevisiae kex2Δ mutant. Because Sapp1p maturation depends on cleavage by Kex2p proteinase, the kex2Δ mutant secreted only the pro-form of Sapp1p. Characterization of this secreted proteinase form revealed that the Sapp1p signal peptide consists of 23 amino acids. Additionally, we prepared a plasmid with the SAPP1 coding sequence under control of its authentic CpSAPP1 promoter, which contains two GATAA motifs. While in C. parapsilosis SAPP1 expression is repressed by good low molecular weight nitrogen sources (e.g., ammonium ions), S. cerevisiae cells harboring this plasmid secreted a low concentration of active proteinase regardless of the type of nitrogen source used. Quantitative real-time PCR analysis of a set of genes related to nitrogen metabolism and uptake (GAT1, GLN3, STP2, GAP1, OPT1, and PTR2) obtained from S. cerevisiae cells transformed with either plasmid encoding SAPP1 under control of its own promoter or empty vector and cultivated in media containing various nitrogen sources also suggested that SAPP1 expression can be connected with the S. cerevisiae regulatory network. However, this regulation occurs in a different manner than in C. parapsilosis.
Zobrazit více v PubMed
Fungal Genet Biol. 2007 Dec;44(12):1336-41 PubMed
Cell Microbiol. 2004 Oct;6(10):915-26 PubMed
Yeast. 1986 Sep;2(3):163-7 PubMed
Yeast. 2007 Jun;24(6):467-80 PubMed
J Gen Microbiol. 1993 Feb;139(2):335-42 PubMed
Front Biosci. 2008 May 01;13:7227-42 PubMed
J Biol Chem. 1993 Aug 25;268(24):18002-7 PubMed
Mol Cell Biol. 2005 Nov;25(21):9435-46 PubMed
J Biol Chem. 2005 Aug 26;280(34):30638-47 PubMed
J Biol Chem. 2008 Oct 24;283(43):28958-68 PubMed
J Infect Dis. 2012 Mar 15;205(6):923-33 PubMed
Biol Chem. 2005 Aug;386(8):791-9 PubMed
FEMS Immunol Med Microbiol. 2009 Aug;56(3):212-22 PubMed
Gene. 2002 May 15;290(1-2):1-18 PubMed
Clin Microbiol Rev. 2008 Oct;21(4):606-25 PubMed
Gene. 1987;57(2-3):267-72 PubMed
Trends Microbiol. 2006 Jan;14(1):15-21 PubMed
J Biol Chem. 1997 Nov 14;272(46):28954-61 PubMed
Nat Methods. 2011 Sep 29;8(10):785-6 PubMed
Mol Microbiol. 2008 Aug;69(3):586-602 PubMed
FEMS Yeast Res. 2006 Nov;6(7):966-78 PubMed
Curr Genet. 2009 Oct;55(5):497-509 PubMed
FEBS Lett. 1994 Apr 18;343(1):6-10 PubMed
Biol Chem. 2006 Sep;387(9):1247-54 PubMed
FEMS Yeast Res. 2006 Nov;6(7):1018-26 PubMed
J Biol Chem. 1994 Apr 1;269(13):9556-61 PubMed
J Struct Biol. 2009 Aug;167(2):145-52 PubMed
Protein Sci. 2011 Dec;20(12):2004-12 PubMed
Microbiology (Reading). 2000 Nov;146 ( Pt 11):2765-2773 PubMed
Biol Chem. 2009 Mar;390(3):259-68 PubMed