The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33810235
PubMed Central
PMC8036261
DOI
10.3390/ijerph18073433
PII: ijerph18073433
Knihovny.cz E-zdroje
- Klíčová slova
- hemiplegia, ischemic stroke, neuromuscular electrical stimulation (NMES), physical therapy, type 2 diabetes mellitus (T2DM),
- MeSH
- cévní mozková příhoda * MeSH
- diabetes mellitus 2. typu * komplikace terapie MeSH
- elektrická stimulace MeSH
- elektrostimulační terapie * MeSH
- glykovaný hemoglobin MeSH
- hemiplegie MeSH
- hemodynamika MeSH
- inzulin terapeutické užití MeSH
- ischemická cévní mozková příhoda * MeSH
- ischemie mozku * MeSH
- lidé MeSH
- lipidy MeSH
- pilotní projekty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykovaný hemoglobin MeSH
- inzulin MeSH
- lipidy MeSH
Type-2-diabetes mellitus (T2DM) is a global problem of medical, social and economic consequences. Physical activity is a vital therapy in patients with T2DM, but some of them cannot exercise for various reasons. The purpose of our pilot study was to determine whether a combination of neuromuscular electrostimulation (NMES) and insulin therapy could improve the management of T2DM patients with hemiplegia caused by an ischemic stroke. Fifteen immobile patients with T2DM on insulin therapy were enrolled in the study. NMES was applied to their lower limbs for 60 min, 5 days a week, over a period of 12 weeks. The intervention caused statistically significant reductions in the blood concentrations of glycated hemoglobin, total cholesterol and low-density cholesterol in the participants. Furthermore, systolic and diastolic blood pressure levels were significantly lower. More randomized clinical trials are needed to accurately measure the effect of NMES on T2DM treatment and to determine whether it can be an alternative for physical activity for immobile patients with T2DM.
Zobrazit více v PubMed
Sarria-Santamera A., Orazumbekova B., Maulenkul T., Gaipov A., Atageldiyeva K. The Identification of Diabetes Mellitus Subtypes Applying Cluster Analysis Techniques: A Systematic Review. Int. J. Environ. Res. Public Health. 2020;17:9523. doi: 10.3390/ijerph17249523. PubMed DOI PMC
Sarwar N., Gao P., Seshasai S.R., Gobin R., Kaptoge S., Di Angelantonio E., Ingelsson E., Lawlor D.A., Selvin E., Stampfer M., et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A Collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9. PubMed DOI PMC
Guariguata L., Whiting D.R., Hambleton I., Beagley J., Linnenkamp U., Shaw J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014;103:137–149. doi: 10.1016/j.diabres.2013.11.002. PubMed DOI
Bommer C., Heesemann E., Sagalova V., Manne-Goehler J., Atun R., Bärnighausen T., Vollmer S. The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5:423–430. doi: 10.1016/S2213-8587(17)30097-9. PubMed DOI
Assoc A.D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2009;32:S62–S67. doi: 10.2337/dc09-S062. PubMed DOI PMC
Centers for Disease Control and Prevention . National Diabetes Statistics Report, 2020. Centers for Disease Control and Prevention, U.S. Dept. of Health and Human Services; Atlanta, GA, USA: 2020.
Alberti G., Zimmet P., Shaw J., Bloomgarden Z., Kaufman F., Silink M., Consensus Workshop Group Type 2 diabetes in the young: The evolving epidemic: The international diabetes federation consensus workshop. Diabetes Care. 2004;27:1798–1811. doi: 10.2337/diacare.27.7.1798. PubMed DOI
Sharp P.S., Brown B., Qureshi A. Age at diagnosis of diabetes in a secondary care population: 1992–2005. Br. J. Diabetes Vasc. Dis. 2008;8:92–95. doi: 10.1177/14746514080080020701. DOI
Piko P., Werissa N.A., Fiatal S., Sandor J., Adany R. Impact of Genetic Factors on the Age of Onset for Type 2 Diabetes Mellitus in Addition to the Conventional Risk Factors. J. Pers. Med. 2021;11:6. doi: 10.3390/jpm11010006. PubMed DOI PMC
Nwaneri C., Cooper H., Bowen-Jones D. Mortality in type 2 diabetes mellitus: Magnitude of the evidence from a systematic review and meta-analysis. Br. J. Diabetes Vasc. Dis. 2013;13:192–207. doi: 10.1177/1474651413495703. DOI
Group IDFDA Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract. 2015;109:461–465. doi: 10.1016/j.diabres.2015.05.037. PubMed DOI
Rawshani A., Rawshani A., Franzén S., Sattar N., Eliasson B., Svensson A.M., Gudbjörnsdottir S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2018;379:633–644. doi: 10.1056/NEJMoa1800256. PubMed DOI
Hardin D.S., Rohwer R.D., Curtis B.H., Zagar A., Chen L., Boye K.S., Lipkovich I.A. Understanding heterogeneity in response to antidiabetes treatment: A post hoc analysis using SIDES, a subgroup identification algorithm. J. Diabetes Sci. Technol. 2013;7:420–430. doi: 10.1177/193229681300700219. PubMed DOI PMC
Lin C.-J., Chua S., Chung S.-Y., Hang C.-I., Tsai T.-H. Diabetes Mellitus: An Independent Risk Factor of In-Hospital Mortality in Patients with Infective Endocarditis in a New Era of Clinical Practice. Int. J. Environ. Res. Public Health. 2019;16:2248. doi: 10.3390/ijerph16122248. PubMed DOI PMC
McGavock J., Sellers E., Dean H. Physical activity for the prevention and management of youth-onset type 2 diabetes mellitus: Focus on cardiovascular complications. Diabetes Vasc. Dis. Res. 2007;4:305–310. doi: 10.3132/dvdr.2007.057. PubMed DOI
Wareham N.J. Epidemiological studies of physical activity and diabetes risk, and implication for diabetes prevention. Appl. Physiol. Nutr. Metab. 2007;32:778–782. doi: 10.1139/H07-032. PubMed DOI
Gulve E. Exercise and glycemic control in diabetes: Benefits, challenges, and adjustments to pharmacotherapy. Phys. Ther. 2008;88:1297–1321. doi: 10.2522/ptj.20080114. PubMed DOI
Chen C., Chuang L., Wu Y. Clinical measures of physical fitness predict insulin resistance in people a risk for diabetes. Phys. Ther. 2008;88:1355–1364. doi: 10.2522/ptj.20080064. PubMed DOI
Strasser B., Siebert U., Schobersberger W. Resistance training in the treatment of the metabolic syndrome. Sports Med. 2001;40:397–415. doi: 10.2165/11531380-000000000-00000. PubMed DOI
Wall B.T., Dirks M.L., Verdijk L.B., Snijders T., Hansen D., Vranckx P., Burd N.A., Dendale P., van Loon L.J. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. Endocrino Metab. 2012;303:E614–E623. doi: 10.1152/ajpendo.00138.2012. PubMed DOI
Joubert M., Metayer L., Prevost G., Morera J., Rod A., Cailleux A., Parienti J.J., Reznik Y. Neuromuscular electrostimulation and insulin sensitivity in patients with type 2 diabetes: The ELECTRODIAB pilot study. Acta Diabetol. 2015;52:285–291. doi: 10.1007/s00592-014-0636-5. PubMed DOI
Jabbour G., Belliveau L., Probizanski D., Newhouse I., McAuliffe J., Jakobi J., Johnson M. Effect of Low Frequency Neuromuscular Electrical Stimulation on Glucose Profile of Persons with Type 2 Diabetes: A Pilot Study. Diabetes Metab. J. 2015;39:264–267. doi: 10.4093/dmj.2015.39.3.264. PubMed DOI PMC
Sinacore D.R., Delitto A., King D.S., Rose S.J. Type II fiber activation with electrical stimulation: A preliminary report. Phys. Ther. 1990;70:416–422. doi: 10.1093/ptj/70.7.416. PubMed DOI
Crowe L., Caulfield B. Aerobic neuromuscular electrical stimulation—An emerging technology to improve hemoglobin A1c in type 2 diabetes mellitus: Results of pilot study. BMJ Open. 2012;2:e000219. doi: 10.1136/bmjopen-2011-000219. PubMed DOI PMC
Miyamoto T., Iwakura T., Matsuoka N., Iwamoto M., Takenaka M., Akamatsu Y., Moritani T. Impact of prolonged neuromuscular electrical stimulation on metabolic profile and cognition-related blood parameters in type 2 diabetes: A randomized controlled cross-over trial. Diabetes Res. Clin. Pract. 2018;142:37–45. doi: 10.1016/j.diabres.2018.05.032. PubMed DOI
Kucio C., Stastny P., Leszczynska-Bolewska B., Engelmann M., Kucio E., Uhlir P., Stania M., Polak A. Exercise-Based Cardiac Rehabilitation with and without Neuromuscular Electrical Stimulation and its Effect on Exercise Tolerance and Life Quality of Persons with Chronic Heart Failure. J. Hum. Kinet. 2018;65:131–140. doi: 10.2478/hukin-2018-0045. PubMed DOI PMC
Quittan M., Wiesinger G.F., Sturm B., Puig S., Mayr S., Sochor A., Paternostro T., Resch K.L., Pacher R., Fialka-Moser V. Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: A single-blind, randomized, controlled trial. Am. J. Phys. Med. Rehabil. 2001;80:206–214. doi: 10.1097/00002060-200103000-00011. PubMed DOI
Harris S., LeMaitre J.P., Mackenzie G., Fox K.A.A., Denvir M.A. A randomised study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure. Eur. Heart J. 2003;24:871–878. doi: 10.1016/S0195-668X(02)00822-9. PubMed DOI
Nuhr M.J., Pette D., Berger R., Quittan M., Crevenna R., Huelsman M., Wiesinger G.F., Moser P., Fialka-Moser V., Pacher R. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur. Heart J. 2004;25:136–143. doi: 10.1016/j.ehj.2003.09.027. PubMed DOI
Karavidas A.I., Raisakis K.G., Parissis J.T., Tsekoura D.K., Adamopoulos S., Korres D.A., Farmakis D., Zacharoulis A., Fotiadis I., Matsakas E., et al. Functional electrical stimulation improves endothelial function and reduces peripheral immune responses in patients with chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:592–597. doi: 10.1097/01.hjr.0000219111.02544.ff. PubMed DOI
Dobsák P., Nováková M., Fiser B., Siegelová J., Balcárková P., Spinarová L., Vítovec J., Minami N., Nagasaka M., Kohzuki M., et al. Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int. Heart J. 2006;47:441–453. doi: 10.1536/ihj.47.441. PubMed DOI
Karavidas A., Parissis J., Arapi S., Farmakis D., Korres D., Nikolaou M., Fotiadis J., Potamitis N., Driva X., Paraskevaidis I., et al. Effects of functional electrical stimulation on quality of life and emotional stress in patients with chronic heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy: A randomised, placebo-controlled trial. Eur. J. Heart Fail. 2008;10:709–713. doi: 10.1016/j.ejheart.2008.05.014. PubMed DOI
Parissis J., Karavidas A., Farmakis D., Papoutsidakis N., Matzaraki V., Arapi S., Potamitis N., Nikolaou M., Paraskevaidis I., Ikonomidis I., et al. Efficacy and safety of functional electrical stimulation of lower limb muscles in elderly patients with chronic heart failure: A pilot study. Eur. J. Prev. Cardiol. 2015;22:831–836. doi: 10.1177/2047487314540546. PubMed DOI
Soska V., Dobsak P., Pohanka M., Spinarova L., Vitovec J., Krejci J., Hude P., Homolka P., Novakova M., Eicher J.C., et al. Exercise training combined with electromyostimulation in the rehabilitation of patients with chronic heart failure: A randomized trial. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2014;158:98–106. doi: 10.5507/bp.2012.096. PubMed DOI
Kadoglou N.P., Mandila C., Karavidas A., Farmakis D., Matzaraki V., Varounis C., Arapi S., Perpinia A., Parissis J. Effect of functional electrical stimulation on cardiovascular outcomes in patients with chronic heart failure. Eur. J. Prev. Cardiol. 2017;24:833–839. doi: 10.1177/2047487316687428. PubMed DOI
Forestieri P., Bolzan D.W., Santos V.B., Moreira R.S.L., de Almeida D.R., Trimer R., de Souza Brito F., Borghi-Silva A., de Camargo Carvalho A.C., Arena R., et al. Neuromuscular electrical stimulation improves exercise tolerance in patients with advanced heart failure on continuous intravenous inotropic support use-randomized controlled trial. Clin. Rehabil. 2018;32:66–74. doi: 10.1177/0269215517715762. PubMed DOI
Poltavskaya M.G., Sviridenko V.P., Kozlovskaya I.B., Brand A.V., Andreev D.A., Patchenskaya I.V., Koryak Y.A., Tomilovskaya E.S., Saenko I.V., Giverts I.Y., et al. Comparison of the efficacy of neuromuscular electrostimulation and interval exercise training in early rehabilitation of patients hospitalized with decompensation of chronic heart failure. Hum. Physiol. 2018;44:663–672. doi: 10.1134/S0362119718060087. DOI
Kucio C., Niesporek J., Kucio E., Narloch D., Węgrzyn B. Evaluation of the effects of neuromuscular electrical stimulation of the lower limbs combined with pulmonary rehabilitation on exercise tolerance in patients with chronic obstructive pulmonary disease. J. Hum. Kinet. 2016;54:75–82. doi: 10.1515/hukin-2016-0054. PubMed DOI PMC
Gorgey A., Mather K., Cupp H., Gater D.R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med. Sci. Sports Exerc. 2012;44:165–174. doi: 10.1249/MSS.0b013e31822672aa. PubMed DOI