Functional endurance capacity is associated with multiple other physical fitness components in 7-14-year-olds: a cross-sectional study

. 2021 Apr 07 ; 21 (1) : 669. [epub] 20210407

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33827500
Odkazy

PubMed 33827500
PubMed Central PMC8028765
DOI 10.1186/s12889-021-10702-2
PII: 10.1186/s12889-021-10702-2
Knihovny.cz E-zdroje

BACKGROUND: Although evidence suggests that functional endurance capacity is the most important component associated with future health, little is known of how it is associated with multiple other physical fitness components. Since various physical fitness aspects do not change the same as functional endurance capacity during childhood, it is necessary to establish possible associations between functional endurance capacity and other physical fitness components in children. Therefore, the main purpose of the study was to test the associations between functional endurance capacity with other physical fitness components in 7-14-year-old children, stratified by gender. METHODS: In this cross-sectional study, we recruited 1612 children [mean age ± standard deviation (SD) = 9.72 ± 2.37 years; 52.5% girls). Health-related physical fitness components included: 1) body-mass index (kg/m2) calculated from height and weight (measure of body size), 2) sit-and-reach test (measure of flexibility), 3) standing broad jump (measure of explosive strength of lower extremities), 4) sit-ups in 30 s (measure of repetitive strength of the trunk), 5) 10 × 5 shuttle run test (measure of agility) and 6) 20-m shuttle run test (measure of functional endurance capacity). The associations were performed using generalized estimating equations with beta (β) coefficients. RESULTS: After adjusting for age, functional endurance capacity was associated with sit-and-reach test (β = 0.13, p < 0.001), standing broad jump (β = 0.59, p < 0.001), sit-ups in 30 s (β = 0.53, p < 0.001) and 10 × 5 shuttle run test (β = - 0.56, p < 0.001) in boys. In girls, functional endurance capacity was associated with body-mass index (β = - 0.12, p < 0.001), sit-and-reach test (β = 0.21, p < 0.001), standing broad jump (β = 0.25, p < 0.001), sit-ups in 30 s (β = 0.36, p < 0.001) and 10 × 5 shuttle run test (β = - 0.40, p < 0.001). No significant associations between functional endurance capacity and body-mass index in boys were observed. CONCLUSIONS: Although significant, functional endurance capacity is weakly to moderately associated with other physical fitness components, pointing out that such measure should be tested separately from other aspects of physical fitness in school-aged children.

Zobrazit více v PubMed

Catley MJ, Tomkinson GR. Normative health-related fitness values for children: analysis of 85347 test results on 9-17-year-old Australians since 1985. Br J Sports Med. 2013;47(2):98–108. doi: 10.1136/bjsports-2011-090218. PubMed DOI

Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):1–11. doi: 10.1038/sj.ijo.0803774. PubMed DOI

Ortega FB, Artero EG, Ruiz JR, España-Romero V, Jiménez-Pavón D, Vicente-Rodriguez G, et al. HELENA study. Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011;45(1):20–29. doi: 10.1136/bjsm.2009.062679. PubMed DOI

Ruiz JR, Castro-Piñero J, Artero EG, Ortega FB, Sjöström M, Suni J, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–923. doi: 10.1136/bjsm.2008.056499. PubMed DOI

Benson AC, Torode ME, Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int J Pediatr Obes. 2006;1(4):222–231. doi: 10.1080/17477160600962864. PubMed DOI

Antero-Jacquemin J, Pohar-Perme M, Rey G, Toussaint JF, Latouche A. The heart of the matter: years-saved from cardiovascular and cancer deaths in an elite athlete cohort with over a century of follow-up. Eur J Epidemiol. 2018;33(6):531–543. doi: 10.1007/s10654-018-0401-0. PubMed DOI

Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. doi: 10.1056/NEJMoa011858. PubMed DOI

Malina RM. Physical activity and fitness: pathways from childhood to adulthood. Am J Hum Biol. 2001;13(2):162–172. doi: 10.1002/1520-6300(200102/03)13:2<162::AID-AJHB1025>3.0.CO;2-T. PubMed DOI

Dwyer T, Magnussen CG, Schmidt MD, Ukoumunne OC, Ponsonby AL, Raitakari OT, Zimmet PZ, Blair SN, Thomson R, Cleland VJ, Venn A. Decline in physical fitness from childhood to adulthood associated with increased obesity and insulin resistance in adults. Diabetes Care. 2009;32(4):683–687. doi: 10.2337/dc08-1638. PubMed DOI PMC

Ruiz JR, Cavero-Redondo I, Ortega FB, Welk GJ, Andersen LB, Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br J Sports Med. 2016;50(23):1451–1458. doi: 10.1136/bjsports-2015-095903. PubMed DOI

Venckunas T, Mieziene B, Emeljanovas A. Aerobic capacity is related to multiple other aspects of physical fitness: a study in a large sample of Lithuanian schoolchildren. Front Physiol. 2018;9:1797. doi: 10.3389/fphys.2018.01797. PubMed DOI PMC

Chase NL, Sui X, Lee DC, Blair SN. The association of cardiorespiratory fitness and physical activity with incidence of hypertension in men. Am J Hypertens. 2009;22(4):417–424. doi: 10.1038/ajh.2009.6. PubMed DOI

Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–2035. doi: 10.1001/jama.2009.681. PubMed DOI

Albon HM, Hamlin MJ, Ross JJ. Secular trends and distributional changes in health and fitness performance variables of 10-14-year-old children in New Zealand between 1991 and 2003. Br J Sports Med. 2010;44(4):263–269. doi: 10.1136/bjsm.2008.047142. PubMed DOI

Pahkala K, Hernelahti M, Heinonen OJ, Raittinen P, Hakanen M, Lagström H, Viikari JSA, Rönnemaa T, Raitakari OT, Simell O. Body mass index, fitness and physical activity from childhood through adolescence. Br J Sports Med. 2013;47(2):71–77. doi: 10.1136/bjsports-2011-090704. PubMed DOI

Okely AD, Booth ML, Patterson JW. Relationship of cardiorespiratory endurance to fundamental movement skill proficiency among adolescents. Pediatr Exerc Sci. 2001;13(4):380–391. doi: 10.1123/pes.13.4.380. DOI

Paradisis GP, Zacharogiannis E, Mandila D, Smirtiotou A, Argeitaki P, Cooke CB. Multi-stage 20-m shuttle run fitness test, maximal oxygen uptake and velocity at maximal oxygen uptake. J Hum Kinet. 2014;41(1):81–87. doi: 10.2478/hukin-2014-0035. PubMed DOI PMC

Štefan L, Paradžik P, Sporiš G. Sex and age correlations of reported and estimated physical fitness in adolescents. PLoS One. 2019;14(7):e0219217. doi: 10.1371/journal.pone.0219217. PubMed DOI PMC

Venckunas T, Emeljanovas A, Mieziene B, Volbekiene V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J Epidemiol Commun Health. 2017;71(2):181–187. doi: 10.1136/jech-2016-207307. PubMed DOI

Sinnett AM, Berg K, Latin RW, Noble JM. The relationship between field tests of anaerobic power and 10-km run performance. J Strength Cond Res. 2001;15(4):405–412. PubMed

De Miguel-Etayo P, Gracia-Marco L, Ortega FB, Intemann T, Foraita R, Lissner L, et al. Physical fitness reference standards in European children: the IDEFICS study. Int J Obes. 2014;38:57–66. doi: 10.1038/ijo.2014.136. PubMed DOI

Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, Karasik P, Greenberg M, Papademetriou V, Singh S. Exercise capacity and mortality in black and white men. Circulation. 2008;117(5):614–622. doi: 10.1161/CIRCULATIONAHA.107.734764. PubMed DOI

García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, Martínez-Vizcaíno V. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100–2113. doi: 10.1016/j.apmr.2018.01.008. PubMed DOI

Kusy K, Zieliński J. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants. Scand J Med Sci Sports. 2014;24(1):68–79. doi: 10.1111/j.1600-0838.2012.01496.x. PubMed DOI

Štefan L, Sorić M, Devrnja A, Podnar H, Mišigoj-Duraković M. Is school type associated with objectively measured physical activity in 15-year-olds? Int J Environ Res Public Health. 2017;14(11):1417. doi: 10.3390/ijerph14111417. PubMed DOI PMC

Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sport Sci. 1998;6:93–101. doi: 10.1080/02640418808729800. PubMed DOI

Kozieł SM, Malina RM. Modified maturity offset prediction equations: validation in independent longitudinal samples of boys and girls. Sports Med. 2018;48(1):221–236. doi: 10.1007/s40279-017-0750-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...