Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, validační studie
Grantová podpora
HHSF223201510172C
FDA HHS - United States
R15 GM114739
NIGMS NIH HHS - United States
R15 GM137288
NIGMS NIH HHS - United States
FD999999
Intramural FDA HHS - United States
P50 GM021700
NIGMS NIH HHS - United States
PubMed
33846644
PubMed Central
PMC8434938
DOI
10.1038/s41587-021-00857-z
PII: 10.1038/s41587-021-00857-z
Knihovny.cz E-zdroje
- MeSH
- cirkulující nádorová DNA genetika MeSH
- individualizovaná medicína * MeSH
- lékařská onkologie * MeSH
- lidé MeSH
- limita detekce MeSH
- nádory genetika MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza DNA normy MeSH
- směrnice pro lékařskou praxi jako téma MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- validační studie MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were detected with high sensitivity, precision and reproducibility by all five assays, whereas, below this limit, detection became unreliable and varied widely between assays, especially when input material was limited. Missed mutations (false negatives) were more common than erroneous candidates (false positives), indicating that the reliable sampling of rare ctDNA fragments is the key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance of ctDNA assays serves to inform best practice guidelines and provides a resource for precision oncology.
Accugenomics Inc Wilmington NC USA
Agilent Technologies Cedar Creek TX USA
Agilent Technologies La Jolla CA USA
Agilent Technologies Santa Clara CA USA
Astrazeneca Pharmaceuticals Waltham MA USA
Bioinformatics Integrated DNA Technologies Inc Coralville IA USA
Cancer Genetics Inc Rutherford NJ USA
Cancer Theme Garvan Institute of Medical Research Sydney NSW Australia
Clinical Diagnostic Division Thermo Fisher Scientific Fremont CA USA
Clinical Laboratory Burning Rock Biotech Guangzhou China
Clinical Sequencing Division Thermo Fisher Scientific Austin TX USA
Clinical Sequencing Division Thermo Fisher Scientific South San Francisco CA USA
Department of Genetics University of North Carolina Chapel Hill NC USA
Department of Information Science University of Arkansas at Little Rock Little Rock AR USA
Department of Physiology and Biophysics Weill Cornell Medicine Cornell University New York NY USA
Departments of Pathology and Pediatrics University of Utah School of Medicine Salt Lake City UT USA
EATRIS ERIC European Infrastructure for Translational Medicine Amsterdam The Netherlands
Elim Biopharmaceuticals Inc Hayward CA USA
Fudan Gospel Joint Research Center for Precision Medicine Fudan University Shanghai China
Genomics and Epigenetics Theme Garvan Institute of Medical Research Sydney NSW Australia
Human Phenome Institute Fudan University Shanghai China
Immuneering Corporation Cambridge MA USA
Institute for Molecular Medicine Finland University of Helsinki Helsinki Finland
Institute for Personalized Cancer Therapy MD Anderson Cancer Center Houston TX USA
Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Sydney NSW Australia
Market and Application Development Bioinformatics Roche Sequencing Solutions Inc Pleasanton CA USA
Marketing Integrated DNA Technologies Inc Coralville IA USA
Massachusetts General Hospital Harvard Medical School Boston MA USA
National Institute of Environmental Health Sciences Research Triangle Park Morrisville NC USA
NGS Products and Services Integrated DNA Technologies Inc Coralville IA USA
NIHR Biomedical Research Centre Royal Marsden Hospital Sutton Surrey UK
Primbio Genes Biotechnology East Lake High tech Development Zone Wuhan Hubei China
Q2 Solutions EA Genomics Morrisville NC USA
Research and Development Burning Rock Biotech Shanghai China
Research and Development Integrated DNA Technologies Inc Coralville IA USA
Research and Development QIAGEN Sciences Inc Frederick MD USA
Roche Sequencing Solutions Inc Pleasanton CA USA
St Vincent's Clinical School Faculty of Medicine University of New South Wales Sydney NSW Australia
St Vincent's Clinical School University of New South Wales Sydney NSW Australia
Stanford Genome Technology Center Stanford University Palo Alto CA USA
Zobrazit více v PubMed
Leon SA, Shapiro B, Sklaroff DM & Yaros MJ Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37, 646–650 (1977). PubMed
Stroun M, Anker P, Lyautey J, Lederrey C & Maurice PA Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 23, 707–712 (1987). PubMed
Abbosh C et al.Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017). PubMed PMC
Bettegowda C et al.Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6, 224ra24 (2014). PubMed PMC
Abbosh C, Birkbak NJ & Swanton C Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol 15, 577–586 (2018). PubMed
Aggarwal C et al.Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice. Nat Rev Clin Oncol (2020). PubMed
Aravanis AM, Lee M & Klausner RD Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell 168, 571–574 (2017). PubMed
Siravegna G, Marsoni S, Siena S & Bardelli A Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14, 531–548 (2017). PubMed
Wan JCM et al.Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17, 223–238 (2017). PubMed
Volckmar A-L et al.A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosomes Cancer 57, 123–139 (2017). PubMed
Ross MG et al.Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013). PubMed PMC
Brannon AR et al.Enhanced specificity of high sensitivity somatic variant profiling in cell-free DNA via paired normal sequencing: design, validation, and clinical experience of the MSK-ACCESS liquid biopsy assay. bioRxiv 2020.06.27.175471 (2020).
Clark TA et al.Analytical Validation of a Hybrid Capture–Based Next-Generation Sequencing Clinical Assay for Genomic Profiling of Cell-Free Circulating Tumor DNA. J Mol Diagn 20, 686–702 (2018). PubMed PMC
Dawson S-J et al.Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368, 1199–1209 (2013). PubMed
Forshew T et al.Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4, 136ra68 (2012). PubMed
Kinde I, Wu J, Papadopoulos N, Kinzler KW & Vogelstein B Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 108, 9530–9535 (2011). PubMed PMC
Klein EA et al.Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: The Circulating Cell-free Genome Atlas (CCGA) study. J Clin Oncol 36, 12021–12021 (2018).
Miller AM et al.Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565, 654–658 (2019). PubMed PMC
Murtaza M et al.Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013). PubMed
Murtaza M et al.Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun 6, 8760 (2015). PubMed PMC
Newman AM et al.An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20, 548–554 (2014). PubMed PMC
Newman AM et al.Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 34, 547–555 (2016). PubMed PMC
Odegaard JI et al.Validation of a Plasma-Based Comprehensive Cancer Genotyping Assay Utilizing Orthogonal Tissue- and Plasma-Based Methodologies. Clin Cancer Res 24, 3539 (2018). PubMed
Plagnol V et al.Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling. PLoS One 13, e0193802 (2018). PubMed PMC
Kuderer NM et al.Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol 3, 996–998 (2017). PubMed PMC
Stetson D et al.Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. JCO Precision Oncology 1–9 (2019). PubMed
Torga G & Pienta KJ Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol 4, 868–870 (2018). PubMed PMC
Merker JD et al.Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol 36, 1631–1641 (2018). PubMed
Shiraishi Y et al.A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res. 28, 1111–1125 (2018). PubMed PMC
Bos JL The ras gene family and human carcinogenesis. Mutat Res 195, 255–271 (1988). PubMed
Blackburn J et al.Use of synthetic DNA spike-in controls (sequins) for human genome sequencing. Nat Protoc 14, 2119–2151 (2019). PubMed
Deveson IW et al.Chiral DNA sequences as commutable controls for clinical genomics. Nat Commun 1–13 (2019). PubMed PMC
Horn S et al.TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013). PubMed
Jones W et al.A Verified Genomic Reference Sample for Assessing Performance of Cancer Panels Detecting Small Variants of Low Allele Frequency. Genome Biology (2021). 10.1186/s13059-021-02316-z. PubMed DOI PMC
Fu GK, Hu J, Wang P-H & Fodor SPA Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc Natl Acad Sci U S A 108, 9026–9031 (2011). PubMed PMC
Saito T & Rehmsmeier M The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10, e0118432 (2015). PubMed PMC
Hardwick SA, Deveson IW & Mercer TR Reference standards for next-generation sequencing. Nat Rev Genet 18, 473–484 (2017). PubMed
Hodis E et al.A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012). PubMed PMC
Sheridan C Investors keep the faith in cancer liquid biopsies. Nat Biotechnol 37, 972–974 (2019). PubMed
Lanman RB et al.Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One 10, e0140712 (2015). PubMed PMC
Phallen J et al.Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9, (2017). PubMed PMC
Cohen JD et al.Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018). PubMed PMC
Tie J et al.Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8, 346ra92 (2016). PubMed PMC
Diehl F et al.Circulating mutant DNA to assess tumor dynamics. Nat Med 14, 985–990 (2008). PubMed PMC
Mouliere F et al.Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 10, (2018). PubMed PMC
Underhill HR et al.Fragment Length of Circulating Tumor DNA. PLoS Genet 12, e1006162 (2016). PubMed PMC
Shen SY et al.Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018). PubMed
Kim Y-W et al.Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Experimental & Molecular Medicine 51, 1–10 (2019). PubMed PMC
Klega K et al.Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. JCO Precision Oncology 2018, 10.1200/PO.17.00285 (2018). PubMed DOI PMC
Peng H et al.CNV detection from circulating tumor DNA in late stage non-small cell lung cancer patients. Genes (Basel) 10, 926 (2019). PubMed PMC
Cai Z et al.Detection of microsatellite instability from circulating tumor DNA by targeted deep sequencing. J Mol Diagn 22, 860–870 (2020). PubMed
Hu Y et al.False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 24, 4437–4443 (2018). PubMed
McKenna A et al.The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). PubMed PMC
Li H & Durbin R Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Koboldt DC et al.VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22, 568–576 (2012). PubMed PMC