Antibodies Related to Borrelia burgdorferi sensu lato, Coxiella burnetii, and Francisella tularensis Detected in Serum and Heart Rinses of Wild Small Mammals in the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FVHE/Literák/ITA2019
University of Veterinary and Pharmaceutical Science Brno
PubMed
33916002
PubMed Central
PMC8066200
DOI
10.3390/pathogens10040419
PII: pathogens10040419
Knihovny.cz E-zdroje
- Klíčová slova
- Lyme disease, Q fever, rodents, seroprevalence, tularemia, zoonosis,
- Publikační typ
- časopisecké články MeSH
Wild small mammals are the most common reservoirs of pathogenic microorganisms that can cause zoonotic diseases. The aim of the study was to detect antibodies related to Borrelia burgdorferi sensu lato, Coxiella burnetii, and Francisella tularensis in wild small mammals from the Czech Republic. In total, sera or heart rinses of 211 wild small mammals (168 Apodemus flavicollis, 28 Myodes glareolus, 9 A. sylvaticus, and 6 Sorex araneus) were examined by modified enzyme-linked immunosorbent assay. Antibodies related to B.burgdorferi s.l., C. burnetii, and F. tularensis were detected in 15%, 19%, and 20% of animals, respectively. The prevalence of B. burgdorferi and F. tularensis statistically differed in localities and F. tularensis also differed in sex. Antibodies against 2-3 pathogens were found in 17% of animals with a higher prevalence in M. glareolus. This study brings new data about the prevalence of the above-mentioned pathogens.
Zobrazit více v PubMed
Snydman D.R. Lyme disease. Medicine. 2017;45:743–746. doi: 10.1016/j.mpmed.2017.09.005. DOI
Gern L., Estrada-Peña A., Frandsen F., Gray J.S., Jaenson T.G.T., Jongejan F., Kahl O., Korenberg E., Mehl R., Nuttall P.A. European reservoir hosts of Borrelia burgdorferi sensu lato. Zbl. Bakter. 1998;287:196–204. doi: 10.1016/S0934-8840(98)80121-7. PubMed DOI
Sharma N., Hotta A., Yamamoto Y., Uda A., Fujita O., Mizoguchi T., Shindo J., Park C.-H., Kudo N., Hatai H., et al. Serosurveillance for Francisella tularensis among wild animals in Japan using a newly developed competitive enzyme-linked immunosorbent assay. Vector Borne Zoonotic Dis. 2014;14:234–239. doi: 10.1089/vbz.2013.1349. PubMed DOI PMC
Żukiewicz-Sobczak W., Zwoliński J., Chmielewska-Badora J., Galińska E.M., Cholewa G., Krasowska E., Zagórski J., Wojtyła A., Tomasiewicz K., Kłapeć T. Prevalence of antibodies against selected zoonotic agents in forestry workers from eastern and southern Poland. Ann. Agric. Environ. Med. 2014;21:767–770. doi: 10.5604/12321966.1129930. PubMed DOI
Bolaños-Rivero M., Carranza-Rodríguez C., Rodríguez N.F., Gutiérrez C., Pérez-Arellano J.-L. Detection of Coxiella burnetii DNA in peridomestic and wild animals and ticks in an endemic region (Canary Islands, Spain) Vector Borne Zoonotic Dis. 2017;17:630–634. doi: 10.1089/vbz.2017.2120. PubMed DOI
Pluta S., Hartelt K., Oehme R., Mackenstedt U., Kimmig P. Prevalence of Coxiella burnetii and Rickettsia spp. In ticks and rodents in southern Germany. Ticks Tick Borne Dis. 2010;1:145–147. doi: 10.1016/j.ttbdis.2010.04.001. PubMed DOI
Psaroulaki A., Hadjichristodoulou C., Loukaides F., Soteriades E., Konstantinidis A., Papastergiou P., Ioannidou M.C., Tselentis Y. Epidemiological study of Q fever in humans, ruminant animals, and ticks in Cyprus using a geographical information system. Eur. J. Clin. Microbiol. Infect. Dis. 2006;25:576–586. doi: 10.1007/s10096-006-0170-7. PubMed DOI
Maurin M., Raoult D. Q fever. Clin. Microbiol. Rev. 1999;12:518–553. doi: 10.1128/CMR.12.4.518. PubMed DOI PMC
Baskerville A., Hambleton P. Pathogenesis and pathology of respiratory tularemia in the rabbit. Br. J. Exp. Pathol. 1976;57:339–347. PubMed PMC
Hennebique A., Boisset S., Maurin M. Tularemia as a waterborne disease: A review. Emerg. Microbes Infect. 2019;8:1027–1042. doi: 10.1080/22221751.2019.1638734. PubMed DOI PMC
Vostal K., Žákovská A. Two-year study of examination of blood from wild rodents for the presence of antiborrelian antibodies. Ann. Agric. Environ. Med. 2003;10:203–206. PubMed
Štefančíková A., Bhide M., Peťko B., Stanko M., Mošanský L., Fričova J., Derdáková M., Trávniček M. Anti-Borrelila antibodies in rodents: Important hosts in ecology of Lyme disease. Ann. Agric. Environ. Med. 2004;11:209–213. PubMed
Štefančíková A., Derdáková M., Škardová I., Szestáková E., Čisláková L., Kováčová D., Stanko M., Peťko B. Some epidemiological and epizootiological aspects of Lyme borreliosis in Slovakia with the emphasis on the problems of serological diagnostics. Biologia. 2008;63:1135–1142. doi: 10.2478/s11756-008-0177-x. DOI
Pawelczyk A., Sinski E. Prevalence of IGG antibodies response to Borrelia burgdorferi s.l. in populations of wild rodents from Mazury Lakes District region of Poland. Ann. Agric. Environ. Med. 2000;7:79–83. PubMed
Pascucci I., Di Domenico M., Dall’Acqua F., Sozio G., Camma C. Detection of Lyme Disease and Q Fever agents in wild rodents in central Italy. Vector Borne Zoonotic Dis. 2015;15:404–411. doi: 10.1089/vbz.2015.1807. PubMed DOI PMC
Meredith A.L., Cleaveland S.C., Denwood M.J., Brown J.K., Shaw D.J. Coxiella burnetii (Q fever) seroprevalence in prey and predators in the United Kingdom: Evaluation of infection in wild rodents, foxes and domestic cats using a modified ELISA. Transbound Emerg. Dis. 2015;62:639–649. doi: 10.1111/tbed.12211. PubMed DOI
Schmidt S., Essbauer S.S., Mayer-Scholl A., Poppert S., Schmidt-Chanasit J., Klempa B., Henning K., Schares G., Groschup M.H., Spitzenberger F., et al. Multiple infections of rodents with zoonotic pathogens in Austria. Vector Borne Zoonotic Dis. 2014;14 doi: 10.1089/vbz.2013.1504. PubMed DOI PMC
Christova I., Gladnishka T. Prevalence of infection with Francisella tularensis, Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in rodents from an endemic focus of tularemia in Bulgaria. Ann. Agric. Environ. Med. 2004;12:149–152. PubMed
Mostafavi E., Shahraki A.H., Japoni-Nejad A., Esmaeili S., Darvish J., Sedaghat M.M., Mohammadi A., Mohammadi Z., Mahmoudi A., Pourhossein B., et al. A field study of plague and tularaemia in rodents, Western Iran. Vector Borne Zoonotic Dis. 2017;17:247–253. doi: 10.1089/vbz.2016.2053. PubMed DOI
Zhang F., Liu W., Chu M.C., He J., Duan Q., Wu X.-M., Zhang P.-H., Zhao Q.-M., Yang H., Xin Z.-T., et al. Francisella tularensis in rodents, China. Emerg. Infect. Dis. 2006;12:994–996. doi: 10.3201/eid1206.051324. PubMed DOI PMC
Sunagar R., Kumar S., Franz B.J., Gosselin E.J. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice. Vaccine. 2016 doi: 10.1016/j.vaccine.2016.04.054. PubMed DOI PMC
Výrosteková V., Khanakah G., Kocianová E., Gurycová D., Stanek G. Prevalence of coinfection with Francisella tularensis in reservoir animals of Borrelia burgdorferi sensu lato. Wien. Klin. Wochenschr. 2002;114:482–488. PubMed
Regier Y., Komma K., Weigel W., Kraiczy P., Laisi A., Pulliainen A.T., Hain T., Kempf V.A.J. Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany. Parasit. Vectors. 2019;12:11. doi: 10.1186/s13071-018-3240-7. PubMed DOI PMC
Bielawska-Drózd A., Cieślik P., Żakowska D., Głowacka P., Wlizło-Skowronek B., Zięba P., Zdun A. Detection of Coxiella burnetii and Francisella tularensis in tissues of wild-living animals and in ticks of North-west Poland. Pol. J. Microbiol. 2018;67:529–534. doi: 10.21307/pjm-2018-059. PubMed DOI PMC
Otto P., Chaignat V., Klimpel D., Diller R., Melzer F., Müller W., Tomaso H. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014;14:46–51. doi: 10.1089/vbz.2013.1321. PubMed DOI PMC
Taylor L.H., Latham S., Mark E.J. Woolhouse Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356:983–989. doi: 10.1098/rstb.2001.0888. PubMed DOI PMC
Szymańska-Czerwińska M., Galińska E.M., Niemczuk K., Knap J.P. Prevalence of Coxiella burnetii infection in humans occupationally exposed to animals in Poland. Vector Borne Zoonotic Dis. 2015;15:261–267. doi: 10.1089/vbz.2014.1716. PubMed DOI PMC
Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife-threats to biodiversity and human Health. Science. Science. 2000;287:443–449. doi: 10.1126/science.287.5452.443. PubMed DOI
Dahmana H., Granjon L., Diagne C., Davoust B., Fenollar F., Mediannikov O. Rodents as hosts of pathogens and related zoonotic disease risk. Pathogens. 2020;9:202. doi: 10.3390/pathogens9030202. PubMed DOI PMC
Žákovská A., Rusňáková H., Vostal K. Host response to Borrelia afzelii in BALB/c mice tested by immunoblotting. Ann. Agric. Environ. Med. 2013;20:823–825. PubMed
Statsoft Inc. STATISTICA (Data Analysis Software System), Version 12. [(accessed on 29 March 2021)];2013 Available online: www.statsoft.com.