Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.CZ.02.1.01/0.0/0.0/16_025/0007445
European Regional Development Fund
TK02030001
Technological agency of Czech republic
Specific university research grant nr. A1_FCHI_2020_004 and A2_FCHI_2020_035.
University of Chemistry and Technology Prague
PubMed
33923204
PubMed Central
PMC8123158
DOI
10.3390/molecules26092484
PII: molecules26092484
Knihovny.cz E-zdroje
- Klíčová slova
- anthraquinone disulfonic acid, aqueous organic electrolyte, capacity decay, electrolyte cross-over, redox flow battery,
- Publikační typ
- časopisecké články MeSH
Despite intense research in the field of aqueous organic redox flow batteries, low molecular stability of electroactive compounds limits further commercialization. Additionally, currently used methods typically cannot differentiate between individual capacity fade mechanisms, such as degradation of electroactive compound and its cross-over through the membrane. We present a more complex method for in situ evaluation of (electro)chemical stability of electrolytes using a flow electrolyser and a double half-cell including permeation measurements of electrolyte cross-over through a membrane by a UV-VIS spectrometer. The method is employed to study (electro)chemical stability of acidic negolyte based on an anthraquinone sulfonation mixture containing mainly 2,6- and 2,7-anthraquinone disulfonic acid isomers, which can be directly used as an RFB negolyte. The effect of electrolyte state of charge (SoC), current load and operating temperature on electrolyte stability is tested. The results show enhanced capacity decay for fully charged electrolyte (0.9 and 2.45% per day at 20 °C and 40 °C, respectively) while very good stability is observed at 50% SoC and lower, even at 40 °C and under current load (0.02% per day). HPLC analysis conformed deep degradation of AQ derivatives connected with the loss of aromaticity. The developed method can be adopted for stability evaluation of electrolytes of various organic and inorganic RFB chemistries.
Zobrazit více v PubMed
Lourenssen K., Williams J., Ahmadpour F., Clemmer R., Tasnim S. Vanadium Redox Flow Batteries: A Comprehensive Review. J. Energy Storage. 2019;25:100844. doi: 10.1016/j.est.2019.100844. DOI
Winsberg J., Hagemann T., Janoschka T., Hager M.D., Schubert U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017;56:686–711. doi: 10.1002/anie.201604925. PubMed DOI PMC
Kwabi D.G., Lin K., Ji Y., Kerr E.F., Goulet M.-A., De Porcellinis D., Tabor D.P., Pollack D.A., Aspuru-Guzik A., Gordon R.G., et al. Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule. 2018;2:1894–1906. doi: 10.1016/j.joule.2018.07.005. DOI
Lin K., Chen Q., Gerhardt M.R., Tong L., Kim S.B., Eisenach L., Valle A.W., Hardee D., Gordon R.G., Aziz M.J., et al. Alkaline Quinone Flow Battery. Science. 2015;349:1529–1532. doi: 10.1126/science.aab3033. PubMed DOI
Huskinson B., Marshak M.P., Suh C., Er S.S., Gerhardt M.R., Galvin C.J., Chen X., Aspuru-Guzik A., Gordon R.G., Aziz M.J. A Metal-Free Organic–Inorganic Aqueous Flow Battery. Nat. Cell Biol. 2014;505:195–198. doi: 10.1038/nature12909. PubMed DOI
Chen Q., Eisenach L., Aziz M.J. Cycling Analysis of a Quinone-Bromide Redox Flow Battery. J. Electrochem. Soc. 2015;163:A5057–A5063. doi: 10.1149/2.0081601jes. DOI
Chen Q., Gerhardt M.R., Hartle L., Aziz M.J. A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density. J. Electrochem. Soc. 2015;163:A5010–A5013. doi: 10.1149/2.0021601jes. DOI
Gerhardt M.R., Rafael T., Gómez B., Chen Q., P M., Cooper M., Galvin J., Aspuru-Guzik A., G R., J G.M. Aziz Anthraquinone Derivatives in Aqueous Flow Batteries. Adv. Energy Mater. 2017;7:1601488. doi: 10.1002/aenm.201601488. DOI
Khataee A., Wedege K., Dražević E., Bentien A. Differential pH as a Method for Increasing Cell Potential in Organic Aqueous Flow Batteries. J. Mater. Chem. A. 2017;5:21875–21882. doi: 10.1039/C7TA04975G. DOI
Hu B., Luo J., Hu M., Yuan B., Liu T.L. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Angew. Chem. 2019;58:16629–16636. doi: 10.1002/anie.201907934. PubMed DOI
Lee W., Permatasari A., Kwon Y. Neutral pH Aqueous redox Flow Batteries Using an Anthraquinone-Ferrocyanide Redox Couple. J. Mater. Chem. C. 2020;8:5727–5731. doi: 10.1039/D0TC00640H. DOI
Yang B., Murali A., Nirmalchandar A., Jayathilake B., Prakash G.K.S., Narayanan S.R. A Durable, Inexpensive and Scalable Redox Flow Battery Based on Iron Sulfate and Anthraquinone Disulfonic Acid. J. Electrochem. Soc. 2020;167:060520. doi: 10.1149/1945-7111/ab84f8. DOI
Hoober-Burkhardt L., Krishnamoorthy S., Yang B., Murali A., Nirmalchandar A., Prakash G.K.S., Narayanan S.R. A New Michael-Reaction-Resistant Benzoquinone for Aqueous Organic Redox Flow Batteries. J. Electrochem. Soc. 2017;164:A600–A607. doi: 10.1149/2.0351704jes. DOI
Tong L., Chen Q., Wong A.A., Gómez-Bombarelli R., Aspuru-Guzik A., Gordon R.G., Aziz M.J. UV–VIS Spectrophotometry of Quinone flow Battery Electrolyte for in Situ Monitoring and Improved Electrochemical Modeling of Potential and Quinhydrone Formation. Phys. Chem. Chem. Phys. 2017;19:31684–31691. doi: 10.1039/C7CP05881K. PubMed DOI
Carney T.J., Steven J., Collins J., Moore S., Fikile R. Brushett Concentration-Dependent Dimerization of Anthraquinone Disulfonic Acid and Its Impact on Charge Storage. Chem. Mater. 2017;29:4801–4810. doi: 10.1021/acs.chemmater.7b00616. DOI
Wiberg C., Carney T.J., Brushett F., Ahlberg E., Wang E. Dimerization of 9,10-anthraquinone-2,7-Disulfonic acid (AQDS) Electrochim. Acta. 2019;317:478–485. doi: 10.1016/j.electacta.2019.05.134. DOI
Wermeckes B., Beck F. Acid Catalyzed Disproportionation of Anthrahydroquinone to Anthraquinone and Anthrone. Denki Kagaku Oyobi Kogyo Butsuri Kagaku. 1994;62:1202–1205. doi: 10.5796/electrochemistry.62.1202. DOI
Goulet M.-A., Tong L., Pollack D.A., Tabor D.P., Odom S.A., Aspuru-Guzik A., Kwan E.E., Gordon R.G., Aziz M.J. Extending the Lifetime of Organic Flow Batteries via Redox State Management. J. Am. Chem. Soc. 2019;141:8014–8019. doi: 10.1021/jacs.8b13295. PubMed DOI
Goulet M.-A., Aziz M.J. Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods. J. Electrochem. Soc. 2018;165:A1466–A1477. doi: 10.1149/2.0891807jes. DOI
Gerhardt M.R., Beh E.S., Tong L., Gordon R.G., Aziz M.J. Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries. MRS Adv. 2017;2:431–438. doi: 10.1557/adv.2016.667. DOI
Kwabi D.G., Wong A.A., Aziz M.J. Rational Evaluation and Cycle Life Improvement of Quinone-Based Aqueous Flow Batteries Guided by In-Line Optical Spectrophotometry. J. Electrochem. Soc. 2018;165:A1770–A1776. doi: 10.1149/2.0791809jes. DOI
Charvát J., Mazúra P., Dundáleka J., Pocedič J., Vrána J., Mrlík J., Kosek J., Dinter S. Performance Enhancement of Vanadium Redox flow Battery by Optimized Electrode Compression and Operational Conditions. J. Energy Storage. 2020;30:101468. doi: 10.1016/j.est.2020.101468. DOI
Derr I., Bruns M., Langner J., Fetyan A., Melke J., Roth C. Degradation of all-Vanadium Redox flow Batteries (VRFB) Investigated by Electrochemical Impedance and X-ray Photoe-Lectron Spectroscopy: Part 2 Electrochemical Degradation. J. Power Sources. 2016;325:351–359. doi: 10.1016/j.jpowsour.2016.06.040. DOI
Derr I., Przyrembel D., Schweer J., Fetyan A., Langner J., Melke J., Weinelt M., Roth C. Electroless Chemical Aging of Carbon Felt Electrodes for the All-Vanadium Redox Flow Battery (VRFB) Investigated by Electrochemical Impedance and X-Ray Photoelectron Spectroscopy. Electrochim. Acta. 2017;246:783–793. doi: 10.1016/j.electacta.2017.06.050. DOI
Mazur P., Mrlik J., Pocedic J., Vrana J., Dundalek J., Kosek J., Bystron T. Effect of Graphite Felt Properties on the Long-Term Durability of Negative Electrode in Vanadium Redox Flow Battery. J. Power Sources. 2019;414:354–365. doi: 10.1016/j.jpowsour.2019.01.019. DOI