OCaMIR-A Noninvasive, Diagnostic Signature for Early-Stage Ovarian Cancer: A Multi-cohort Retrospective and Prospective Study

. 2021 Aug 01 ; 27 (15) : 4277-4286. [epub] 20210525

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid34035068

Grantová podpora
R01 CA202797 NCI NIH HHS - United States
R01 CA184792 NCI NIH HHS - United States
U01 CA187956 NCI NIH HHS - United States
R01 CA181572 NCI NIH HHS - United States
R01 CA072851 NCI NIH HHS - United States
R01 CA227602 NCI NIH HHS - United States

Odkazy

PubMed 34035068
PubMed Central PMC10327469
DOI 10.1158/1078-0432.ccr-21-0267
PII: 1078-0432.CCR-21-0267
Knihovny.cz E-zdroje

PURPOSE: Due to the lack of effective screening approaches and early detection biomarkers, ovarian cancer has the highest mortality rates among gynecologic cancers. Herein, we undertook a systematic biomarker discovery and validation approach to identify microRNA (miRNA) biomarkers for the early detection of ovarian cancer. EXPERIMENTAL DESIGN: During the discovery phase, we performed small RNA sequencing in stage I high-grade serous ovarian cancer (n = 31), which was subsequently validated in multiple, independent data sets (TCGA, n = 543; GSE65819, n = 87). Subsequently, we performed multivariate logistic regression-based training in a serum data set (GSE106817, n = 640), followed by its independent validation in three retrospective data sets (GSE31568, n = 85; GSE113486, n = 140; Czech Republic cohort, n = 192) and one prospective serum cohort (n = 95). In addition, we evaluated the specificity of OCaMIR, by comparing its performance in several other cancers (GSE31568 cohort, n = 369). RESULTS: The OCaMIR demonstrated a robust diagnostic accuracy in the stage I high-grade serous ovarian cancer patients in the discovery cohort (AUC = 0.99), which was consistently reproducible in both stage I (AUC = 0.96) and all stage patients (AUC = 0.89) in the TCGA cohort. Logistic regression-based training and validation of OCaMIR achieved AUC values of 0.89 (GSE106817), 0.85 (GSE31568), 0.86 (GSE113486), and 0.82 (Czech Republic cohort) in the retrospective serum validation cohorts, as well as prospective validation cohort (AUC = 0.92). More importantly, OCaMIR demonstrated a significantly superior diagnostic performance compared with CA125 levels, even in stage I patients, and was more cost-effective, highlighting its potential role for screening and early detection of ovarian cancer. CONCLUSIONS: Small RNA sequencing identified a robust noninvasive miRNA signature for early-stage serous ovarian cancer detection.

Zobrazit více v PubMed

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. 2018;68(4):284–96. PubMed PMC

Jayson GC, Kohn EC, Kitchener HC, Ledermann JAJTL. Ovarian cancer. 2014;384(9951):1376–88. PubMed

Bowtell DD, Böhm S, Ahmed AA, Aspuria P-J, Bast RC Jr, Beral V, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. 2015;15(11):668–79. PubMed PMC

Ricci G, Zito G, Fischer-Tamaro LJO, Gynecology. Management of the Adnexal Mass. 2011;118(4):956. PubMed

Jacobs I, Davies AP, Bridges J, Stabile I, Fay T, Lower A, et al. Prevalence screening for ovarian cancer in postmenopausal women by CA 125 measurement and ultrasonography. 1993;306(6884):1030–4. PubMed PMC

Moss E, Hollingworth J, Reynolds TJJocp. The role of CA125 in clinical practice. 2005;58(3):308–12. PubMed PMC

Zhu CS, Pinsky PF, Cramer DW, Ransohoff DF, Hartge P, Pfeiffer RM, et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. 2011;4(3):375–83. PubMed PMC

Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. 2016;387(10022):945–56. PubMed PMC

Widschwendter M, Zikan M, Wahl B, Lempiäinen H, Paprotka T, Evans I, et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. 2017;9(1):116. PubMed PMC

Yang Y, Wu L, Shu X, Lu Y, Shu X-O, Cai Q, et al. Genetic data from nearly 63,000 women of European descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk. 2019;79(3):505–17. PubMed PMC

Elias KM, Fendler W, Stawiski K, Fiascone SJ, Vitonis AF, Berkowitz RS, et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. 2017;6:e28932. PubMed PMC

Yokoi A, Matsuzaki J, Yamamoto Y, Yoneoka Y, Takahashi K, Shimizu H, et al. Integrated extracellular microRNA profiling for ovarian cancer screening. 2018;9(1):1–10. PubMed PMC

Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura TJMc. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. 2016;15(1):48. PubMed PMC

Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, Nerini IF, et al. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. 2011;12(3):273–85. PubMed

Samuel P, Carter DRFJMd, therapy. The diagnostic and prognostic potential of microRNAs in epithelial ovarian carcinoma. 2017;21(1):59–73. PubMed

Langhe R, Norris L, Saadeh FA, Blackshields G, Varley R, Harrison A, et al. A novel serum microRNA panel to discriminate benign from malignant ovarian disease. 2015;356(2):628–36. PubMed

Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. 2018;9(16):2852. PubMed PMC

Shigeyasu K, Toden S, Zumwalt TJ, Okugawa Y, Goel AJCCR. Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. 2017;23(10):2391–9. PubMed PMC

Zavesky L, Jandakova E, Turyna R, Langmeierova L, Weinberger V, Minar L, et al. New perspectives in diagnosis of gynaecological cancers: Emerging role of circulating microRNAs as novel biomarkers. 2015;62(4):509–20. PubMed

Haga H, Yan I, Takahashi K, Wood J, Patel TJGETJoLR. Emerging insights into the role of microRNAs in the pathogenesis of cholangiocarcinoma. 2014;16(2):93–9. PubMed PMC

Akkiz HJEjoh-g. The emerging role of microRNAs in hepatocellular carcinoma. 2014;4(1):45. PubMed PMC

Gandellini P, Folini M, Zaffaroni NJDm. Emerging role of microRNAs in prostate cancer: implications for personalized medicine. 2010;9(46):212–8. PubMed

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. 2008;18(10):997–1006. PubMed

Cortez MA, Calin GAJEoobt.MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. 2009;9(6):703–11. PubMed

Nature CGARNJ. Integrated genomic analyses of ovarian carcinoma. 2011;474(7353):609. PubMed PMC

Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole–genome characterization of chemoresistant ovarian cancer. 2015;521(7553):489–94. PubMed

Usuba W, Urabe F, Yamamoto Y, Matsuzaki J, Sasaki H, Ichikawa M, et al. Circulating miRNA panels for specific and early detection in bladder cancer. 2019;110(1):408–19. PubMed PMC

Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, et al. Toward the blood-borne miRNome of human diseases. 2011;8(10):841–3. PubMed

Collins GS, Reitsma JB, Altman DG, Moons KGJC. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement. 2015;131(2):211–9. PubMed PMC

Martin MJEj. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011;17(1):10–2.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. 2013;29(1):15–21. PubMed PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. 2015;43(7):e47-e. PubMed PMC

Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher J-PJJocb. Calculating sample size estimates for RNA sequencing data. 2013;20(12):970–8. PubMed PMC

Du Z, Hao Y. reportROC: An Easy Way to Report ROCAnalysis. R Package Version 3.4 2018.

Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. 2020;48(D1):D148–D54. PubMed PMC

Yu G, Wang L-G, Han Y, He Q-YJOajoib. clusterProfiler: an R package for comparing biological themes among gene clusters. 2012;16(5):284–7. PubMed PMC

Kanehisa M, Goto SJNar. KEGG: kyoto encyclopedia of genes and genomes. 2000;28(1):27–30. PubMed PMC

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 2005;102(43):15545–50. PubMed PMC

Filipovic-Pierucci A, Zarca K, Durand-Zaleski IJViH. Markov models for health economic evaluation modelling in r with the heemod package. 2016;19(7):A369.

Berrino F, De Angelis R, Sant M, Rosso S, Lasota MB, Coebergh JW, et al. Survival for eight major cancers and all cancers combined for European adults diagnosed in 1995–99: results of the EUROCARE-4 study. 2007;8(9):773–83. PubMed

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. 2005;435(7043):834–8. PubMed

Chung Y-W, Bae H-S, Song J-Y, Lee JK, Lee NW, Kim T, et al. Detection of microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patient. 2013;23(4). PubMed

Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DEJGo. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. 2009;112(1):55–9. PubMed

Zuberi M, Mir R, Das J, Ahmad I, Javid J, Yadav P, et al. Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features. 2015;17(10):779–87. PubMed

Yokoi A, Yoshioka Y, Hirakawa A, Yamamoto Y, Ishikawa M, Ikeda S-i, et al. A combination of circulating miRNAs for the early detection of ovarian cancer. 2017;8(52):89811. PubMed PMC

Shapira I, Oswald M, Lovecchio J, Khalili H, Menzin A, Whyte J, et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. 2014;110(4):976–83. PubMed PMC

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. 2008;105(30):10513–8. PubMed PMC

Henderson JT, Webber EM, Sawaya GF. Screening for Ovarian Cancer: An Updated Evidence Review for the US Preventive Services Task Force. 2018. PubMed

Taylor DD, Gercel-Taylor CJGo. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. 2008;110(1):13–21. PubMed

Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. 2007;67(18):8699–707. PubMed

Zheng H, Zhang L, Zhao Y, Yang D, Song F, Wen Y, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. 2013;8(11):e77853. PubMed PMC

Chao A, Lai C-H, Chen H-C, Lin C-Y, Tsai C-L, Tang Y-H, et al. Serum microRNAs in clear cell carcinoma of the ovary. 2014;53(4):536–41. PubMed

Li Y, Yao L, Liu F, Hong J, Chen L, Zhang B, et al. Characterization of microRNA expression in serous ovarian carcinoma. 2014;34(2):491–8. PubMed

Wang L, Zhu M-J, Ren A-M, Wu H-F, Han W-M, Tan R-Y, et al. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. 2014;9(5):e96472. PubMed PMC

Li J, Hu K, Gong G, Zhu D, Wang Y, Liu H, et al. Upregulation of MiR-205 transcriptionally suppresses SMAD4 and PTEN and contributes to human ovarian cancer progression. 2017;7(1):1–9. PubMed PMC

Chu P, Liang A, Jiang A, Zong LJOl. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. 2018;15(5):7571–8. PubMed PMC

Shi X, Xiao L, Mao X, He J, Ding Y, Huang J, et al. miR-205–5p mediated downregulation of PTEN contributes to cisplatin resistance in C13K human ovarian cancer cells. 2018;9:555. PubMed PMC

Niu K, Shen W, Zhang Y, Zhao Y, Lu YJG. MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. 2015;574(2):330–6. PubMed

Chen SF, Liu Z, Chaurasiya S, Dellinger TH, Lu J, Wu X, et al. Identification of core aberrantly expressed microRNAs in serous ovarian carcinoma. 2018;9(29):20451. PubMed PMC

Wang YQ, Guo RD, Guo RM, Sheng W, Yin LRJJocb. MicroRNA‐182 promotes cell growth, invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas. 2013;114(7):1464–73. PubMed

Xu X, Ayub B, Liu Z, Serna VA, Qiang W, Liu Y, et al. Anti-miR182 reduces ovarian cancer burden, invasion, and metastasis: an in vivo study in orthotopic xenografts of nude mice. 2014;13(7):1729–39. PubMed PMC

McMillen BD, Aponte MM, Liu Z, Helenowski IB, Scholtens DM, Buttin BM, et al. Expression analysis of MIR182 and its associated target genes in advanced ovarian carcinoma. 2012;25(12):1644–53. PubMed

Zhao L, Wang W, Xu L, Yi T, Zhao X, Wei Y, et al. Integrative network biology analysis identifies miR-508–3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. 2019;38(13):2305–19. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...