Passive sampling and benchmarking to rank HOC levels in the aquatic environment

. 2021 May 27 ; 11 (1) : 11231. [epub] 20210527

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34045522
Odkazy

PubMed 34045522
PubMed Central PMC8159932
DOI 10.1038/s41598-021-90457-3
PII: 10.1038/s41598-021-90457-3
Knihovny.cz E-zdroje

The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure.

Zobrazit více v PubMed

Barber JL, Sweetman AJ, Van Wijk D, Jones KC. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci. Total Environ. 2005;349(1–3):1–44. doi: 10.1016/j.scitotenv.2005.03.014. PubMed DOI

Gouin T, Wania F. Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties. Environ. Sci. Technol. 2007;41(17):5986–5992. doi: 10.1021/es0709730. PubMed DOI

Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environ. Sci. Technol. 2004;38(1):34–41. doi: 10.1021/es034705n. PubMed DOI

Halse AK, et al. Spatial variability of POPs in European background air. Atmos. Chem. Phys. 2011;11(4):1549–1564. doi: 10.5194/acp-11-1549-2011. DOI

Mai C, Theobald N, Hühnerfuss H, Lammel G. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange. Environ. Sci. Pollut. Res. 2016;23(23):23648–23661. doi: 10.1007/s11356-016-7530-3. PubMed DOI PMC

Newhook, R., & Dormer, W., World Health Organization & International Programme for Chemical Safety (1997). Hexachlorobenzene. World Health Organization.

Lohmann R, et al. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 2009;43(15):5633–5639. doi: 10.1021/es901229k. PubMed DOI

Lohmann R, Klanova J, Kukucka P, Yonis S, Bollinger K. PCBs and OCPs on a east-to-west transect: The importance of major currents and net volatilization for PCBs in the Atlantic Ocean. Environ. Sci. Technol. 2012;46(19):10471–10479. doi: 10.1021/es203459e. PubMed DOI

Zhong G, et al. Selected current-use and historic-use pesticides in air and seawater of the Bohai and Yellow Seas, China. J. Geophys. Res. Atmos. 2014;119(2):1073–1086. doi: 10.1002/2013JD020951. DOI

Booij K, et al. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol. 2015;50(1):3–17. doi: 10.1021/acs.est.5b04050. PubMed DOI

Vrana B, et al. Passive sampling techniques for monitoring pollutants in water. TrAC Trends Anal. Chem. 2005;24(10):845–868. doi: 10.1016/j.trac.2005.06.006. DOI

Booij K, Sleiderink HM, Smedes F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. 1998;17(7):1236–1245. doi: 10.1002/etc.5620170707. DOI

Sobotka J, et al. Dynamic passive sampling of hydrophobic organic compounds in surface seawater along the South Atlantic Ocean east-to-west transect and across the Black Sea. Mar. Pollut. Bull. 2021;168:112375. doi: 10.1016/j.marpolbul.2021.112375. PubMed DOI

Allan IJ, Harman C, Kringstad A, Bratsberg E. Effect of sampler material on the uptake of PAHs into passive sampling devices. Chemosphere. 2010;79(4):470–475. doi: 10.1016/j.chemosphere.2010.01.021. PubMed DOI

Allan IJ, Harman C, Ranneklev SB, Thomas KV, Grung M. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ. Toxicol. Chem. 2013;32(8):1718–1726. doi: 10.1002/etc.2260. PubMed DOI

Vrana B, et al. Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River. Sci. Total Environ. 2018;636:1597–1607. doi: 10.1016/j.scitotenv.2018.03.242. PubMed DOI

Booij K, Smedes F, Van Weerlee EM. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere. 2002;46(8):1157–1161. doi: 10.1016/S0045-6535(01)00200-4. PubMed DOI

Vrana, B. et al. (2015) Passive sampling: chemical analysis and toxicological profiling. In Igor Liška, Franz Wagner, Manfred Sengl, Karin Deutsch and Jaroslav Slobodník. Joint Danube Survey 3. A Comprehensive Analysis of Danube Water Quality. Vienna (Austria): International Commission for the Protection of the Danube River, 2015. p. 304–315. ISBN 978-3-200-03795-3.

Harman C, Tollefsen K-E, Bøyum O, Thomas K, Grung M. Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) Chemosphere. 2008;72(10):1510–1516. doi: 10.1016/j.chemosphere.2008.04.091. PubMed DOI

Allan IJ, Jenssen MTS. A case of anisotropic exchange of non-polar chemicals with absorption-based passive samplers in water. Chemosphere. 2019;224:455–460. doi: 10.1016/j.chemosphere.2019.02.135. PubMed DOI

Allan IJ, et al. Detection of tris (2, 3-dibromopropyl) phosphate and other organophosphorous compounds in Arctic rivers. Environ. Sci. Pollut. Res. 2018;25(28):28730–28737. doi: 10.1007/s11356-018-2947-5. PubMed DOI

Lammel G, et al. Air and seawater pollution and air–sea gas exchange of persistent toxic substances in the Aegean Sea: Spatial trends of PAHs, PCBs, OCPs and PBDEs. Environ. Sci. Pollut. Res. 2015;22(15):11301–11313. doi: 10.1007/s11356-015-4363-4. PubMed DOI

Hamers T, et al. Time-Integrative Passive sampling combined with TOxicity Profiling (TIPTOP): An effect-based strategy for cost-effective chemical water quality assessment. Environ. Toxicol. Pharmacol. 2018;64:48–59. doi: 10.1016/j.etap.2018.09.005. PubMed DOI

Booij K, Smedes F. An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ. Sci. Technol. 2010;44(17):6789–6794. doi: 10.1021/es101321v. PubMed DOI

Rusina TP, Smedes F, Koblizkova M, Klanova J. Calibration of silicone rubber passive samplers: Experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol. 2009;44(1):362–367. doi: 10.1021/es900938r. PubMed DOI

Smedes F, Geertsma RW, Tvd Z, Booij K. Polymer− water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation. Environ. Sci. Technol. 2009;43(18):7047–7054. doi: 10.1021/es9009376. PubMed DOI

Shen L, Wania F. Compilation, evaluation, and selection of physical–chemical property data for organochlorine pesticides. J. Chem. Eng. Data. 2005;50(3):742–768. doi: 10.1021/je049693f. DOI

Burkhard LP. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ. Sci. Technol. 2000;34(22):4663–4668. doi: 10.1021/es001269l. DOI

Liška, I., Wagner, F., Sengl, M., Deutsch, K. & Slobodnik, J. Joint Danube Survey 3. A Comprehensive Analysis of Danube Water Quality. Vienna (Austria): International Commission for the Protection of the Danube River, 2015. p. 304-315. ISBN 978-3-200-03795-3

Green N, et al. (2015) Contaminants in coastal waters of Norway-2014. Miljøgifter I Kystområdene 2014. Norwegian Environment Agency Miljødirektoratet, Monitoring report M-433| 2015. Norwegian Institute for Water Research Project 15330:6917-2015. p 220

Allan IJ, Ranneklev SB. Occurrence of PAHs and PCBs in the Alna River, Oslo (Norway) J. Environ. Monit. 2011;13(9):2420–2426. doi: 10.1039/c1em10314h. PubMed DOI

Brack W, et al. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Sci. Total Environ. 2017;576:720–737. doi: 10.1016/j.scitotenv.2016.10.104. PubMed DOI PMC

Lohmann R, et al. (2017) Aquatic global passive sampling (AQUA-GAPS) revisited: First steps toward a network of networks for monitoring organic contaminants in the aquatic environment. (2017): 1060–1067. PubMed

Jahnke A, Mayer P, McLachlan MS. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ. Sci. Technol. 2012;46(18):10114–10122. doi: 10.1021/es302330v. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...