Passive Sampling Helps the Appraisal of Contaminant Bioaccumulation in Norwegian Fish Used for Regulatory Chemical Monitoring
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35670489
PubMed Central
PMC9228060
DOI
10.1021/acs.est.2c00714
Knihovny.cz E-zdroje
- Klíčová slova
- biota, fish, hexachlorobenzene, passive sampling, polychlorinated biphenyls, water framework directive,
- MeSH
- bioakumulace MeSH
- chemické látky znečišťující vodu * analýza MeSH
- hexachlorbenzen analýza MeSH
- monitorování životního prostředí metody MeSH
- polychlorované bifenyly * analýza MeSH
- potravní řetězec MeSH
- ryby MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- hexachlorbenzen MeSH
- polychlorované bifenyly * MeSH
- voda MeSH
Hexachlorobenzene (HCB), listed on the Stockholm Convention on persistent organic pollutants and regulated as a hazardous priority pollutant by the Water Framework Directive (WFD), is ubiquitously distributed in the environment and assumed to mildly biomagnify in aquatic foodwebs. The proposal to include trophic magnification factors (TMFs) in the procedure for comparing contaminant levels in biota at different trophic levels (TLs) with WFD environmental quality standards requires adequate selection of TMFs. In the first step of our study, we compared two independently obtained datasets of pentachlorobenzene (PeCB) and HCB concentration ratios from passive sampling (PS) in water and in fish through routine monitoring programs in Norway to evaluate possible biomagnification. In this procedure, PeCB is used for benchmarking the bioconcentration in fish, and the observed HCB/PeCB ratios in fish are compared with ratios expected in the case of (i) HCB bioconcentration or (ii) biomagnification using published TMF values. Results demonstrate that it is not possible to confirm that HCB biomagnifies in fish species that would be used for WFD monitoring in Norway and challenges the proposed monitoring procedures for such compounds in Norwegian or European waters. In the second step, fish-water chemical activity ratios for HCB and PeCB as well as for polychlorinated biphenyls where biota and PS were conducted alongside were calculated and found to rarely exceed unity for cod (Gadus morhua), a fish species with a TL of approximately 4.
Norwegian Institute for Water Research Økernveien 94 Oslo NO 0579 Norway
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno 61137 Czech Republic
Zobrazit více v PubMed
Fliedner A.; Rüdel H.; Lohmann N.; Buchmeier G.; Koschorreck J. Biota monitoring under the Water Framework Directive: on tissue choice and fish species selection. Environ. Pollut. 2018, 235, 129–140. 10.1016/j.envpol.2017.12.052. PubMed DOI
Fliedner A.; Rüdel H.; Teubner D.; Buchmeier G.; Lowis J.; Heiss C.; Wellmitz J.; Koschorreck J. Biota monitoring and the Water Framework Directive-can normalization overcome shortcomings in sampling strategies?. Environ. Sci. Pollut. Res. 2016, 23, 21927–21939. 10.1007/s11356-016-7442-2. PubMed DOI PMC
Moermond C. T.; Verbruggen E. M. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology. Integr. Environ. Assess. Manage. 2013, 9, 87–97. 10.1002/ieam.1351. PubMed DOI
Carere M.; Dulio V.; Hanke G.; Polesello S. Guidance for sediment and biota monitoring under the Common Implementation Strategy for the Water Framework Directive. TrAC, Trends Anal. Chem. 2012, 36, 15–24. 10.1016/j.trac.2012.03.005. DOI
Deutsch K.; Leroy D.; Belpaire C.; Den Haan K.; Vrana B.; Clayton H.; Hanke G.; Ricci M.; Held A.; Gawlik B.. COMMON IMPLEMENTATION STRATEGY FOR THE WATER FRAMEWORK DIRECTIVE (2000/60/EC). Guidance Document No. 32 on Biota Monitoring (The Implementation of EQSBIOTA) under the Water Framework Directive; European Commission, 2013.
Kidd K. A.; Burkhard L. P.; Babut M.; Borgå K.; Muir D. C.; Perceval O.; Ruedel H.; Woodburn K.; Embry M. R. Practical advice for selecting or determining trophic magnification factors for application under the European Union Water Framework Directive. Integr. Environ. Assess. Manage. 2019, 15, 266–277. 10.1002/ieam.4102. PubMed DOI PMC
Booij K.; Robinson C. D.; Burgess R. M.; Mayer P.; Roberts C. A.; Ahrens L.; Allan I. J.; Brant J.; Jones L.; Kraus U. R.; Larsen M. M.; Lepom P.; Petersen J.; Pröfrock D.; Roose P.; Schäfer S.; Smedes F.; Tixier C.; Vorkamp K.; Whitehouse P. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol. 2015, 50, 3–17. 10.1021/acs.est.5b04050. PubMed DOI
Gilbert D.; Witt G.; Smedes F.; Mayer P. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning. Anal. Chem. 2016, 88, 5818–5826. 10.1021/acs.analchem.6b00393. PubMed DOI
Smedes F.; Sobotka J.; Rusina T. P.; Fialová P.; Carlsson P.; Kopp R.; Vrana B. Unraveling the Relationship between the Concentrations of Hydrophobic Organic Contaminants in Freshwater Fish of Different Trophic Levels and Water Using Passive Sampling. Environ. Sci. Technol. 2020, 54, 7942–7951. 10.1021/acs.est.9b07821. PubMed DOI
Mayer P.; Toräng L.; Glæsner N.; Jönsson J. Å. Silicone Membrane Equilibrator: Measuring Chemical Activity of Nonpolar Chemicals with Poly(dimethylsiloxane) Microtubes Immersed Directly in Tissue and Lipids. Anal. Chem. 2009, 81, 1536–1542. 10.1021/ac802261z. PubMed DOI
Allan I. J.; Bæk K.; Haugen T. O.; Hawley K. L.; Høgfeldt A. S.; Lillicrap A. D. In vivo passive sampling of nonpolar contaminants in brown trout (Salmo trutta). Environ. Sci. Technol. 2013, 47, 11660–11667. 10.1021/es401810r. PubMed DOI
Pintado-Herrera M. G.; Allan I. J.; González-Mazo E.; Lara-Martín P. A. Passive Samplers vs Sentinel Organisms: One-Year Monitoring of Priority and Emerging Contaminants in Coastal Waters. Environ. Sci. Technol. 2020, 54, 6693–6702. 10.1021/acs.est.0c00522. PubMed DOI
Jahnke A.; McLachlan M. S.; Mayer P. Equilibrium sampling: Partitioning of organochlorine compounds from lipids into polydimethylsiloxane. Chemosphere 2008, 73, 1575–1581. 10.1016/j.chemosphere.2008.09.017. PubMed DOI
Ruus A.; Allan I. J.; Bæk K.; Borgå K. Partitioning of persistent hydrophobic contaminants to different storage lipid classes. Chemosphere 2021, 263, 127890.10.1016/j.chemosphere.2020.127890. PubMed DOI
Smedes F.; Rusina T. P.; Beeltje H.; Mayer P. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene. Chemosphere 2017, 186, 948–957. 10.1016/j.chemosphere.2017.08.044. PubMed DOI
Jahnke A.; MacLeod M.; Wickström H.; Mayer P. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment. Environ. Sci. Technol. 2014, 48, 11352–11359. 10.1021/es503336w. PubMed DOI
Jahnke A.; Mayer P.; McLachlan M. S. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ. Sci. Technol. 2012, 46, 10114–10122. 10.1021/es302330v. PubMed DOI
Jahnke A.; Mayer P.; McLachlan M. S.; Wickström H.; Gilbert D.; MacLeod M. Silicone passive equilibrium samplers as ’chemometers’ in eels and sediments of a Swedish lake. Environmental Science: Processes & Impacts 2014, 16, 464–472. 10.1039/c3em00589e. PubMed DOI
Allan I. J.; Vrana B.; de Weert J.; Kringstad A.; Ruus A.; Christensen G.; Terentjev P.; Green N. W. Passive sampling and benchmarking to rank HOC levels in the aquatic environment. Sci. Rep. 2021, 11, 11231.10.1038/s41598-021-90457-3. PubMed DOI PMC
Allan I.; Jenssen M. T. S.; Braaten H. F. V.. Priority Substances and Emerging Contaminants in Selected Norwegian Rivers–The River Monitoring Programme 2017; NIVA-rapport, 2018.
Jartun M.; Økelsrud A.; Rundberget T.; Enge E. K.; Rostkowski P.; Warner N. A.; Harju M.; Johansen I.. Monitoring of Environmental Contaminants in Freshwater Ecosystems 2018–Occurrence and Biomagnification; NIVA-rapport, 2019.
Lyche J. L.; Nøstbakken O. J.; Berg V.. EU Water Framework-Directive Priority Contaminants in Norwegian Freshwater Fish; EU, 2019.
Green N.; Molvær J.; Kaste Ø.; Schrum C.; Yakushev E.; Sørensen K.; Allan I.; Høgåsen T.; Bjørkenes-Chr A.. Tilførselsprogrammet 2009. Overvåkning av tilførsel og miljøtilstand i Barentshavet og Lofotenområdet; NIVA report, 2010; p 5980.
Green N. W.; Heldal H. E.; Måge A.; Aas W.; Gäfvert T.; Schrum C.; Boitsov S.; Breivik K.; Iosjpe M.; Yakushev E.. Tilførselsprogrammet 2010. Overvåking Av Tilførsler Og Miljøtilstand I Nordsjøen; NIVA, 2011.
Green N. W.; Heldal H. E.; Måge A.; Aas W.; Gäfvert T.; Schrum C.; Boitsov S.; Breivik K.; Iosjpe M.; Yakushev E.. Tilførselsprogrammet 2011. Overvåking Av Tilførsler Og Miljøtilstand I Norskehavet; NIVA, 2012.
Green N.; Schøyen M.; Øxnevad S.; Ruus A.; Allan I.; Hjermann D.; Høgåsen T.; Beylich B.; Håvardstun J.; Lund E.. Contaminants in coastal waters of Norway-2014. Miljøgifter I kystområdene 2014. Norwegian Environment Agency Miljødirektoratet, Monitoring report M-433| 2015; Norwegian Institute for Water Research project, 2015; Vol. 15330; p 6917.
Green N.; Schøyen M.; Øxnevad S.; Ruus A.; Hjermann D.; Severinsen G.; Høgåsen T.; Beylich B.; Håvardstun J.; Lund E.. Contaminants in coastal waters of Norway-2016. Miljøgifter I kystområdene 2015. Norwegian Environment Agency Miljødirektoratet, Monitoring report M-656| 2017; Norwegian Institute for Water Research project, 2017; Vol. 17330; p 7200.
Green N. W.; Schøyen M.; Øxnevad S.; Ruus A.; Allan I.; Hjermann D. Ø.; Høgåsen T.; Beylich B.; Håvardstun J.; Lund E.. Contaminants in Coastal Waters of Norway 2014; NIVA, 2015.
Ruus A.; Bæk K.; Petersen K.; Allan I.; Beylich B.; Schlabach M.; Warner N.; Helberg M.. Miljøgifter I en urban fjord, 2014. Environmental Contaminants In an Urban Fjord 2014; NIVA, 2015; p 6884.
Schøyen M.; Allan I. J.; Ruus A.; Håvardstun J.; Hjermann D. Ø.; Beyer J. Comparison of caged and native blue mussels (Mytilus edulis spp.) for environmental monitoring of PAH, PCB and trace metals. Mar. Environ. Res. 2017, 130, 221–232. 10.1016/j.marenvres.2017.07.025. PubMed DOI
Green N. W.; Schøyen M.; Øxnevad S.; Ruus A.; Allan I.; Hjermann D.; Severinsen G.; Høgåsen T.; Beylich B.; Håvardstun J.. Contaminants in Coastal Waters of Norway 2015. Miljøgifter I Norske Kystområder 2015; NIVA-rapport, 2016.
Booij K.; Smedes F.; Crum S. Laboratory performance study for passive sampling of nonpolar chemicals in water. Environ. Toxicol. Chem. 2017, 36, 1156–1161. 10.1002/etc.3657. PubMed DOI
Kelly B. C.; Ikonomou M. G.; Blair J. D.; Morin A. E.; Gobas F. A. P. C. Food Web–Specific Biomagnification of Persistent Organic Pollutants. science 2007, 317, 236–239. 10.1126/science.1138275. PubMed DOI
Adolfsson-Erici M.; Åkerman G.; McLachlan M. S. Measuring bioconcentration factors in fish using exposure to multiple chemicals and internal benchmarking to correct for growth dilution. Environ. Toxicol. Chem. 2012, 31, 1853–1860. 10.1002/etc.1897. PubMed DOI
Smedes F. Silicone-water partition coefficients determined by cosolvent method for chlorinated pesticides, musks, organo phosphates, phthalates and more. Chemosphere 2018, 210, 662–671. 10.1016/j.chemosphere.2018.07.054. PubMed DOI
Inoue Y.; Hashizume N.; Yoshida T.; Murakami H.; Suzuki Y.; Koga Y.; Takeshige R.; Kikushima E.; Yakata N.; Otsuka M. Comparison of bioconcentration and biomagnification factors for poorly water-soluble chemicals using common carp (Cyprinus carpio L.). Arch. Environ. Contam. Toxicol. 2012, 63, 241–248. 10.1007/s00244-012-9761-8. PubMed DOI
Arnot J. A.; Gobas F. A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. 10.1139/a06-005. DOI
Houde M.; Muir D. C. G.; Kidd K. A.; Guildford S.; Drouillard K.; Evans M. S.; Wang X.; Whittle D. M.; Haffner D.; Kling H. Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ. Toxicol. Chem. 2008, 27, 2169–2178. 10.1897/08-071.1. PubMed DOI
Ruus A.; Ugland K. I.; Skaare J. U. Influence of trophic position on organochlorine concentrations and compositional patterns in a marine food web. Environ. Toxicol. Chem. 2002, 21, 2356–2364. 10.1002/etc.5620211114. PubMed DOI
Burkhard L. P.; Borgå K.; Powell D. E.; Leonards P.; Muir D. C.; Parkerton T. F.; Woodburn K. B.. Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs); ACS Publications, 2013. PubMed
Økelsrud A.; Lydersen E.; Fjeld E. Biomagnification of mercury and selenium in two lakes in southern Norway. Sci. Total Environ. 2016, 566–567, 596–607. 10.1016/j.scitotenv.2016.05.109. PubMed DOI
Kim S.-K.; Kang C.-K. Temporal and spatial variations in hydrophobicity dependence of field-derived metrics to assess the biomagnification potential of hydrophobic organochlorine compounds. Sci. Total Environ. 2019, 690, 300–312. 10.1016/j.scitotenv.2019.06.221. PubMed DOI
Ruus A.; Daae I. A.; Hylland K. Accumulation of polychlorinated biphenyls from contaminated sediment by Atlantic cod (Gadus morhua): Direct accumulation from resuspended sediment and dietary accumulation via the polychaeteNereis virens. Environ. Toxicol. Chem. 2012, 31, 2472–2481. 10.1002/etc.1973. PubMed DOI
Kim J.; Gobas F. A. P. C.; Arnot J. A.; Powell D. E.; Seston R. M.; Woodburn K. B. Evaluating the roles of biotransformation, spatial concentration differences, organism home range, and field sampling design on trophic magnification factors. Sci. Total Environ. 2016, 551–552, 438–451. 10.1016/j.scitotenv.2016.02.013. PubMed DOI
Walters D. M.; Jardine T. D.; Cade B. S.; Kidd K. A.; Muir D. C. G.; Leipzig-Scott P. Trophic Magnification of Organic Chemicals: A Global Synthesis. Environ. Sci. Technol. 2016, 50, 4650–4658. 10.1021/acs.est.6b00201. PubMed DOI
Hallanger I. G.; Warner N. A.; Ruus A.; Evenset A.; Christensen G.; Herzke D.; Gabrielsen G. W.; Borgå K. Seasonality in contaminant accumulation in Arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation. Environ. Toxicol. Chem. 2011, 30, 1026–1035. 10.1002/etc.488. PubMed DOI
Kelly B. C.; Ikonomou M. G.; Blair J. D.; Gobas F. A. Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web. Sci. Total Environ. 2008, 401, 60–72. 10.1016/j.scitotenv.2008.03.045. PubMed DOI
Fliedner A.; Lohmann N.; Rüdel H.; Teubner D.; Wellmitz J.; Koschorreck J. Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank. Environ. Pollut. 2016, 216, 866–876. 10.1016/j.envpol.2016.06.060. PubMed DOI
Miège C.; Mazzella N.; Allan I.; Dulio V.; Smedes F.; Tixier C.; Vermeirssen E.; Brant J.; O’Toole S.; Budzinski H.; Ghestem J.-P.; Staub P.-F.; Lardy-Fontan S.; Gonzalez J.-L.; Coquery M.; Vrana B. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment - Achievements to date and perspectives. Trends Environ. Anal. Chem. 2015, 8, 20–26. 10.1016/j.teac.2015.07.001. DOI
Lohmann R.; Muir D.; Zeng E. Y.; Bao L.-J.; Allan I. J.; Arinaitwe K.; Booij K.; Helm P.; Kaserzon S.; Mueller J. F.. Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment; ACS Publications, 2017. PubMed
Booij K.; Smedes F.; Allan I. J.. Guidelines for Determining Polymer-Water and Polymer-Polymer Partition Coefficients of Organic Compounds; ICES, 2017.
Verhagen R.; O’Malley E.; Smedes F.; Mueller J. F.; Kaserzon S. Calibration parameters for the passive sampling of organic UV filters by silicone; diffusion coefficients and silicone-water partition coefficients. Chemosphere 2019, 223, 731–737. 10.1016/j.chemosphere.2019.02.077. PubMed DOI
Pintado-Herrera M. G.; Lara-Martín P. A.; González-Mazo E.; Allan I. J. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants. Environ. Toxicol. Chem. 2016, 35, 2162–2172. 10.1002/etc.3390. PubMed DOI
Huber S.; Warner N. A.; Nygård T.; Remberger M.; Harju M.; Uggerud H. T.; Kaj L.; Hanssen L. A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ. Toxicol. Chem. 2015, 34, 1296–1308. 10.1002/etc.2956. PubMed DOI
Hoydal K. S.; Letcher R. J.; Blair D. A. D.; Dam M.; Lockyer C.; Jenssen B. M. Legacy and emerging organic pollutants in liver and plasma of long-finned pilot whales (Globicephala melas) from waters surrounding the Faroe Islands. Sci. Total Environ. 2015, 520, 270–285. 10.1016/j.scitotenv.2015.03.056. PubMed DOI
Allan I. J.; Bæk K.; Kringstad A.; Roald H. E.; Thomas K. V. Should silicone prostheses be considered for specimen banking? A pilot study into their use for human biomonitoring. Environ. Int. 2013, 59, 462–468. 10.1016/j.envint.2013.06.021. PubMed DOI