Analysis of Mitochondrial Retrograde Signaling in Yeast Model Systems
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- ACO1, CIT2, IDH1, Mitochondrial retrograde pathway, RTG genes, Yeast,
- MeSH
- akonitáthydratasa genetika metabolismus MeSH
- buněčné jádro genetika metabolismus MeSH
- citrátsynthasa genetika metabolismus MeSH
- fosforylace MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- isocitrátdehydrogenasa genetika metabolismus MeSH
- mitochondrie metabolismus patologie MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory BHLH-Zip metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akonitáthydratasa MeSH
- citrátsynthasa MeSH
- intracelulární signální peptidy a proteiny MeSH
- isocitrátdehydrogenasa MeSH
- RTG1 protein, S cerevisiae MeSH Prohlížeč
- RTG2 protein, S cerevisiae MeSH Prohlížeč
- RTG3 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory BHLH-Zip MeSH
Mitochondrial retrograde signaling is a mitochondria-to-nucleus communication pathway, conserved from yeast to humans, by which dysfunctional mitochondria relay signals that lead to cell stress adaptation in physiopathological conditions via changes in nuclear gene expression. The most comprehensive picture of components and regulation of retrograde signaling has been obtained in Saccharomyces cerevisiae, where retrograde-target gene expression is regulated by RTG genes. In this chapter, we describe methods to measure mitochondrial retrograde pathway activation at the level of mRNA and protein products in yeast model systems, including cell suspensions and microcolonies. In particular, we will focus on three major procedures: mRNA levels of RTG-target genes, such as those encoding for peroxisomal citrate synthase (CIT2), aconitase, and NAD+-specific isocitrate dehydrogenase subunit 1 by real-time PCR; expression analysis of CIT2-gene protein product (Cit2p-GFP) by Western blot and fluorescence microscopy; the phosphorylation status of transcriptional factor Rtg1/3p which controls RTG-target gene transcription.
Department of Biosciences Biotechnology and Biopharmaceutics University of Bari A Moro Bari Italy
Faculty of Medicine University of Montenegro Podgorica Montenegro
Faculty of Science Charles University BIOCEV Prague Czech Republic
Institute of Biomembranes Bioenergetics and Molecular Biotechnologies CNR Bari Italy
Zobrazit více v PubMed
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813(1):238–259 DOI
Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118 DOI
Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17(4):213–226. https://doi.org/10.1038/nrm.2016.23 PubMed DOI
Coyne LP, Chen XJ (2018) mPOS is a novel mitochondrial trigger of cell death - implications for neurodegeneration. FEBS Lett 592(5):759–775. https://doi.org/10.1002/1873-3468.12894 PubMed DOI
Wang X, Chen XJ (2015) A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524(7566):481–484. https://doi.org/10.1038/nature14859 PubMed DOI PMC
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S (2018) Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 18(8):foy088. https://doi.org/10.1093/femsyr/foy088 DOI PMC
Boos F, Kramer L, Groh C, Jung F, Haberkant P, Stein F, Wollweber F, Gackstatter A, Zoller E, van der Laan M, Savitski MM, Benes V, Herrmann JM (2019) Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol 21(4):442–451. https://doi.org/10.1038/s41556-019-0294-5 PubMed DOI
Liao XS, Small WC, Srere PA, Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11(1):38–46 PubMed PMC
Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185. https://doi.org/10.1146/annurev.genet.40.110405.090613 PubMed DOI
Jia Y, Rothermel B, Thornton J, Butow RA (1997) A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 17(3):1110–1117 DOI
Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89(16):7290–7294 DOI
Koonin EV (1994) Yeast protein controlling inter-organelle communication is related to bacterial phosphatases containing the Hsp 70-type ATP-binding domain. Trends Biochem Sci 19(4):156–157 DOI
Liu Z, Sekito T, Spirek M, Thornton J, Butow RA (2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12(2):401–411 DOI
Podholova K, Plocek V, Resetarova S, Kucerova H, Hlavacek O, Vachova L, Palkova Z (2016) Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget 7(13):15299–15314. https://doi.org/10.18632/oncotarget.8084 PubMed DOI PMC
Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14(1):1–15 DOI
Guha M, Avadhani NG (2013) Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13(6):577–591. https://doi.org/10.1016/j.mito.2013.08.007 PubMed DOI
Jazwinski SM, Kriete A (2012) The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 3:139 DOI
Guaragnella N, Zdralevic M, Lattanzio P, Marzulli D, Pracheil T, Liu Z, Passarella S, Marra E, Giannattasio S (2013) Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. Biochim Biophys Acta 1833(12):2765–2774. https://doi.org/10.1016/j.bbamcr.2013.07.017 PubMed DOI
Cuezva JM, Ortega AD, Willers I, Sanchez-Cenizo L, Aldea M, Sanchez-Arago M (2009) The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta 1792(12):1145–1158. https://doi.org/10.1016/j.bbadis.2009.01.006 PubMed DOI
Compton S, Kim C, Griner NB, Potluri P, Scheffler IE, Sen S, Jerry DJ, Schneider S, Yadava N (2011) Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem 286(23):20297–20312. https://doi.org/10.1074/jbc.M110.163063 PubMed DOI PMC
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Buttner S, Cavalieri D, Chang M, Cooper KF, Corte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Frohlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jimenez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nystrom T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polcic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vogtle FN, Westermann B, Winderickx J, Wissing S, Wolfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5(1):4–31. https://doi.org/10.15698/mic2018.01.607 PubMed DOI PMC
Mager WH, Winderickx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26(5):265–273. https://doi.org/10.1016/j.tips.2005.03.004 PubMed DOI
Greenwood MT, Ludovico P (2009) Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 17(5):737–745 DOI
Giannattasio S, Guaragnella N, Arbini AA, Moro L (2013) Stress-related mitochondrial components and mitochondrial genome as targets of anticancer therapy. Chem Biol Drug Des 81(1):102–112. https://doi.org/10.1111/cbdd.12057 PubMed DOI
Guerra F, Arbini AA, Moro L (2017) Mitochondria and cancer chemoresistance. Biochim Biophys Acta 1858(8):686–699. https://doi.org/10.1016/j.bbabio.2017.01.012 DOI
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S (2014) The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 14(1):2–16. https://doi.org/10.1111/1567-1364.12094 PubMed DOI
Dilova I, Powers T (2006) Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):112–119. https://doi.org/10.1111/j.1567-1364.2005.00008.x PubMed DOI
Giannattasio S, Liu Z, Thornton J, Butow RA (2005) Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J Biol Chem 280(52):42528–42535. https://doi.org/10.1074/jbc.M509187200 PubMed DOI
Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72(1):61–71 DOI
Epstein CB, Waddle JA, Hale W, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12(2):297–308 DOI
Miceli MV, Jazwinski SM (2005) Common and cell type-specific responses of human cells to mitochondrial dysfunction. Exp Cell Res 302(2):270–280. https://doi.org/10.1016/j.yexcr.2004.09.006 PubMed DOI
Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11(6):2103–2115 DOI