ALG3-CDG: a patient with novel variants and review of the genetic and ophthalmic findings

. 2021 Jun 05 ; 21 (1) : 249. [epub] 20210605

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu kazuistiky, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34090370

Grantová podpora
RVO-VFN 64165 Ministerstvo Zdravotnictví Ceské Republiky
NU20-07-00182 Ministerstvo Zdravotnictví Ceské Republiky
NU20-07-00182 Ministerstvo Zdravotnictví Ceské Republiky
NU20-07-00182 Ministerstvo Zdravotnictví Ceské Republiky
NU20-07-00182 Ministerstvo Zdravotnictví Ceské Republiky
EUROGLYCAN-omics, No. 8F19002 Ministry of Education Youth and Sports of Czech Republic
EUROGLYCAN-omics, No. 8F19002 Ministry of Education Youth and Sports of Czech Republic
EUROGLYCAN-omics, No. 8F19002 Ministry of Education Youth and Sports of Czech Republic

Odkazy

PubMed 34090370
PubMed Central PMC8180164
DOI 10.1186/s12886-021-02013-2
PII: 10.1186/s12886-021-02013-2
Knihovny.cz E-zdroje

BACKGROUND: ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. CASE PRESENTATION: A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. CONCLUSIONS: Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.

Zobrazit více v PubMed

Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta. 2012;1820(9):1306–1317. doi: 10.1016/j.bbagen.2012.02.001. PubMed DOI

Korner C, Knauer R, Stephani U, Marquardt T, Lehle L, von Figura K. Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. EMBO J. 1999;18(23):6816–6822. doi: 10.1093/emboj/18.23.6816. PubMed DOI PMC

Denecke J, Kranz C, Kemming D, Koch HG, Marquardt T. An activated 5’ cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id) Hum Mutat. 2004;23(5):477–486. doi: 10.1002/humu.20026. PubMed DOI

Denecke J, Kranz C, von Kleist-Retzow J, Bosse K, Herkenrath P, Debus O, Harms E, Marquardt T. Congenital disorder of glycosylation type Id: clinical phenotype, molecular analysis, prenatal diagnosis, and glycosylation of fetal proteins. Pediatr Res. 2005;58(2):248–253. doi: 10.1203/01.PDR.0000169963.94378.B6. PubMed DOI

Schollen E, Grunewald S, Keldermans L, Albrecht B, Korner C, Matthijs G: CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter). Eur J Med Genet 2005, 48(2):153–158. PubMed

Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab. 2005;90(7):4371–4375. doi: 10.1210/jc.2005-0250. PubMed DOI

Kranz C, Sun L, Eklund EA, Krasnewich D, Casey JR, Freeze HH. CDG-Id in two siblings with partially different phenotypes. Am J Med Genet A. 2007;143A(13):1414–1420. doi: 10.1002/ajmg.a.31796. PubMed DOI

Rimella-Le-Huu A, Henry H, Kern I, Hanquinet S, Roulet-Perez E, Newman CJ, Superti-Furga A, Bonafe L, Ballhausen D. Congenital disorder of glycosylation type Id (CDG Id): phenotypic, biochemical and molecular characterization of a new patient. J Inherit Metab Dis. 2008;31(Suppl 2):S381-386. PubMed

Riess S, Reddihough DS, Howell KB, Dagia C, Jaeken J, Matthijs G, Yaplito-Lee J. ALG3-CDG (CDG-Id): clinical, biochemical and molecular findings in two siblings. Mol Genet Metab. 2013;110(1–2):170–175. doi: 10.1016/j.ymgme.2013.05.020. PubMed DOI

Lepais L, Cheillan D, Frachon SC, Hays S, Matthijs G, Panagiotakaki E, Abel C, Edery P, Rossi M. ALG3-CDG: Report of two siblings with antenatal features carrying homozygous p.Gly96Arg mutation. Am J Med Genet A. 2015;167A(11):2748–2754. doi: 10.1002/ajmg.a.37232. PubMed DOI

Fiumara A, Barone R, Del Campo G, Striano P, Jaeken J. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs). JIMD Rep. 2016, 27:93–99. PubMed PMC

Barba C, Darra F, Cusmai R, Procopio E, Dionisi Vici C, Keldermans L, Vuillaumier-Barrot S, Lefeber DJ, Guerrini R, Group CDG. Congenital disorders of glycosylation presenting as epileptic encephalopathy with migrating partial seizures in infancy. Dev Med Child Neurol. 2016;58(10):1085–1091. doi: 10.1111/dmcn.13141. PubMed DOI

Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, Alsahli S, Aldhalaan H, Alkuraya FS, Hundallah K, et al. Congenital disorders of glycosylation: The Saudi experience. Am J Med Genet A. 2017;173(10):2614–2621. doi: 10.1002/ajmg.a.38358. PubMed DOI

Himmelreich N, Dimitrov B, Geiger V, Zielonka M, Hutter AM, Beedgen L, Hullen A, Breuer M, Peters V, Thiemann KC, et al. Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum Mutat. 2019;40(7):938–951. PubMed

Bian Y, Qiao C, Zheng S, Qiu H, Li H, Zhang Z, Yin S, Jiang H, Li-Ling J, Liu C, et al. ALG3-CDG: lethal phenotype and novel variants in Chinese siblings. J Hum Genet. 2020;65(12):1129–1134. doi: 10.1038/s10038-020-0798-7. PubMed DOI PMC

Paketci C, Edem P, Hiz S, Sonmezler E, Soydemir D, Sarikaya Uzan G, Oktay Y, O’Heir E, Beltran S, Laurie S, et al. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev. 2020;42(7):539–545. doi: 10.1016/j.braindev.2020.04.008. PubMed DOI PMC

Ferrer A, Starosta RT, Ranatunga W, Ungar D, Kozicz T, Klee E, Rust LM, Wick M, Morava E. Fetal glycosylation defect due to ALG3 and COG5 variants detected via amniocentesis: Complex glycosylation defect with embryonic lethal phenotype. Mol Genet Metab. 2020;131(4):424–429. doi: 10.1016/j.ymgme.2020.11.003. PubMed DOI

Alsharhan H, Ng BG, Daniel EJP, Friedman J, Pivnick EK, Al-Hashem A, Faqeih EA, Liu P, Engelhardt NM, Keller KN et al: Expanding the phenotype, genotype and biochemical knowledge of ALG3-CDG. J Inherit Metab Dis 2021. PubMed PMC

Guillard M, Wada Y, Hansikova H, Yuasa I, Vesela K, Ondruskova N, Kadoya M, Janssen A, Van den Heuvel LP, Morava E, et al. Transferrin mutations at the glycosylation site complicate diagnosis of congenital disorders of glycosylation type I. J Inherit Metab Dis. 2011;34(4):901–906. doi: 10.1007/s10545-011-9311-y. PubMed DOI PMC

Stehlikova K, Skalova D, Zidkova J, Haberlova J, Vohanka S, Mazanec R, Mrazova L, Vondracek P, Oslejskova H, Zamecnik J, et al. Muscular dystrophies and myopathies: the spectrum of mutated genes in the Czech Republic. Clin Genet. 2017;91(3):463–469. doi: 10.1111/cge.12839. PubMed DOI

Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC: SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012, 40(Web Server issue):W452-457. PubMed PMC

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC

Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–362. doi: 10.1038/nmeth.2890. PubMed DOI

Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, Bernstein JA, Bejerano G. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet. 2016;48(12):1581–1586. doi: 10.1038/ng.3703. PubMed DOI

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D894. doi: 10.1093/nar/gky1016. PubMed DOI PMC

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...