Lebensrettende Maßnahmen bei Kindern (Paediatric Life Support, PLS): Leitlinien des European Resuscitation Council 2021
[Paediatric Life Support]

. 2021 ; 24 (4) : 650-719. [epub] 20210602

Status PubMed-not-MEDLINE Jazyk němčina Země Německo Médium print-electronic

Typ dokumentu anglický abstrakt, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34093080

The European Resuscitation Council (ERC) Paediatric Life Support (PLS) guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations of the International Liaison Committee on Resuscitation (ILCOR). This section provides guidelines on the management of critically ill or injured infants, children and adolescents before, during and after respiratory/cardiac arrest.

Die Leitlinien des European Resuscitation Council (ERC) zu den lebensrettenden Maßnahmen bei Kindern (Paediatric Life Support, PLS) basieren auf dem 2020 verfassten „International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations“ der ILCOR (International Liaison Committee on Resuscitation). Dieses Kapitel beinhaltet Leitlinien zur Behandlung kritisch kranker oder verletzter Säuglinge, von Kindern und Jugendlichen vor, während und nach einem Atem-Kreislauf-Stillstand.

Department of Emergency Medicine Faculty of Medicine UG Ghent University Hospital Gent Belgien

Department of Paediatrics and Emergency Medicine Hospital de Terassa Consorci Sanitari de Terrassa Barcelona Spanien

Federal Department of Health EMS Dispatch Center East and West Flanders Brüssel Belgien

Hon Consultant Paediatric Anaesthetist Great Ormond Street Hospital for Children London Großbritannien

Pädiatrische Intensiv und Notfallmedizin Kinderklinik und Kinderpoliklinik im Dr von Haunerschen Kinderspital Ludwig Maximilians Universität München Deutschland

Paediatric Anaesthesia The Juliane Marie Centre University Hospital of Copenhagen Kopenhagen Dänemark

Paediatric Anaesthesiology and Intensive Care Medicine University Hospital Brno Medical Faculty of Masaryk University Brno Tschechien

Paediatric Cardiac Anesthesiology Wilhelmina Children's Hospital University Medical Center Utrecht Niederlande

Paediatric Emergency Medicine Faculty of Medicine Imperial College Imperial College Healthcare Trust NHS London Großbritannien

Paediatric gastroenterology Akureyri Hospital Akureyri Island

Paediatric Intensive Care and Emergency Department Hôpital Universitaire des Enfants Université Libre de Bruxelles Brüssel Belgien

Paediatric Intensive Care Unit NH Hospital Hořovice Tschechien

Réanimation et Surveillance Continue Pédiatriques et Néonatales CHU Pellegrin Hôpital des Enfants de Bordeaux Université de Bordeaux Bordeaux Frankreich

SAMUR Protección Civil Madrid Spanien

Zobrazit více v PubMed

Soreide E, Morrison L, Hillman K, et al. The formula for survival in resuscitation. Resuscitation. 2013;84(11):1487–1493. doi: 10.1016/j.resuscitation.2013.07.020. PubMed DOI

Brouwers MC, Kho ME, Browman GP, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010;63(12):1308–1311. doi: 10.1016/j.jclinepi.2010.07.001. PubMed DOI

Shea BJ, Hamel C, Wells GA, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013–1020. doi: 10.1016/j.jclinepi.2008.10.009. PubMed DOI

Perkins GD, Olasveengen TM, Maconochie I, et al. European resuscitation council guidelines for resuscitation: 2017 update. Resuscitation. 2018;123:43–50. doi: 10.1016/j.resuscitation.2017.12.007. PubMed DOI

Perkins GD, Graesner JT, Semeraro F, et al. European resuscitation council guidelines 2021—executive summary. Resuscitation. 2021;161:1–60. doi: 10.1016/j.resscitation.2021.02.003. PubMed DOI

Edwards-Jackson N, North K, Chiume M, et al. Outcomes of in-hospital paediatric cardiac arrest from a tertiary hospital in a low-income African country. Paediatr Int Child Health. 2020;40(1):11–15. doi: 10.1080/20469047.2019.1570443. PubMed DOI

Nolan JP, Monsieurs KG, Bossaert L, et al. European Resuscitation Council COVID-19 guidelines executive summary. Resuscitation. 2020;153:45–55. doi: 10.1016/j.resuscitation.2020.06.001. PubMed DOI PMC

Shen J, Sun J, Zhao D, et al. Characteristics of Nosocomial Infections in Children Screened for SARS-CoV-2 Infection in China. Med Sci Monit. 2020;26:e928835. doi: 10.12659/MSM.928835. PubMed DOI PMC

Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088–1095. doi: 10.1111/apa.15270. PubMed DOI PMC

Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020 doi: 10.1542/peds.2020-0702. PubMed DOI

Rauf A, Abu-Izneid T, Olatunde A, et al. COVID-19 pandemic: epidemiology, etiology, conventional and non-conventional therapies. Int J Environ Res Public Health. 2020 doi: 10.3390/ijerph17218155. PubMed DOI PMC

Chao JY, Derespina KR, Herold BC, et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with Coronavirus disease 2019 at a tertiary care medical center in new York city. J Pediatr. 2020;223:14–19e2. doi: 10.1016/j.jpeds.2020.05.006. PubMed DOI PMC

Garcia-Salido A, Leoz-Gordillo I, Martinez de Azagra-Garde A, et al. Children in critical care Due to severe acute respiratory syndrome Coronavirus 2 infection: experience in a Spanish hospital. Pediatr Crit Care Med. 2020;21(8):e576–e580. doi: 10.1097/PCC.0000000000002475. PubMed DOI PMC

Nehme Z, Namachivayam S, Forrest A, Butt W, Bernard S, Smith K. Trends in the incidence and outcome of paediatric out-of-hospital cardiac arrest: a 17-year observational study. Resuscitation. 2018;128:43–50. doi: 10.1016/j.resuscitation.2018.04.030. PubMed DOI

Phillips RS, Scott B, Carter SJ, et al. Systematic review and meta-analysis of outcomes after cardiopulmonary arrest in childhood. PLoS ONE. 2015;10(6):e0130327. doi: 10.1371/journal.pone.0130327. PubMed DOI PMC

Gerein RB, Osmond MH, Stiell IG, Nesbitt LP, Burns S. What are the etiology and epidemiology of out-of-hospital pediatric cardiopulmonary arrest in Ontario, Canada? Acad Emerg Med. 2006;13(6):653–658. doi: 10.1197/j.aem.2005.12.025. PubMed DOI

Lee J, Yang WC, Lee EP, et al. Clinical survey and predictors of outcomes of pediatric out-of-hospital cardiac arrest admitted to the emergency department. Sci Rep. 2019;9(1):7032. doi: 10.1038/s41598-019-43020-0. PubMed DOI PMC

Goto Y, Funada A, Goto Y. Duration of prehospital cardiopulmonary resuscitation and favorable neurological outcomes for pediatric out-of-hospital cardiac arrests: a nationwide, population-based cohort study. Circulation. 2016;134(25):2046–2059. doi: 10.1161/CIRCULATIONAHA.116.023821. PubMed DOI

Matsui S, Sobue T, Irisawa T, et al. Poor long-term survival of out-of-hospital cardiac arrest in children. Int Heart J. 2020;61(2):254–262. doi: 10.1536/ihj.19-574. PubMed DOI

Okubo M, Chan HK, Callaway CW, Mann NC, Wang HE. Characteristics of paediatric out-of-hospital cardiac arrest in the United States. Resuscitation. 2020;153:227–233. doi: 10.1016/j.resuscitation.2020.04.023. PubMed DOI

Holmberg MJ, Ross CE, Fitzmaurice GM, et al. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States. Circ Cardiovasc Qual Outcomes. 2019;12(7):e005580. doi: 10.1161/CIRCOUTCOMES.119.005580. PubMed DOI PMC

Skellett S, Orzechowska I, Thomas K, Fortune PM. The landscape of paediatric in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit. Resuscitation. 2020;155:165–171. doi: 10.1016/j.resuscitation.2020.07.026. PubMed DOI

Booth A, Moylan A, Hodgson J, et al. Resuscitation registers: how many active registers are there and how many collect data on paediatric cardiac arrests? Resuscitation. 2018;129:70–75. doi: 10.1016/j.resuscitation.2018.03.029. PubMed DOI

Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198. PubMed DOI

Hamid MA, Chandna A, Siddiqui S, Fayyaz J. Pulse oximetry: a reliable and cost effective screening tool in children with pneumonia for developing countries. J Pak Med Assoc. 2016;66(8):1015–1018. PubMed

Bamber AR, Mifsud W, Wolfe I, et al. Potentially preventable infant and child deaths identified at autopsy; findings and implications. Forensic Sci Med Pathol. 2015;11(3):358–364. doi: 10.1007/s12024-015-9681-9. PubMed DOI

Hansmann A, Morrow BM, Lang HJ. Review of supplemental oxygen and respiratory support for paediatric emergency care in sub-Saharan Africa. Afr J Emerg Med. 2017;7(Suppl):S10–S19. doi: 10.1016/j.afjem.2017.10.001. PubMed DOI PMC

Mendelson J. Emergency department management of pediatric shock. Emerg Med Clin North Am. 2018;36(2):427–440. doi: 10.1016/j.emc.2017.12.010. PubMed DOI

Davis AL, Carcillo JA, Aneja RK, et al. American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(6):1061–1093. doi: 10.1097/CCM.0000000000002425. PubMed DOI

Rambaud-Althaus C, Althaus F, Genton B, D’Acremont V. Clinical features for diagnosis of pneumonia in children younger than 5 years: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(4):439–450. doi: 10.1016/S1473-3099(15)70017-4. PubMed DOI

Opiyo N, English M. What clinical signs best identify severe illness in young infants aged 0–59 days in developing countries? A systematic review. Arch Dis Child. 2011;96(11):1052–1059. doi: 10.1136/adc.2010.186049. PubMed DOI PMC

Acker SN, Ross JT, Partrick DA, Tong S, Bensard DD. Pediatric specific shock index accurately identifies severely injured children. J Pediatr Surg. 2015;50(2):331–334. doi: 10.1016/j.jpedsurg.2014.08.009. PubMed DOI

Rousseaux J, Grandbastien B, Dorkenoo A, Lampin ME, Leteurtre S, Leclerc F. Prognostic value of shock index in children with septic shock. Pediatr Emerg Care. 2013;29(10):1055–1059. doi: 10.1097/PEC.0b013e3182a5c99c. PubMed DOI

Strutt J, Flood A, Kharbanda AB. Shock index as a predictor of morbidity and mortality in pediatric trauma patients. Pediatr Emerg Care. 2019;35(2):132–137. doi: 10.1097/PEC.0000000000001733. PubMed DOI

Shah S, Kaul A, Jadhav Y, Shiwarkar G. Clinical outcome of severe sepsis and septic shock in critically ill children. Trop Doct. 2020;50(3):186–190. doi: 10.1177/0049475520914831. PubMed DOI

Krishnan SG, Wong HC, Ganapathy S, Ong GY. Oximetry-detected pulsus paradoxus predicts for severity in paediatric asthma. Arch Dis Child. 2020;105(6):533–538. doi: 10.1136/archdischild-2019-318043. PubMed DOI

Fleming S, Gill P, Jones C, et al. The diagnostic value of capillary refill time for detecting serious illness in children: a systematic review and meta-analysis. PLoS ONE. 2015;10(9):e0138155. doi: 10.1371/journal.pone.0138155. PubMed DOI PMC

Scott HF, Deakyne SJ, Woods JM, Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med. 2015;22(4):381–389. doi: 10.1111/acem.12610. PubMed DOI

Brissaud O, Botte A, Cambonie G, et al. Experts’ recommendations for the management of cardiogenic shock in children. Ann Intensive Care. 2016;6(1):14. doi: 10.1186/s13613-016-0111-2. PubMed DOI PMC

Paul R. Recognition, diagnostics, and management of pediatric severe sepsis and septic shock in the emergency department. Pediatr Clin North Am. 2018;65(6):1107–1118. doi: 10.1016/j.pcl.2018.07.012. PubMed DOI

Blacklock C, Mayon-White R, Coad N, Thompson M. Which symptoms and clinical features correctly identify serious respiratory infection in children attending a paediatric assessment unit? Arch Dis Child. 2011;96(8):708–714. doi: 10.1136/adc.2010.206243. PubMed DOI

Daw WJ, Kingshott RN, Elphick HE. Poor inter-observer agreement in the measurement of respiratory rate in children: a prospective observational study. BMJ Paediatr Open. 2017;1(1):e000173. doi: 10.1136/bmjpo-2017-000173. PubMed DOI PMC

Wang EE, Law BJ, Stephens D, et al. Study of interobserver reliability in clinical assessment of RSV lower respiratory illness: a Pediatric Investigators Collaborative Network for Infections in Canada (PICNIC) study. Pediatr Pulmonol. 1996;22(1):23–27. doi: 10.1002/(SICI)1099-0496(199607)22:1<23::AID-PPUL4>3.0.CO;2-L. PubMed DOI

Kemper KJ, Benson MS, Bishop MJ. Interobserver variability in assessing pediatric postextubation stridor. Clin Pediatr. 1992;31(7):405–408. doi: 10.1177/000992289203100705. PubMed DOI

de Groot MG, de Neef M, Otten MH, van Woensel JBM, Bem RA. Interobserver agreement on clinical judgment of work of breathing in spontaneously breathing children in the pediatric intensive care unit. J Pediatr Intensive Care. 2020;9(1):34–39. doi: 10.1055/s-0039-1697679. PubMed DOI PMC

Balamuth F, Alpern ER, Grundmeier RW, et al. Comparison of two sepsis recognition methods in a pediatric emergency department. Acad Emerg Med. 2015;22(11):1298–1306. doi: 10.1111/acem.12814. PubMed DOI PMC

Despins LA. Automated detection of sepsis using electronic medical record data: a systematic review. J Healthc Qual. 2017;39(6):322–333. doi: 10.1097/JHQ.0000000000000066. PubMed DOI

Potes C, Conroy B, Xu-Wilson M, Newth C, Inwald D, Frassica J. A clinical prediction model to identify patients at high risk of hemodynamic instability in the pediatric intensive care unit. Crit Care. 2017;21(1):282. doi: 10.1186/s13054-017-1874-z. PubMed DOI PMC

Fernandez A, Benito J, Mintegi S. Is this child sick? Usefulness of the pediatric assessment triangle in emergency settings. J Pediatr. 2017;93(Suppl 1):60–67. doi: 10.1016/j.jped.2017.07.002. PubMed DOI

Horeczko T, Enriquez B, McGrath NE, Gausche-Hill M, Lewis RJ. The pediatric assessment triangle: accuracy of its application by nurses in the triage of children. J Emerg Nurs. 2013;39(2):182–189. doi: 10.1016/j.jen.2011.12.020. PubMed DOI PMC

Gausche-Hill M, Eckstein M, Horeczko T, et al. Paramedics accurately apply the pediatric assessment triangle to drive management. Prehosp Emerg Care. 2014;18(4):520–530. doi: 10.3109/10903127.2014.912706. PubMed DOI

Fernandez A, Ares MI, Garcia S, Martinez-Indart L, Mintegi S, Benito J. The validity of the pediatric assessment triangle as the first step in the triage process in a pediatric emergency department. Pediatr Emerg Care. 2017;33(4):234–238. doi: 10.1097/PEC.0000000000000717. PubMed DOI

Fleming S, Thompson M, Stevens R, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet. 2011;377(9770):1011–1018. doi: 10.1016/S0140-6736(10)62226-X. PubMed DOI PMC

O’Leary F, Hayen A, Lockie F, Peat J. Defining normal ranges and centiles for heart and respiratory rates in infants and children: a cross-sectional study of patients attending an Australian tertiary hospital paediatric emergency department. Arch Dis Child. 2015;100(8):733–737. doi: 10.1136/archdischild-2014-307401. PubMed DOI PMC

Sepanski RJ, Godambe SA, Zaritsky AL. Pediatric vital sign distribution derived from a multi-centered emergency department database. Front Pediatr. 2018;6:66. doi: 10.3389/fped.2018.00066. PubMed DOI PMC

Nijman RG, Thompson M, van Veen M, Perera R, Moll HA, Oostenbrink R. Derivation and validation of age and temperature specific reference values and centile charts to predict lower respiratory tract infection in children with fever: prospective observational study. BMJ. 2012;345:e4224. doi: 10.1136/bmj.e4224. PubMed DOI PMC

Hagedoorn NN, Zachariasse JM, Moll HA. A comparison of clinical paediatric guidelines for hypotension with population-based lower centiles: a systematic review. Crit Care. 2019;23(1):380. doi: 10.1186/s13054-019-2653-9. PubMed DOI PMC

Haque IU, Zaritsky AL. Analysis of the evidence for the lower limit of systolic and mean arterial pressure in children. Pediatr Crit Care Med. 2007;8(2):138–144. doi: 10.1097/01.PCC.0000257039.32593.DC. PubMed DOI

Eytan D, Goodwin AJ, Greer R, Guerguerian AM, Laussen PC. Heart rate and blood pressure centile curves and distributions by age of hospitalized critically ill children. Front Pediatr. 2017;5:52. doi: 10.3389/fped.2017.00052. PubMed DOI PMC

Jackson LV, Thalange NK, Cole TJ. Blood pressure centiles for Great Britain. Arch Dis Child. 2007;92(4):298–303. doi: 10.1136/adc.2005.081216. PubMed DOI PMC

Xi B, Zong X, Kelishadi R, et al. Establishing international blood pressure references among nonoverweight children and adolescents aged 6 to 17 years. Circulation. 2016;133(4):398–408. doi: 10.1161/CIRCULATIONAHA.115.017936. PubMed DOI PMC

Duke T, Blaschke AJ, Sialis S, Bonkowsky JL. Hypoxaemia in acute respiratory and non-respiratory illnesses in neonates and children in a developing country. Arch Dis Child. 2002;86(2):108–112. doi: 10.1136/adc.86.2.108. PubMed DOI PMC

Salyer JW. Neonatal and pediatric pulse oximetry. Respir Care. 2003;48(4):386–396. PubMed

Tobin MJ, Laghi F, Jubran A. Why COVID-19 silent hypoxemia is baffling to physicians. Am J Respir Crit Care Med. 2020;202(3):356–360. doi: 10.1164/rccm.202006-2157CP. PubMed DOI PMC

Weber MW, Usen S, Palmer A, Jaffar S, Mulholland EK. Predictors of hypoxaemia in hospital admissions with acute lower respiratory tract infection in a developing country. Arch Dis Child. 1997;76(4):310–314. doi: 10.1136/adc.76.4.310. PubMed DOI PMC

Aubertin G, Marguet C, Delacourt C, et al. Recommendations for pediatric oxygen therapy in acute and chronic settings: needs assessment, implementation criteria, prescription practices and follow-up. Arch Pediatr. 2012;19(5):528–536. doi: 10.1016/j.arcped.2012.02.016. PubMed DOI

Carruthers DM, Harrison BD. Arterial blood gas analysis or oxygen saturation in the assessment of acute asthma? Thorax. 1995;50(2):186–188. doi: 10.1136/thx.50.2.186. PubMed DOI PMC

Kobayashi M, Fukuda S, Takano KI, Kamizono J, Ichikawa K. Can a pulse oxygen saturation of 95 % to 96 % help predict further vital sign destabilization in school-aged children?: a retrospective observational study. Medicine. 2018;97(25):e11135. doi: 10.1097/MD.0000000000011135. PubMed DOI PMC

Shah SN, Bachur RG, Simel DL, Neuman MI. Does this child have pneumonia?: the rational clinical examination systematic review. JAMA. 2017;318(5):462–471. doi: 10.1001/jama.2017.9039. PubMed DOI

Ozdemir A, Dogruel D, Yilmaz O. Oxygen saturation/minute heart rate index: simple lung function test for children. Pediatr Int. 2017;59(2):209–212. doi: 10.1111/ped.13081. PubMed DOI

Crocker ME, Hossen S, Goodman D, et al. Effects of high altitude on respiratory rate and oxygen saturation reference values in healthy infants and children younger than 2 years in four countries: a cross-sectional study. Lancet Glob Health. 2020;8(3):e362–e373. doi: 10.1016/S2214-109X(19)30543-1. PubMed DOI PMC

Abramo TJ, Wiebe RA, Scott S, Goto CS, McIntire DD. Noninvasive capnometry monitoring for respiratory status during pediatric seizures. Crit Care Med. 1997;25(7):1242–1246. doi: 10.1097/00003246-199707000-00029. PubMed DOI

Langhan ML, Shabanova V, Li FY, Bernstein SL, Shapiro ED. A randomized controlled trial of capnography during sedation in a pediatric emergency setting. Am J Emerg Med. 2015;33(1):25–30. doi: 10.1016/j.ajem.2014.09.050. PubMed DOI PMC

Moses JM, Alexander JL, Agus MS. The correlation and level of agreement between end-tidal and blood gas pCO2 in children with respiratory distress: a retrospective analysis. BMC Pediatr. 2009;9:20. doi: 10.1186/1471-2431-9-20. PubMed DOI PMC

Abramo TJ, Wiebe RA, Scott SM, Primm PA, McIntyre D, Mydler T. Noninvasive capnometry in a pediatric population with respiratory emergencies. Pediatr Emerg Care. 1996;12(4):252–254. doi: 10.1097/00006565-199608000-00004. PubMed DOI

Langhan ML, Emerson BL, Nett S, et al. End-tidal carbon dioxide use for tracheal Intubation: analysis from the national emergency airway registry for children (NEAR4KIDS) registry. Pediatr Crit Care Med. 2018;19(2):98–105. doi: 10.1097/PCC.0000000000001372. PubMed DOI

Phillips JS, Pangilinan LP, Mangalindan ER, Booze JL, Kallet RH. A comparison of different techniques for interfacing capnography with adult and pediatric supplemental oxygen masks. Respir Care. 2017;62(1):78–85. doi: 10.4187/respcare.05111. PubMed DOI

Saunders R, Struys M, Pollock RF, Mestek M, Lightdale JR. Patient safety during procedural sedation using capnography monitoring: a systematic review and meta-analysis. BMJ Open. 2017;7(6):e013402. doi: 10.1136/bmjopen-2016-013402. PubMed DOI PMC

Langhan ML, Chen L, Marshall C, Santucci KA. Detection of hypoventilation by capnography and its association with hypoxia in children undergoing sedation with ketamine. Pediatr Emerg Care. 2011;27(5):394–397. doi: 10.1097/PEC.0b013e318217b538. PubMed DOI

Yang JT, Erickson SL, Killien EY, Mills B, Lele AV, Vavilala MS. Agreement between arterial carbon dioxide levels with end-tidal carbon dioxide levels and associated factors in children hospitalized with traumatic brain injury. JAMA Netw Open. 2019;2(8):e199448. doi: 10.1001/jamanetworkopen.2019.9448. PubMed DOI PMC

Scott HF, Brou L, Deakyne SJ, Kempe A, Fairclough DL, Bajaj L. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171(3):249–255. doi: 10.1001/jamapediatrics.2016.3681. PubMed DOI

Scott HF, Donoghue AJ, Gaieski DF, Marchese RF, Mistry RD. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Acad Emerg Med. 2012;19(11):1276–1280. doi: 10.1111/acem.12014. PubMed DOI

Miescier MJ, Lane RD, Sheng X, Larsen GY. Association between initial emergency department lactate and use of vasoactive medication in children with septic shock. Pediatr Emerg Care. 2019;35(7):455–460. doi: 10.1097/PEC.0000000000000981. PubMed DOI

Yan HP, Lu XL, Qiu J, Liu PP, Zuo C, Zhu YM. Value of blood lactic acid in evaluating disease severity and prognosis in children with sepsis. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18(6):506–510. PubMed PMC

Scott HF, Brou L, Deakyne SJ, Fairclough DL, Kempe A, Bajaj L. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J Pediatr. 2016;170:149–155.e1–4. doi: 10.1016/j.jpeds.2015.11.071. PubMed DOI

Britton PN, Eastwood K, Paterson B, et al. Consensus guidelines for the investigation and management of encephalitis in adults and children in Australia and New Zealand. Intern Med J. 2015;45(5):563–576. doi: 10.1111/imj.12749. PubMed DOI

Kneen R, Michael BD, Menson E, et al. Management of suspected viral encephalitis in children—Association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group national guidelines. J Infect. 2012;64(5):449–477. doi: 10.1016/j.jinf.2011.11.013. PubMed DOI

Thompson M, Van den Bruel A, Verbakel J, et al. Systematic review and validation of prediction rules for identifying children with serious infections in emergency departments and urgent-access primary care. Health Technol Assess. 2012;16(15):1–100. doi: 10.3310/hta16150. PubMed DOI PMC

Da Dalt L, Parri N, Amigoni A, et al. Italian guidelines on the assessment and management of pediatric head injury in the emergency department. Ital J Pediatr. 2018;44(1):7. doi: 10.1186/s13052-017-0442-0. PubMed DOI PMC

Medley TL, Miteff C, Andrews I, et al. Australian clinical consensus guideline: the diagnosis and acute management of childhood stroke. Int J Stroke. 2019;14(1):94–106. doi: 10.1177/1747493018799958. PubMed DOI

Chou R, Totten AM, Carney N, et al. Predictive utility of the total Glasgow coma scale versus the motor component of the glasgow coma scale for identification of patients with serious traumatic injuries. Ann Emerg Med. 2017;70(2):143–157.e6. doi: 10.1016/j.annemergmed.2016.11.032. PubMed DOI

Nuttall AG, Paton KM, Kemp AM. To what extent are GCS and AVPU equivalent to each other when assessing the level of consciousness of children with head injury? A cross-sectional study of UK hospital admissions. BMJ Open. 2018;8(11):e023216. doi: 10.1136/bmjopen-2018-023216. PubMed DOI PMC

Hoffmann F, Schmalhofer M, Lehner M, Zimatschek S, Grote V, Reiter K. Comparison of the AVPU scale and the pediatric GCS in prehospital setting. Prehosp Emerg Care. 2016;20(4):493–498. doi: 10.3109/10903127.2016.1139216. PubMed DOI

Van de Voorde P, Sabbe M, Rizopoulos D, et al. Assessing the level of consciousness in children: a plea for the Glasgow Coma Motor subscore. Resuscitation. 2008;76(2):175–179. doi: 10.1016/j.resuscitation.2007.07.007. PubMed DOI

Borgialli DA, Mahajan P, Hoyle JD, Jr., et al. Performance of the pediatric Glasgow coma scale score in the evaluation of children with blunt head trauma. Acad Emerg Med. 2016;23(8):878–884. doi: 10.1111/acem.13014. PubMed DOI

DiBrito SR, Cerullo M, Goldstein SD, Ziegfeld S, Stewart D, Nasr IW. Reliability of Glasgow Coma Score in pediatric trauma patients. J Pediatr Surg. 2018;53(9):1789–1794. doi: 10.1016/j.jpedsurg.2017.12.027. PubMed DOI

Ladner TR, Mahdi J, Gindville MC, et al. Pediatric acute stroke protocol activation in a children’s hospital emergency department. Stroke. 2015;46(8):2328–2331. doi: 10.1161/STROKEAHA.115.009961. PubMed DOI

DeLaroche AM, Sivaswamy L, Farooqi A, Kannikeswaran N. Pediatric stroke clinical pathway improves the time to diagnosis in an emergency department. Pediatr Neurol. 2016;65:39–44. doi: 10.1016/j.pediatrneurol.2016.09.005. PubMed DOI

Yock-Corrales A, Mackay MT, Mosley I, Maixner W, Babl FE. Acute childhood arterial ischemic and hemorrhagic stroke in the emergency department. Ann Emerg Med. 2011;58(2):156–163. doi: 10.1016/j.annemergmed.2010.10.013. PubMed DOI

Gumer LB, Del Vecchio M, Aronoff S. Strokes in children: a systematic review. Pediatr Emerg Care. 2014;30(9):660–664. doi: 10.1097/PEC.0000000000000218. PubMed DOI

Mackay MT, Monagle P, Babl FE. Brain attacks and stroke in children. J Paediatr Child Health. 2016;52(2):158–163. doi: 10.1111/jpc.13086. PubMed DOI

Guedj R, Chappuy H, Titomanlio L, et al. Risk of bacterial meningitis in children 6 to 11 months of age with a first simple febrile seizure: a retrospective, cross-sectional, observational study. Acad Emerg Med. 2015;22(11):1290–1297. doi: 10.1111/acem.12798. PubMed DOI

Najaf-Zadeh A, Dubos F, Hue V, Pruvost I, Bennour A, Martinot A. Risk of bacterial meningitis in young children with a first seizure in the context of fever: a systematic review and meta-analysis. PLoS ONE. 2013;8(1):e55270. doi: 10.1371/journal.pone.0055270. PubMed DOI PMC

Joffe AR, Anton NR, Burkholder SC. Reduction in hospital mortality over time in a hospital without a pediatric medical emergency team: limitations of before-and-after study designs. Arch Pediatr Adolesc Med. 2011;165(5):419–423. doi: 10.1001/archpediatrics.2011.47. PubMed DOI

Thomas-Jones E, Lloyd A, Roland D, et al. A prospective, mixed-methods, before and after study to identify the evidence base for the core components of an effective Paediatric Early Warning System and the development of an implementation package containing those core recommendations for use in the UK: Paediatric early warning system—utilisation and mortality avoidance—the PUMA study protocol. BMC Pediatr. 2018;18(1):244. doi: 10.1186/s12887-018-1210-z. PubMed DOI PMC

Bortcosh W, Shaahinfar A, Sojar S, Klig JE. New directions in point-of-care ultrasound at the crossroads of paediatric emergency and critical care. Curr Opin Pediatr. 2018;30(3):350–358. doi: 10.1097/MOP.0000000000000621. PubMed DOI

Singh Y, Tissot C, Fraga MV, et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC) Crit Care. 2020;24(1):65. doi: 10.1186/s13054-020-2787-9. PubMed DOI PMC

Marin JR, Abo AM, Arroyo AC, et al. Pediatric emergency medicine point-of-care ultrasound: summary of the evidence. Crit Ultrasound J. 2016;8(1):16. doi: 10.1186/s13089-016-0049-5. PubMed DOI PMC

Balk DS, Lee C, Schafer J, et al. Lung ultrasound compared to chest X-ray for diagnosis of pediatric pneumonia: a meta-analysis. Pediatr Pulmonol. 2018;53(8):1130–1139. doi: 10.1002/ppul.24020. PubMed DOI

Orso D, Ban A, Guglielmo N. Lung ultrasound in diagnosing pneumonia in childhood: a systematic review and meta-analysis. J Ultrasound. 2018;21(3):183–195. doi: 10.1007/s40477-018-0306-5. PubMed DOI PMC

Potter SK, Griksaitis MJ. The role of point-of-care ultrasound in pediatric acute respiratory distress syndrome: emerging evidence for its use. Ann Transl Med. 2019;7(19):507. doi: 10.21037/atm.2019.07.76. PubMed DOI PMC

Ozkaya AK, Baskan Vuralkan F, Ardic S. Point-of-care lung ultrasound in children with non-cardiac respiratory distress or tachypnea. Am J Emerg Med. 2019;37(11):2102–2106. doi: 10.1016/j.ajem.2019.05.063. PubMed DOI

Lissaman C, Kanjanauptom P, Ong C, Tessaro M, Long E, O’Brien A. Prospective observational study of point-of-care ultrasound for diagnosing pneumonia. Arch Dis Child. 2019;104(1):12–18. doi: 10.1136/archdischild-2017-314496. PubMed DOI

Harel-Sterling M, Diallo M, Santhirakumaran S, Maxim T, Tessaro M. Emergency department resource use in pediatric pneumonia: point-of-care lung ultrasonography versus chest radiography. J Ultrasound Med. 2019;38(2):407–414. doi: 10.1002/jum.14703. PubMed DOI

Jones BP, Tay ET, Elikashvili I, et al. Feasibility and safety of substituting lung ultrasonography for chest radiography when diagnosing pneumonia in children: a randomized controlled trial. Chest. 2016;150(1):131–138. doi: 10.1016/j.chest.2016.02.643. PubMed DOI

Berce V, Tomazin M, Gorenjak M, Berce T, Lovrencic B. The usefulness of lung ultrasound for the aetiological diagnosis of community-acquired pneumonia in children. Sci Rep. 2019;9(1):17957. doi: 10.1038/s41598-019-54499-y. PubMed DOI PMC

Lovrenski J, Petrovic S, Balj-Barbir S, Jokic R, Vilotijevic-Dautovic G. Stethoscope vs. ultrasound probe—which is more reliable in children with suspected pneumonia? Acta Med Acad. 2016;45(1):39–50. doi: 10.5644/ama2006-124.155. PubMed DOI

Gravel CA, Monuteaux MC, Levy JA, Miller AF, Vieira RL, Bachur RG. Interrater reliability of pediatric point-of-care lung ultrasound findings. Am J Emerg Med. 2020;38(1):1–6. doi: 10.1016/j.ajem.2019.01.047. PubMed DOI

Lin MJ, Gurley K, Hoffmann B. Bedside ultrasound for tracheal tube verification in pediatric emergency department and ICU patients: a systematic review. Pediatr Crit Care Med. 2016;17(10):e469–e476. doi: 10.1097/PCC.0000000000000907. PubMed DOI

Mori T, Nomura O, Hagiwara Y, Inoue N. Diagnostic accuracy of a 3-point ultrasound protocol to detect esophageal or endobronchial mainstem intubation in a pediatric emergency department. J Ultrasound Med. 2019;38(11):2945–2954. doi: 10.1002/jum.15000. PubMed DOI

Klugman D, Berger JT. Echocardiography and focused cardiac ultrasound. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S222–S224. doi: 10.1097/PCC.0000000000000815. PubMed DOI PMC

Long E, Oakley E, Duke T, Babl FE, Paediatric Research in Emergency Departments International C Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis. Shock. 2017;47(5):550–559. doi: 10.1097/SHK.0000000000000801. PubMed DOI

Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(4):354–363. doi: 10.1177/0885066617752308. PubMed DOI

Long E, O’Brien A, Duke T, Oakley E, Babl FE, Paediatric Research in Emergency Departments International C Effect of fluid bolus therapy on extravascular lung water measured by lung ultrasound in children with a presumptive clinical diagnosis of sepsis. J Ultrasound Med. 2019;38(6):1537–1544. doi: 10.1002/jum.14842. PubMed DOI

Ricci F, Aquilani R, Radico F, et al. Role and importance of ultrasound lung comets in acute cardiac care. Eur Heart J Acute Cardiovasc Care. 2015;4(2):103–112. doi: 10.1177/2048872614553166. PubMed DOI

Holmes JF, Gladman A, Chang CH. Performance of abdominal ultrasonography in pediatric blunt trauma patients: a meta-analysis. J Pediatr Surg. 2007;42(9):1588–1594. doi: 10.1016/j.jpedsurg.2007.04.023. PubMed DOI

Holmes JF, Kelley KM, Wootton-Gorges SL, et al. Effect of abdominal ultrasound on clinical care, outcomes, and resource use among children with blunt torso trauma: a randomized clinical trial. JAMA. 2017;317(22):2290–2296. doi: 10.1001/jama.2017.6322. PubMed DOI PMC

Schoneberg C, Tampier S, Hussmann B, Lendemans S, Waydhas C. Diagnostic management in paediatric blunt abdominal trauma—a systematic review with metaanalysis. Zentralbl Chir. 2014;139(6):584–591. doi: 10.1055/s-0032-1328645. PubMed DOI

Greif R, Bhanji F, Bigham BL, et al. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020;156:A188–A239. doi: 10.1016/j.resuscitation.2020.09.014. PubMed DOI

Weinstock P, Halamek LP. Teamwork during resuscitation. Pediatr Clin North Am. 2008;55(4):1011–1024, xi–xii. doi: 10.1016/j.pcl.2008.04.001. PubMed DOI

Cheng A, Duff JP, Kessler D, et al. Optimizing CPR performance with CPR coaching for pediatric cardiac arrest: a randomized simulation-based clinical trial. Resuscitation. 2018;132:33–40. doi: 10.1016/j.resuscitation.2018.08.021. PubMed DOI

Sherman JM, Chang TP, Ziv N, Nager AL. Barriers to effective teamwork relating to pediatric resuscitations: perceptions of pediatric emergency medicine staff. Pediatr Emerg Care. 2020;36(3):e146–e150. doi: 10.1097/PEC.0000000000001275. PubMed DOI

Coolen E, Draaisma J, Loeffen J. Measuring situation awareness and team effectiveness in pediatric acute care by using the situation global assessment technique. Eur J Pediatr. 2019;178(6):837–850. doi: 10.1007/s00431-019-03358-z. PubMed DOI PMC

Lammers RL, Willoughby-Byrwa M, Fales WD. Errors and error-producing conditions during a simulated, prehospital, pediatric cardiopulmonary arrest. Simul Healthc. 2014;9(3):174–183. doi: 10.1097/SIH.0000000000000013. PubMed DOI

Taylor KL, Ferri S, Yavorska T, Everett T, Parshuram C. A description of communication patterns during CPR in ICU. Resuscitation. 2014;85(10):1342–1347. doi: 10.1016/j.resuscitation.2014.06.027. PubMed DOI

Grimsley EA, Cochrane NH, Keane RR, Sumner BD, Mullan PC, O’Connell KJ. A pulse check on leadership and teamwork: an evaluation of the first 5 minutes of emergency department resuscitation during pediatric cardiopulmonary arrests. Pediatr Emerg Care. 2019 doi: 10.1097/PEC.0000000000001923. PubMed DOI

AlSohime F, NurHussen A, Temsah MH, et al. Factors that influence the self-reported confidence of pediatric residents as team leaders during cardiopulmonary resuscitation: a national survey. Int J Pediatr Adolesc Med. 2018;5(3):116–121. doi: 10.1016/j.ijpam.2018.07.001. PubMed DOI PMC

Delaloye NJ, Tobler K, O’Neill T, et al. Errors during resuscitation: the impact of perceived authority on delivery of care. J Patient Saf. 2020;16(1):73–78. doi: 10.1097/PTS.0000000000000359. PubMed DOI

Fernandez Castelao E, Russo SG, Riethmuller M, Boos M. Effects of team coordination during cardiopulmonary resuscitation: a systematic review of the literature. J Crit Care. 2013;28(4):504–521. doi: 10.1016/j.jcrc.2013.01.005. PubMed DOI

Riskin A, Bamberger P, Erez A, et al. Expressions of gratitude and medical team performance. Pediatrics. 2019 doi: 10.1542/peds.2018-2043. PubMed DOI

Krage R, Zwaan L, Tjon Soei LL, et al. Relationship between non-technical skills and technical performance during cardiopulmonary resuscitation: does stress have an influence? Emerg Med Clin North Am. 2017;34(11):728–733. doi: 10.1136/emermed-2016-205754. PubMed DOI PMC

Johnson SL, Haerling KA, Yuwen W, Huynh V, Le C. Incivility and clinical performance, teamwork, and emotions: a randomized controlled trial. J Nurs Care Qual. 2020;35(1):70–76. doi: 10.1097/NCQ.0000000000000407. PubMed DOI

Maconochie IK, Aickin R, Hazinski MF, et al. Pediatric life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2020;156:A120–A155. doi: 10.1016/j.resuscitation.2020.09.013. PubMed DOI PMC

Wells M, Goldstein LN, Bentley A, Basnett S, Monteith I. The accuracy of the Broselow tape as a weight estimation tool and a drug-dosing guide—a systematic review and meta-analysis. Resuscitation. 2017;121:9–33. doi: 10.1016/j.resuscitation.2017.09.026. PubMed DOI

Wells M, Goldstein LN, Bentley A. The accuracy of emergency weight estimation systems in children—a systematic review and meta-analysis. Int J Emerg Med. 2017;10(1):29. doi: 10.1186/s12245-017-0156-5. PubMed DOI PMC

Young KD, Korotzer NC. Weight estimation methods in children: a systematic review. Ann Emerg Med. 2016;68(4):441–451.e10. doi: 10.1016/j.annemergmed.2016.02.043. PubMed DOI

Matson KL, Horton ER, Capino AC. Advocacy committee for the pediatric pharmacy advocacy G. medication dosage in overweight and obese children. J Pediatr Pharmacol Ther. 2017;22(1):81–83. doi: 10.5863/1551-6776-22.1.81. PubMed DOI PMC

Rodriguez JJ, Higuita-Gutierrez LF, Carrillo Garcia EA, Castano Betancur E, Londono LM, Restrepo Vargas S. meta-analysis of failure of prehospital endotracheal Intubation in pediatric patients. Emerg Med Int. 2020 doi: 10.1155/2020/7012508. PubMed DOI PMC

Harshman J, Roy M, Cartotto R. Emergency care of the burn patient before the burn center: a systematic review and meta-analysis. J Burn Care Res. 2019;40(2):166–188. doi: 10.1093/jbcr/iry060. PubMed DOI

Garner AA, Bennett N, Weatherall A, Lee A. Success and complications by team composition for prehospital paediatric intubation: a systematic review and meta-analysis. Crit Care. 2020;24(1):149. doi: 10.1186/s13054-020-02865-y. PubMed DOI PMC

Miller KA, Nagler J. Advances in emergent airway management in pediatrics. Emerg Med Clin North Am. 2019;37(3):473–491. doi: 10.1016/j.emc.2019.03.006. PubMed DOI

Stein ML, Park RS, Kovatsis PG. Emerging trends, techniques, and equipment for airway management in pediatric patients. Paediatr Anaesth. 2020;30(3):269–279. doi: 10.1111/pan.13814. PubMed DOI

Sun F, Wang Y, Ma S, et al. Clinical consensus of emergency airway management. J Thorac Dis. 2017;9(11):4599–4606. doi: 10.21037/jtd.2017.10.79. PubMed DOI PMC

Engelhardt T, Fiadjoe JE, Weiss M, et al. A framework for the management of the pediatric airway. Paediatr Anaesth. 2019;29(10):985–992. doi: 10.1111/pan.13716. PubMed DOI

Scott A, Chua O, Mitchell W, Vlok R, Melhuish T, White L. Apneic oxygenation for pediatric endotracheal Intubation: a narrative review. J Pediatr Intensive Care. 2019;8(3):117–121. doi: 10.1055/s-0039-1678552. PubMed DOI PMC

Youngquist S, Gausche-Hill M, Burbulys D. Alternative airway devices for use in children requiring prehospital airway management: update and case discussion. Pediatr Emerg Care. 2007;23(4):250–258. doi: 10.1097/PEC.0b013e31803f7552. PubMed DOI

Else SDN, Kovatsis PG. A narrative review of oxygenation during pediatric Intubation and airway procedures. Anesth Analg. 2020;130(4):831–840. doi: 10.1213/ANE.0000000000004403. PubMed DOI

Long E, Barrett MJ, Peters C, Sabato S, Lockie F. Emergency intubation of children outside of the operating room. Paediatr Anaesth. 2020;30(3):319–330. doi: 10.1111/pan.13784. PubMed DOI

Fiadjoe J, Nishisaki A. Normal and difficult airways in children: “What’s New”-Current evidence. Paediatr Anaesth. 2020;30(3):257–263. doi: 10.1111/pan.13798. PubMed DOI PMC

Schreiber S, Ronfani L, Ghirardo S, et al. Nasal irrigation with saline solution significantly improves oxygen saturation in infants with bronchiolitis. Acta Paediatr. 2016;105(3):292–296. doi: 10.1111/apa.13282. PubMed DOI

Sun J, Li XH, Zuo YX. Comparison of Incidence of hypoxia during modified rapid sequence induction and an alternative technique: a prospective randomized controlled trial. Int J Clin Exp Med. 2015;8(9):16231–16237. PubMed PMC

Heschl S, Meadley B, Andrew E, Butt W, Bernard S, Smith K. Efficacy of pre-hospital rapid sequence intubation in paediatric traumatic brain injury: a 9-year observational study. Injury. 2018;49(5):916–920. doi: 10.1016/j.injury.2018.02.013. PubMed DOI

Lawrason Hughes A, Murray N, Valdez TA, Kelly R, Kavanagh K. Development of the Connecticut Airway Risk Evaluation (CARE) system to improve handoff communication in pediatric patients with tracheotomy. JAMA Otolaryngol Head Neck Surg. 2014;140(1):29–33. doi: 10.1001/jamaoto.2013.5550. PubMed DOI

Matettore A, Ramnarayan P, Jones A, et al. Adverse tracheal Intubation-associated events in pediatric patients at nonspecialist centers: a multicenter prospective observational study. Pediatr Crit Care Med. 2019;20(6):518–526. doi: 10.1097/PCC.0000000000001923. PubMed DOI

Hernandez MC, Antiel RM, Balakrishnan K, Zielinski MD, Klinkner DB. Definitive airway management after prehospital supraglottic rescue airway in pediatric trauma. J Pediatr Surg. 2018;53(2):352–356. doi: 10.1016/j.jpedsurg.2017.10.004. PubMed DOI

Simons T, Soderlund T, Handolin L. Radiological evaluation of tube depth and complications of prehospital endotracheal intubation in pediatric trauma: a descriptive study. Eur J Trauma Emerg Surg. 2017;43(6):797–804. doi: 10.1007/s00068-016-0758-2. PubMed DOI

Hansen M, Meckler G, Lambert W, et al. Patient safety events in out-of-hospital paediatric airway management: a medical record review by the CSI-EMS. BMJ Open. 2016;6(11):e012259. doi: 10.1136/bmjopen-2016-012259. PubMed DOI PMC

Goto T, Gibo K, Hagiwara Y, et al. Factors associated with first-pass success in pediatric Intubation in the emergency department. West J Emerg Med. 2016;17(2):129–134. doi: 10.5811/westjem.2016.1.28685. PubMed DOI PMC

Mortimer T, Burzynski J, Kesselman M, Vallance J, Hansen G. Apneic oxygenation during rapid sequence Intubation in critically ill children. J Pediatr Intensive Care. 2016;5(1):28–31. doi: 10.1055/s-0035-1568149. PubMed DOI PMC

Fiadjoe JE, Nishisaki A, Jagannathan N, et al. Airway management complications in children with difficult tracheal intubation from the Pediatric Difficult Intubation (PeDI) registry: a prospective cohort analysis. Lancet Respir Med. 2016;4(1):37–48. doi: 10.1016/S2213-2600(15)00508-1. PubMed DOI

Li S, Rehder KJ, Giuliano JS, Jr., et al. Development of a quality improvement bundle to reduce tracheal Intubation-associated events in pediatric ICUs. Am J Med Qual. 2016;31(1):47–55. doi: 10.1177/1062860614547259. PubMed DOI

Johnson M, Miskovic A, Ray S, et al. The nasopharyngeal airway: estimation of the nares-to-mandible and nares-to-tragus distance in young children to assess current clinical practice. Resuscitation. 2019;140:50–54. doi: 10.1016/j.resuscitation.2019.04.039. PubMed DOI

Garcia-Marcinkiewicz AG, Adams HD, Gurnaney H, et al. A retrospective analysis of neuromuscular blocking drug use and ventilation technique on complications in the pediatric difficult Intubation registry using propensity score matching. Anesth Analg. 2020;131(2):469–479. doi: 10.1213/ANE.0000000000004393. PubMed DOI

Ramgopal S, Button SE, Owusu-Ansah S, et al. Success of pediatric Intubations performed by a critical care transport service. Prehosp Emerg Care. 2020;24(5):683–692. doi: 10.1080/10903127.2019.1699212. PubMed DOI

Hansen M, Lambert W, Guise JM, Warden CR, Mann NC, Wang H. Out-of-hospital pediatric airway management in the United States. Resuscitation. 2015;90:104–110. doi: 10.1016/j.resuscitation.2015.02.018. PubMed DOI PMC

Conway JA, Kharayat P, Sanders RC, Jr., et al. Ketamine use for tracheal Intubation in critically ill children is associated with a lower occurrence of adverse hemodynamic events. Crit Care Med. 2020;48(6):e489–e497. doi: 10.1097/CCM.0000000000004314. PubMed DOI

Galvez JA, Acquah S, Ahumada L, et al. Hypoxemia, bradycardia, and multiple laryngoscopy attempts during anesthetic induction in infants: a single-center, retrospective study. Anesthesiology. 2019;131(4):830–839. doi: 10.1097/ALN.0000000000002847. PubMed DOI

Overmann KM, Boyd SD, Zhang Y, Kerrey BT. Apneic oxygenation to prevent oxyhemoglobin desaturation during rapid sequence intubation in a pediatric emergency department. Am J Emerg Med. 2019;37(8):1416–1421. doi: 10.1016/j.ajem.2018.10.030. PubMed DOI

Crulli B, Loron G, Nishisaki A, Harrington K, Essouri S, Emeriaud G. Safety of paediatric tracheal intubation after non-invasive ventilation failure. Pediatr Pulmonol. 2016;51(2):165–172. doi: 10.1002/ppul.23223. PubMed DOI

Neubrand TL, Alletag M, Woods J, Mendenhall M, Leonard J, Schmidt SK. Breathing easier: decreasing tracheal Intubation-associated adverse events in the pediatric ED and urgent care. Pediatr Qual Saf. 2019;4(6):e230. doi: 10.1097/pq9.0000000000000230. PubMed DOI PMC

Mokhateb-Rafii T, Bakar A, Gangadharan S, et al. Hemodynamic impact of oxygen desaturation during tracheal Intubation among critically ill children with cyanotic and Noncyanotic heart disease. Pediatr Crit Care Med. 2019;20(1):19–26. doi: 10.1097/PCC.0000000000001766. PubMed DOI

Parker MM, Nuthall G, Brown C, 3rd, et al. Relationship between adverse tracheal Intubation associated events and PICU outcomes. Pediatr Crit Care Med. 2017;18(4):310–318. doi: 10.1097/PCC.0000000000001074. PubMed DOI PMC

van Sambeeck SJ, van Kuijk SMJ, Kramer BW, Vermeulen PM, Vos GD. Endotracheal intubation skills of pediatricians versus anesthetists in neonates and children. Eur J Pediatr. 2019;178(8):1219–1227. doi: 10.1007/s00431-019-03395-8. PubMed DOI PMC

Li S, Hsieh TC, Rehder KJ, et al. Frequency of desaturation and association with hemodynamic adverse events during tracheal Intubations in PICus. Pediatr Crit Care Med. 2018;19(1):e41–e50. doi: 10.1097/PCC.0000000000001384. PubMed DOI

Daigle CH, Fiadjoe JE, Laverriere EK, et al. Difficult bag-mask ventilation in critically ill children is independently associated with adverse events. Crit Care Med. 2020;48(9):e744–e752. doi: 10.1097/CCM.0000000000004425. PubMed DOI

Emami P, Czorlich P, Fritzsche FS, et al. Observed versus expected mortality in pediatric patients intubated in the field with Glasgow Coma Scale scores 〈 9. Eur J Trauma Emerg Surg. 2019;45(5):769–776. doi: 10.1007/s00068-018-01065-2. PubMed DOI

Vukovic AA, Hanson HR, Murphy SL, Mercurio D, Sheedy CA, Arnold DH. Apneic oxygenation reduces hypoxemia during endotracheal intubation in the pediatric emergency department. Am J Emerg Med. 2019;37(1):27–32. doi: 10.1016/j.ajem.2018.04.039. PubMed DOI

Lee JH, Nuthall G, Ikeyama T, et al. Tracheal Intubation practice and safety across international PICus: a report from national emergency airway registry for children. Pediatr Crit Care Med. 2019;20(1):1–8. doi: 10.1097/PCC.0000000000001782. PubMed DOI

Algie CM, Mahar RK, Tan HB, Wilson G, Mahar PD, Wasiak J. Effectiveness and risks of cricoid pressure during rapid sequence induction for endotracheal intubation. Cochrane Database Syst Rev. 2015 doi: 10.1002/14651858.CD011656.pub2. PubMed DOI PMC

Kojima T, Harwayne-Gidansky I, Shenoi AN, et al. Cricoid pressure during induction for tracheal Intubation in critically ill children: a report from national emergency airway registry for children. Pediatr Crit Care Med. 2018;19(6):528–537. doi: 10.1097/PCC.0000000000001531. PubMed DOI

Kojima T, Laverriere EK, Owen EB, et al. Clinical impact of external laryngeal manipulation during laryngoscopy on tracheal Intubation success in critically ill children. Pediatr Crit Care Med. 2018;19(2):106–114. doi: 10.1097/PCC.0000000000001373. PubMed DOI

Sun Y, Lu Y, Huang Y, Jiang H. Pediatric video laryngoscope versus direct laryngoscope: a meta-analysis of randomized controlled trials. Paediatr Anaesth. 2014;24(10):1056–1065. doi: 10.1111/pan.12458. PubMed DOI

Lingappan K, Arnold JL, Fernandes CJ, Pammi M. Videolaryngoscopy versus direct laryngoscopy for tracheal intubation in neonates. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD009975.pub3. PubMed DOI PMC

Abdelgadir IS, Phillips RS, Singh D, Moncreiff MP, Lumsden JL. Videolaryngoscopy versus direct laryngoscopy for tracheal intubation in children (excluding neonates) Cochrane Database Syst Rev. 2017 doi: 10.1002/14651858.CD011413.pub2. PubMed DOI PMC

Sola C, Saour AC, Macq C, Bringuier S, Raux O, Dadure C. Children with challenging airways: what about GlideScope((R)) video-laryngoscopy? Anaesth Crit Care Pain Med. 2017;36(5):267–271. doi: 10.1016/j.accpm.2016.10.005. PubMed DOI

Grunwell JR, Kamat PP, Miksa M, et al. Trend and outcomes of video laryngoscope use across PICus. Pediatr Crit Care Med. 2017;18(8):741–749. doi: 10.1097/PCC.0000000000001175. PubMed DOI PMC

Park R, Peyton JM, Fiadjoe JE, et al. The efficacy of GlideScope(R) videolaryngoscopy compared with direct laryngoscopy in children who are difficult to intubate: an analysis from the paediatric difficult intubation registry. Br J Anaesth. 2017;119(5):984–992. doi: 10.1093/bja/aex344. PubMed DOI

Kaji AH, Shover C, Lee J, et al. Video versus direct and augmented direct laryngoscopy in pediatric tracheal Intubations. Acad Emerg Med. 2020;27(5):394–402. doi: 10.1111/acem.13869. PubMed DOI

Gupta A, Kamal G, Gupta A, Sehgal N, Bhatla S, Kumar R. Comparative evaluation of CMAC and Truview picture capture device for endotracheal intubation in neonates and infants undergoing elective surgeries: a prospective randomized control trial. Paediatr Anaesth. 2018;28(12):1148–1153. doi: 10.1111/pan.13524. PubMed DOI

Sinha R, Ray BR, Sharma A, et al. Comparison of the C-MAC video laryngoscope size 2 macintosh blade with size 2 C-MAC D-blade for laryngoscopy and endotracheal intubation in children with simulated cervical spine injury: a prospective randomized crossover study. J Anaesthesiol Clin Pharmacol. 2019;35(4):509–514. doi: 10.4103/joacp.JOACP_106_18. PubMed DOI PMC

Vadi MG, Roddy KJ, Ghazal EA, Um M, Neiheisel AJ, Applegate RL., 2nd Comparison of the glidescope cobalt(R) and Storz DCI(R) video laryngoscopes in children younger than 2 years of age during manual in-line stabilization: a randomized trainee evaluation study. Pediatr Emerg Care. 2017;33(7):467–473. doi: 10.1097/PEC.0000000000000607. PubMed DOI

Kim JE, Kwak HJ, Jung WS, Chang MY, Lee SY, Kim JY. A comparison between McGrath MAC videolaryngoscopy and Macintosh laryngoscopy in children. Acta Anaesthesiol Scand. 2018;62(3):312–318. doi: 10.1111/aas.13043. PubMed DOI

Jones P. The therapeutic value of atropine for critical care intubation. Arch Dis Child. 2016;101(1):77–80. doi: 10.1136/archdischild-2014-308137. PubMed DOI

Quintard H, l’Her E, Pottecher J, et al. Experts’ guidelines of intubation and extubation of the ICU patient of French Society of Anaesthesia and Intensive Care Medicine (SFAR) and French-speaking Intensive Care Society (SRLF) : In collaboration with the pediatric Association of French-speaking Anaesthetists and Intensivists (ADARPEF), French-speaking Group of Intensive Care and Paediatric emergencies (GFRUP) and Intensive Care physiotherapy society (SKR) Ann Intensive Care. 2019;9(1):13. doi: 10.1186/s13613-019-0483-1. PubMed DOI PMC

Jones P, Peters MJ, Pinto da Costa N, et al. Atropine for critical care intubation in a cohort of 264 children and reduced mortality unrelated to effects on bradycardia. Plos One. 2013;8(2):e57478. doi: 10.1371/journal.pone.0057478. PubMed DOI PMC

Jones P, Ovenden N, Dauger S, Peters MJ. Estimating ‘lost heart beats’ rather than reductions in heart rate during the intubation of critically-ill children. Plos One. 2014;9(2):e86766. doi: 10.1371/journal.pone.0086766. PubMed DOI PMC

Gill H, Thoresen M, Smit E, et al. Sedation management during therapeutic hypothermia for neonatal encephalopathy: atropine premedication for endotracheal intubation causes a prolonged increase in heart rate. Resuscitation. 2014;85(10):1394–1398. doi: 10.1016/j.resuscitation.2014.07.002. PubMed DOI

Litman RS, Weissend EE, Shibata D, Westesson PL. Developmental changes of laryngeal dimensions in unparalyzed, sedated children. Anesthesiology. 2003;98(1):41–45. doi: 10.1097/00000542-200301000-00010. PubMed DOI

Kneyber MCJ, de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) Intensive Care Med. 2017;43(12):1764–1780. doi: 10.1007/s00134-017-4920-z. PubMed DOI PMC

Tosif S, Duke T. Evidence to support oxygen guidelines for children with emergency signs in developing countries: a systematic review and physiological and mechanistic analysis. J Trop Pediatr. 2017;63(5):402–413. doi: 10.1093/tropej/fmw100. PubMed DOI

Rojas-Reyes MX, Granados Rugeles C, Charry-Anzola LP. Oxygen therapy for lower respiratory tract infections in children between 3 months and 15 years of age. Cochrane Database Syst Rev. 2014 doi: 10.1002/14651858.CD005975.pub3. PubMed DOI PMC

Grandville B, Petak F, Albu G, Bayat S, Pichon I, Habre W. High inspired oxygen fraction impairs lung volume and ventilation heterogeneity in healthy children: a double-blind randomised controlled trial. Br J Anaesth. 2019;122(5):682–691. doi: 10.1016/j.bja.2019.01.036. PubMed DOI

Patel B, Khine H, Shah A, Sung D, Medar S, Singer L. Randomized clinical trial of high concentration versus titrated oxygen use in pediatric asthma. Pediatr Pulmonol. 2019;54(7):970–976. doi: 10.1002/ppul.24329. PubMed DOI

Peters MJ, Jones GAL, Wiley D, et al. Conservative versus liberal oxygenation targets in critically ill children: the randomised multiple-centre pilot Oxy-PICU trial. Intensive Care Med. 2018;44(8):1240–1248. doi: 10.1007/s00134-018-5232-7. PubMed DOI

von der Weid L, Gehri M, Camara B, Thiongane A, Pascual A, Pauchard JY. Clinical signs of hypoxaemia in children aged 2 months to 5 years with acute respiratory distress in Switzerland and Senegal. Paediatr Int Child Health. 2018;38(2):113–120. doi: 10.1080/20469047.2017.1390828. PubMed DOI

Jones GAL, Ramnarayan P, Raman S, et al. Protocol for a randomised pilot multiple centre trial of conservative versus liberal oxygenation targets in critically ill children (Oxy-PICU) BMJ Open. 2017;7(12):e019253. doi: 10.1136/bmjopen-2017-019253. PubMed DOI PMC

Maitland K, Kiguli S, Opoka RO, et al. Children’s Oxygen Administration Strategies Trial (COAST): a randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia. Wellcome Open Res. 2017;2:100. doi: 10.12688/wellcomeopenres.12747.2. PubMed DOI PMC

Ramnarayan P, Lister P, Dominguez T, et al. FIRST-line support for Assistance in Breathing in Children (FIRST-ABC): a multicentre pilot randomised controlled trial of high-flow nasal cannula therapy versus continuous positive airway pressure in paediatric critical care. Crit Care. 2018;22(1):144. doi: 10.1186/s13054-018-2080-3. PubMed DOI PMC

Durand P, Guiddir T, Kyheng C, et al. A randomised trial of high-flow nasal cannula in infants with moderate bronchiolitis. Eur Respir J. 2020 doi: 10.1183/13993003.01926-2019. PubMed DOI

Williams AM, Abramo TJ, Shah MV, et al. Safety and clinical findings of BiPAP utilization in children 20 kg or less for asthma exacerbations. Intensive Care Med. 2011;37(8):1338–1343. doi: 10.1007/s00134-011-2238-9. PubMed DOI

Essouri S, Laurent M, Chevret L, et al. Improved clinical and economic outcomes in severe bronchiolitis with pre-emptive nCPAP ventilatory strategy. Intensive Care Med. 2014;40(1):84–91. doi: 10.1007/s00134-013-3129-z. PubMed DOI PMC

Abadesso C, Nunes P, Silvestre C, Matias E, Loureiro H, Almeida H. Non-invasive ventilation in acute respiratory failure in children. Pediatr Rep. 2012;4(2):e16. doi: 10.4081/pr.2012.e16. PubMed DOI PMC

Vitaliti G, Vitaliti MC, Finocchiaro MC, et al. Randomized comparison of helmet CPAP versus high-flow nasal cannula oxygen in pediatric respiratory distress. Respir Care. 2017;62(8):1036–1042. doi: 10.4187/respcare.05384. PubMed DOI

Korang SK, Feinberg J, Wetterslev J, Jakobsen JC. Non-invasive positive pressure ventilation for acute asthma in children. Cochrane Database Syst Rev. 2016 doi: 10.1002/14651858.CD012067.pub2. PubMed DOI PMC

Combret Y, Prieur G, Roux PLE, Medrinal C. Non-invasive ventilation improves respiratory distress in children with acute viral bronchiolitis: a systematic review. Minerva Anestesiol. 2017;83(6):624–637. doi: 10.23736/S0375-9393.17.11708-6. PubMed DOI

Ballestero Y, De Pedro J, Portillo N, Martinez-Mugica O, Arana-Arri E, Benito J. Pilot clinical trial of high-flow oxygen therapy in children with asthma in the emergency service. J Pediatr. 2018;194:204–210e3. doi: 10.1016/j.jpeds.2017.10.075. PubMed DOI

Luo J, Duke T, Chisti MJ, Kepreotes E, Kalinowski V, Li J. Efficacy of high-flow nasal cannula vs standard oxygen therapy or nasal continuous positive airway pressure in children with respiratory distress: a meta-analysis. J Pediatr. 2019;215:199–208e8. doi: 10.1016/j.jpeds.2019.07.059. PubMed DOI

O’Brien S, Craig S, Babl FE, et al. ‘Rational use of high-flow therapy in infants with bronchiolitis. What do the latest trials tell us?’ A Paediatric Research in Emergency Departments International Collaborative perspective. J Paediatr Child Health. 2019;55(7):746–752. doi: 10.1111/jpc.14496. PubMed DOI

Mikalsen IB, Davis P, Oymar K. High flow nasal cannula in children: a literature review. Scand J Trauma Resusc Emerg Med. 2016;24:93. doi: 10.1186/s13049-016-0278-4. PubMed DOI PMC

Vahlkvist S, Jurgensen L, la Cour A, Markoew S, Petersen TH, Kofoed PE. High flow nasal cannula and continuous positive airway pressure therapy in treatment of viral bronchiolitis: a randomized clinical trial. Eur J Pediatr. 2020;179(3):513–518. doi: 10.1007/s00431-019-03533-2. PubMed DOI

Gc VS, Franklin D, Whitty JA, et al. First-line oxygen therapy with high-flow in bronchiolitis is not cost saving for the health service. Arch Dis Child. 2020;105(10):975–980. doi: 10.1136/archdischild-2019-318427. PubMed DOI

Figueroa L, Laffaye F. Early use of continuous positive airway pressure in the treatment of moderate to severe acute lower respiratory tract infections among patients younger than 2 years old. Arch Argent Pediatr. 2017;115(3):277–281. doi: 10.5546/aap.2017.eng.277. PubMed DOI

Chisti MJ, Salam MA, Smith JH, et al. Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. Lancet. 2015;386(9998):1057–1065. doi: 10.1016/S0140-6736(15)60249-5.. PubMed DOI

Mandelzweig K, Leligdowicz A, Murthy S, Lalitha R, Fowler RA, Adhikari NKJ. Non-invasive ventilation in children and adults in low- and low-middle income countries: A systematic review and meta-analysis. J Crit Care. 2018;47:310–319. doi: 10.1016/j.jcrc.2018.01.007. PubMed DOI

Balfour-Lynn RE, Marsh G, Gorayi D, Elahi E, LaRovere J. Non-invasive ventilation for children with acute respiratory failure in the developing world: literature review and an implementation example. Paediatr Respir Rev. 2014;15(2):181–187. doi: 10.1016/j.prrv.2014.02.002. PubMed DOI

Richards M, Le Roux D, Cooke L, Argent A. The influence of high flow nasal cannulae on the outcomes of severe respiratory disease in children admitted to a regional hospital in south africa. J Trop Pediatr. 2020;66(6):612–620. doi: 10.1093/tropej/fmaa024. PubMed DOI

Yurtseven A, Turan C, Erseven E, Saz EU. Comparison of heated humidi fi ed high-flow nasal cannula flow rates (1-L.kg.min(−1) vs 2-L.kg.min (−1) ) in the management of acute bronchiolitis. Pediatr Pulmonol. 2019;54(6):894–900. doi: 10.1002/ppul.24318. PubMed DOI PMC

Kobayashi H, Takimoto T, Kitaoka H, Kijima T. Aerosol spread with use of high-flow nasal cannulae: a computational fluid dynamics analysis. J Hosp Infect. 2020;106(1):204–205. doi: 10.1016/j.jhin.2020.06.010. PubMed DOI PMC

Kochanek PM, Tasker RC. Bell MJ, et al. Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies. Pediatr Crit Care Med. 2019;20(3):269–279. doi: 10.1097/PCC.0000000000001737. PubMed DOI

Kim GJ, Newth CJL, Khemani RG, Wong SL, Coates AL, Ross PA. Does size matter when calculating the “correct” tidal volume for pediatric mechanical ventilation?: a hypothesis based on FVC. Chest. 2018;154(1):77–83. doi: 10.1016/j.chest.2018.04.015. PubMed DOI

Bilharz JR, Wheeler CR, Walsh BK, Smallwood CD. A comparative analysis of ideal body weight methods for pediatric mechanical ventilation. Respir Care. 2018;63(9):1079–1084. doi: 10.4187/respcare.06021. PubMed DOI

Lee JH, Jung H, Jang YE, et al. Manual vs pressure-controlled facemask ventilation during the induction of general anesthesia in children: a prospective randomized controlled study. Paediatr Anaesth. 2019;29(4):331–337. doi: 10.1111/pan.13594. PubMed DOI

Mumma JM, Durso FT, Dyes M, Dela CR, Fox VP, Hoey M. Bag valve mask ventilation as a perceptual-cognitive skill. Hum Factors. 2018;60(2):212–221. doi: 10.1177/0018720817744729. PubMed DOI

Kroll M, Das J, Siegler J. Can altering grip technique and bag size optimize volume delivered with bag-valve-mask by emergency medical service providers? Prehosp Emerg Care. 2019;23(2):210–214. doi: 10.1080/10903127.2018.1489020. PubMed DOI

Becker HJ, Langhan ML. Can providers use clinical skills to assess the adequacy of ventilation in children during bag-valve mask ventilation? Pediatr Emerg Care. 2020;36(12):e695–e699. doi: 10.1097/PEC.0000000000001314. PubMed DOI

Williams DC, Cheifetz IM. Emerging approaches in pediatric mechanical ventilation. Expert Rev Respir Med. 2019;13(4):327–336. doi: 10.1080/17476348.2019.1586536. PubMed DOI

Smallwood CD, Davis MD. Year in review 2018: pediatric mechanical ventilation. Respir Care. 2019;64(7):855–863. doi: 10.4187/respcare.07029. PubMed DOI

Conti G, Piastra M. Mechanical ventilation for children. Curr Opin Crit Care. 2016;22(1):60–66. doi: 10.1097/MCC.0000000000000271. PubMed DOI

Pediatric Acute Lung Injury Consensus Conference G Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5):428–439. doi: 10.1097/PCC.0000000000000350. PubMed DOI PMC

Pearsall MF, Feldman JM. When does apparatus dead space matter for the pediatric patient? Anesth Analg. 2014;118(4):776–780. doi: 10.1213/ANE.0000000000000148. PubMed DOI

Siegler J, Kroll M, Wojcik S, Moy HP. Can EMS providers provide appropriate tidal volumes in a simulated adult-sized patient with a pediatric-sized bag-valve-mask? Prehosp Emerg Care. 2017;21(1):74–78. doi: 10.1080/10903127.2016.1227003. PubMed DOI

van Vonderen JJ, Witlox RS, Kraaij S, te Pas AB. Two-minute training for improving neonatal bag and mask ventilation. Plos One. 2014;9(10):e109049. doi: 10.1371/journal.pone.0109049. PubMed DOI PMC

Khoury A, Hugonnot S, Cossus J, et al. From mouth-to-mouth to bag-valve-mask ventilation: evolution and characteristics of actual devices—a review of the literature. Biomed Res Int. 2014;2014:762053. doi: 10.1155/2014/762053. PubMed DOI PMC

Balamuth F, Kittick M, McBride P, et al. Pragmatic pediatric trial of balanced versus normal saline fluid in sepsis: the PRoMPT BOLUS randomized controlled trial pilot feasibility study. Acad Emerg Med. 2019;26(12):1346–1356. doi: 10.1111/acem.13815. PubMed DOI PMC

Parker MJ, Thabane L, Fox-Robichaud A, et al. A trial to determine whether septic shock-reversal is quicker in pediatric patients randomized to an early goal-directed fluid-sparing strategy versus usual care (SQUEEZE): study protocol for a pilot randomized controlled trial. Trials. 2016;17(1):556. doi: 10.1186/s13063-016-1689-2. PubMed DOI PMC

Inwald DP, Butt W, Tasker RC. Fluid resuscitation of shock in children: what, whence and whither? Intensive Care Med. 2015;41(8):1457–1459. doi: 10.1007/s00134-015-3905-z. PubMed DOI

Inwald DP, Canter R, Woolfall K, et al. Restricted fluid bolus volume in early septic shock: results of the Fluids in Shock pilot trial. Arch Dis Child. 2019;104(5):426–431. doi: 10.1136/archdischild-2018-314924. PubMed DOI PMC

Gaensbauer JT, Birkholz M, Smit MA, Garcia R, Todd JK. Epidemiology and clinical relevance of toxic shock syndrome in US children. Pediatr Infect Dis J. 2018;37(12):1223–1226. doi: 10.1097/INF.0000000000002002. PubMed DOI

Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–1157. doi: 10.1164/rccm.201412-2323OC. PubMed DOI PMC

Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–2495. doi: 10.1056/NEJMoa1101549. PubMed DOI

Tripathi A, Kabra SK, Sachdev HP, Lodha R. Mortality and other outcomes in relation to first hour fluid resuscitation rate: a systematic review. Indian Pediatr. 2015;52(11):965–972. doi: 10.1007/s13312-015-0754-3. PubMed DOI

Levin M, Cunnington AJ, Wilson C, et al. Effects of saline or albumin fluid bolus in resuscitation: evidence from re-analysis of the FEAST trial. Lancet Respir Med. 2019;7(7):581–593. doi: 10.1016/S2213-2600(19)30114-6. PubMed DOI PMC

Long E, Babl FE, Oakley E, Sheridan B, Duke T, Pediatric Research in Emergency Departments International C Cardiac index changes with fluid bolus therapy in children with sepsis-an observational study. Pediatr Crit Care Med. 2018;19(6):513–518. doi: 10.1097/PCC.0000000000001534. PubMed DOI

Chang R, Holcomb JB. Choice of fluid therapy in the initial management of sepsis, severe sepsis, and septic shock. Shock. 2016;46(1):17–26. doi: 10.1097/SHK.0000000000000577. PubMed DOI PMC

Lewis SR, Pritchard MW, Evans DJ, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD000567.pub7. PubMed DOI PMC

Medeiros DN, Ferranti JF, Delgado AF, de Carvalho WB. Colloids for the initial management of severe sepsis and septic shock in pediatric patients: a systematic review. Pediatr Emerg Care. 2015;31(11):e11–6. doi: 10.1097/PEC.0000000000000601. PubMed DOI

Emrath ET, Fortenberry JD, Travers C, McCracken CE, Hebbar KB. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis. Crit Care Med. 2017;45(7):1177–1183. doi: 10.1097/CCM.0000000000002365. PubMed DOI

Weiss SL, Keele L, Balamuth F, et al. Crystalloid fluid choice and clinical outcomes in pediatric sepsis: a matched retrospective cohort study. J Pediatr. 2017;182:304–310e10. doi: 10.1016/j.jpeds.2016.11.075. PubMed DOI PMC

Antequera Martin AM, Barea Mendoza JA, Muriel A, et al. Buffered solutions versus 0.9 % saline for resuscitation in critically ill adults and children. Cochrane Database Syst Rev. 2019 doi: 10.1002/14651858.CD012247.pub2. PubMed DOI PMC

Ranjit S, Ramanathan G, Ramakrishnan B, Kissoon N. Targeted interventions in critically ill children with severe dengue. Indian J Crit Care Med. 2018;22(3):154–161. doi: 10.4103/ijccm.IJCCM_413_17. PubMed DOI PMC

Singh M, Sankar J, Kumar A, Kumar UV, Lodha R, Kabra SK. Predictors of mortality in children admitted to the pediatric intensive care unit with acute gastroenteritis with severe dehydration. Indian J Pediatr. 2019;86(12):1142–1145. doi: 10.1007/s12098-019-03094-0. PubMed DOI

Qadori M, Flem E, Bekkevold T, et al. Hypoglycaemia was common in acute gastroenteritis in a prospective hospital-based study, but electrolyte imbalances were not. Acta Paediatr. 2018;107(8):1455–1460. doi: 10.1111/apa.14318. PubMed DOI

Vonasek BJ, Chiume M, Crouse HL, et al. Risk factors for mortality and management of children with complicated severe acute malnutrition at a tertiary referral hospital in Malawi. Paediatr Int Child Health. 2020;40(3):148–157. doi: 10.1080/20469047.2020.1747003. PubMed DOI

Alam NH, Ashraf H, Ahmed T, Jahan N, Gyr N. Randomised trial showed that rapid rehydration of severely malnourished children with dehydrating diarrhoea was as safe and effective as slow rehydration. Acta Paediatr. 2020;109(7):1473–1484. doi: 10.1111/apa.15134. PubMed DOI

Houston KA, Gibb J, Olupot-Olupot P, et al. Gastroenteritis aggressive versus slow treatment for rehydration (GASTRO): a phase II rehydration trial for severe dehydration: WHO plan C versus slow rehydration. BMC Med. 2019;17(1):122. doi: 10.1186/s12916-019-1356-z. PubMed DOI PMC

Iro MA, Sell T, Brown N, Maitland K. Rapid intravenous rehydration of children with acute gastroenteritis and dehydration: a systematic review and meta-analysis. BMC Pediatr. 2018;18(1):44. doi: 10.1186/s12887-018-1006-1. PubMed DOI PMC

Polites SF, Moody S, Williams RF, et al. Timing and volume of crystalloid and blood products in pediatric trauma: An Eastern Association for the Surgery of Trauma multicenter prospective observational study. J Trauma Acute Care Surg. 2020;89(1):36–42. doi: 10.1097/TA.0000000000002702. PubMed DOI

Schauer SG, April MD, Becker TE, Cap AP, Borgman MA. High crystalloid volumes negate benefit of hemostatic resuscitation in pediatric wartime trauma casualties. J Trauma Acute Care Surg. 2020;89(2S Suppl 2):S185–S191. doi: 10.1097/TA.0000000000002590. PubMed DOI

Elkbuli A, Zajd S, Ehrhardt JD, Jr., McKenney M, Boneva D. Aggressive crystalloid resuscitation outcomes in low-severity pediatric trauma. J Surg Res. 2020;247:350–355. doi: 10.1016/j.jss.2019.10.009. PubMed DOI

Polites SF, Nygaard RM, Reddy PN, et al. Multicenter study of crystalloid boluses and transfusion in pediatric trauma-When to go to blood? J Trauma Acute Care Surg. 2018;85(1):108–112. doi: 10.1097/TA.0000000000001897. PubMed DOI

Magoteaux SR, Notrica DM, Langlais CS, et al. Hypotension and the need for transfusion in pediatric blunt spleen and liver injury: An ATOMAC+ prospective study. J Pediatr Surg. 2017;52(6):979–983. doi: 10.1016/j.jpedsurg.2017.03.021. PubMed DOI

Nadler R, Mozer-Glassberg Y, Gaines B, Glassberg E, Chen J. The Israel Defense Forces experience with freeze-dried plasma for the resuscitation of traumatized pediatric patients. J Trauma Acute Care Surg. 2019;87(6):1315–1320. doi: 10.1097/TA.0000000000002477. PubMed DOI

Haltmeier T, Benjamin E, Gruen JP, et al. Decreased mortality in patients with isolated severe blunt traumatic brain injury receiving higher plasma to packed red blood cells transfusion ratios. Injury. 2018;49(1):62–66. doi: 10.1016/j.injury.2017.07.035. PubMed DOI

Long B, April MD. Does administration of hypertonic solutions improve mortality in hemorrhagic shock compared with isotonic solutions? Ann Emerg Med. 2018;71(4):529–531. doi: 10.1016/j.annemergmed.2017.11.025. PubMed DOI

Phillips R, Acker SN, Shahi N, et al. The ABC-D score improves the sensitivity in predicting need for massive transfusion in pediatric trauma patients. J Pediatr Surg. 2020;55(2):331–334. doi: 10.1016/j.jpedsurg.2019.10.008. PubMed DOI

Figueiredo S, Taconet C, Harrois A, et al. How useful are hemoglobin concentration and its variations to predict significant hemorrhage in the early phase of trauma? A multicentric cohort study. Ann Intensive Care. 2018;8(1):76. doi: 10.1186/s13613-018-0420-8. PubMed DOI PMC

Brinck T, Handolin L, Lefering R. The effect of evolving fluid resuscitation on the outcome of severely injured patients: an 8-year experience at a tertiary trauma center. Scand J Surg. 2016;105(2):109–116. doi: 10.1177/1457496915586650. PubMed DOI

Wang CH, Hsieh WH, Chou HC, et al. Liberal versus restricted fluid resuscitation strategies in trauma patients: a systematic review and meta-analysis of randomized controlled trials and observational studies. Crit Care Med. 2014;42(4):954–961. doi: 10.1097/CCM.0000000000000050. PubMed DOI

Albreiki M, Voegeli D. Permissive hypotensive resuscitation in adult patients with traumatic haemorrhagic shock: a systematic review. Eur J Trauma Emerg Surg. 2018;44(2):191–202. doi: 10.1007/s00068-017-0862-y. PubMed DOI PMC

Tran A, Yates J, Lau A, Lampron J, Matar M. Permissive hypotension versus conventional resuscitation strategies in adult trauma patients with hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. J Trauma Acute Care Surg. 2018;84(5):802–808. doi: 10.1097/TA.0000000000001816. PubMed DOI

Owattanapanich N, Chittawatanarat K, Benyakorn T, Sirikun J. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1):107. doi: 10.1186/s13049-018-0572-4. PubMed DOI PMC

Dittrich MHM, Hosni ND, de Carvalho WB. Association between fluid creep and infection in burned children: a cohort study. Burns. 2020;46(5):1036–1042. doi: 10.1016/j.burns.2020.02.003. PubMed DOI

Granfeldt A, Avis SR, Lind PC, et al. Intravenous vs. intraosseous administration of drugs during cardiac arrest: a systematic review. Resuscitation. 2020;149:150–157. doi: 10.1016/j.resuscitation.2020.02.025. PubMed DOI

Jousi M, Laukkanen-Nevala P, Nurmi J. Analysing blood from intraosseous access: a systematic review. Eur J Emerg Med. 2019;26(2):77–85. doi: 10.1097/MEJ.0000000000000569. PubMed DOI

Ohchi F, Komasawa N, Mihara R, Minami T. Comparison of mechanical and manual bone marrow puncture needle for intraosseous access; a randomized simulation trial. SpringerPlus. 2015;4:211. doi: 10.1186/s40064-015-0982-y. PubMed DOI PMC

El-Nawawy AA, Omar OM, Khalil M. Intraosseous versus intravenous access in pediatric septic shock patients admitted to alexandria university pediatric intensive care unit. J Trop Pediatr. 2018;64(2):132–140. doi: 10.1093/tropej/fmx061. PubMed DOI

Maxien D, Wirth S, Peschel O, et al. Intraosseous needles in pediatric cadavers: rate of malposition. Resuscitation. 2019;145:1–7. doi: 10.1016/j.resuscitation.2019.09.028. PubMed DOI

Al-Shibli A, Lim R, Poonai N, Istasy V, Lin K, Kilgar J. Determination of the pretibial soft tissue thickness in children: are Intraosseous infusion needles long enough? Pediatr Emerg Care. 2020;36(1):39–42. doi: 10.1097/PEC.0000000000002019. PubMed DOI

Mori T, Takei H, Sasaoka Y, Nomura O, Ihara T. Semi-automatic intraosseous device (EZ-IO) in a paediatric emergency department. J Paediatr Child Health. 2020;56(9):1376–1381. doi: 10.1111/jpc.14940. PubMed DOI

Harcke HT, Curtin RN, Harty MP, et al. Tibial Intraosseous insertion in pediatric emergency care: a review based upon postmortem computed tomography. Prehosp Emerg Care. 2020;24(5):665–671. doi: 10.1080/10903127.2019.1698682. PubMed DOI

Szarpak L, Ladny JR, Dabrowski M, et al. Comparison of 4 pediatric intraosseous access devices: a randomized simulation study. Pediatr Emerg Care. 2020;36(10):e568–e572. doi: 10.1097/PEC.0000000000001587. PubMed DOI

Hamed RK, Hartmans S, Gausche-Hill M. Anesthesia through an intraosseous line using an 18-gauge intravenous needle for emergency pediatric surgery. J Clin Anesth. 2013;25(6):447–451. doi: 10.1016/j.jclinane.2013.03.013. PubMed DOI

Kalechstein S, Permual A, Cameron BM, et al. Evaluation of a new pediatric intraosseous needle insertion device for low-resource settings. J Pediatr Surg. 2012;47(5):974–979. doi: 10.1016/j.jpedsurg.2012.01.055. PubMed DOI

Isayama K, Nakatani T, Tsuda M, Hirakawa A. Current status of establishing a venous line in CPA patients by Emergency Life-Saving Technicians in the prehospital setting in Japan and a proposal for intraosseous infusion. Int J Emerg Med. 2012;5(1):2. doi: 10.1186/1865-1380-5-2. PubMed DOI PMC

Hansen M, Meckler G, Spiro D, Newgard C. Intraosseous line use, complications, and outcomes among a population-based cohort of children presenting to California hospitals. Pediatr Emerg Care. 2011;27(10):928–932. doi: 10.1097/PEC.0b013e3182307a2f. PubMed DOI

Sunde GA, Heradstveit BE, Vikenes BH, Heltne JK. Emergency intraosseous access in a helicopter emergency medical service: a retrospective study. Scand J Trauma Resusc Emerg Med. 2010;18:52. doi: 10.1186/1757-7241-18-52. PubMed DOI PMC

Bielski K, Szarpak L, Smereka J, Ladny JR, Leung S, Ruetzler K. Comparison of four different intraosseous access devices during simulated pediatric resuscitation. A randomized crossover manikin trial. Eur J Pediatr. 2017;176(7):865–871. doi: 10.1007/s00431-017-2922-z. PubMed DOI PMC

Pifko EL, Price A, Busch C, et al. Observational review of paediatric intraosseous needle placement in the paediatric emergency department. J Paediatr Child Health. 2018;54(5):546–550. doi: 10.1111/jpc.13773. PubMed DOI

Johnson M, Inaba K, Byerly S, et al. Intraosseous infusion as a bridge to definitive access. Am Surg. 2016;82(10):876–880. doi: 10.1177/000313481608201003. PubMed DOI

Oksan D, Ayfer K. Powered intraosseous device (EZ-IO) for critically ill patients. Indian Pediatr. 2013;50(7):689–691. doi: 10.1007/s13312-013-0192-z. PubMed DOI

Reuter-Rice K, Patrick D, Kantor E, Nolin C, Foley J. Characteristics of children who undergo intraosseous needle placement. Adv Emerg Nurs J. 2015;37(4):301–307. doi: 10.1097/TME.0000000000000077. PubMed DOI

Lee SH, Frey M, Kerrey BT, Zhang Y, Byczkowski T, Geis GL. A video-based, case-control study of factors associated with Intraosseous catheterization during pediatric resuscitation. Ann Emerg Med. 2020;75(6):755–761. doi: 10.1016/j.annemergmed.2019.09.005. PubMed DOI

Abramson TM, Alreshaid L, Kang T, Mailhot T, Omer T. FascIOtomy: ultrasound evaluation of an Intraosseous needle causing compartment syndrome. Clin Pract Cases Emerg Med. 2018;2(4):323–325. doi: 10.5811/cpcem.2018.8.38854. PubMed DOI PMC

Tsung JW, Blaivas M, Stone MB. Feasibility of point-of-care colour Doppler ultrasound confirmation of intraosseous needle placement during resuscitation. Resuscitation. 2009;80(6):665–668. doi: 10.1016/j.resuscitation.2009.03.009. PubMed DOI

Oulego-Erroz I, Munoz-Lozon A, Alonso-Quintela P, Rodriguez-Nunez A. Comparison of ultrasound guided brachiocephalic and internal jugular vein cannulation in critically ill children. J Crit Care. 2016;35:133–137. doi: 10.1016/j.jcrc.2016.05.010. PubMed DOI

Gallagher RA, Levy J, Vieira RL, Monuteaux MC, Stack AM. Ultrasound assistance for central venous catheter placement in a pediatric emergency department improves placement success rates. Acad Emerg Med. 2014;21(9):981–986. doi: 10.1111/acem.12460. PubMed DOI

Stinson HR, Viteri S, Koetter P, et al. Early experience with a novel strategy for assessment of sepsis risk: the shock huddle. Pediatr Qual Saf. 2019;4(4):e197. doi: 10.1097/pq9.0000000000000197. PubMed DOI PMC

Wulff A, Montag S, Marschollek M, Jack T. Clinical decision-support systems for detection of systemic inflammatory response syndrome, sepsis, and septic shock in critically ill patients: a systematic review. Methods Inf Med. 2019;58(S 02):e43–e57. doi: 10.1055/s-0039-1695717. PubMed DOI

Pepper DJ, Natanson C, Eichacker PQ. Evidence underpinning the centers for medicare & medicaid services’ severe sepsis and septic shock management bundle (SEP-1) Ann Intern Med. 2018;168(8):610–612. doi: 10.7326/L18-0140. PubMed DOI

Barboza CL, Valete CO, da Silva AR. Bundle adherence of intravenous antibiotic fluid resuscitation and vasopressor in children with severe sepsis or septic shock. Indian J Crit Care Med. 2020;24(2):128–132. doi: 10.5005/jp-journals-10071-23336. PubMed DOI PMC

Balamuth F, Weiss SL, Fitzgerald JC, et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr Crit Care Med. 2016;17(9):817–822. doi: 10.1097/PCC.0000000000000858. PubMed DOI PMC

Workman JK, Ames SG, Reeder RW, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17(10):e451–e458. doi: 10.1097/PCC.0000000000000906. PubMed DOI

Lane RD, Funai T, Reeder R, Larsen GY. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics. 2016 doi: 10.1542/peds.2015-4153. PubMed DOI

Hebert A, Boucher MP, Guimont C, Weiss M. Effect of measuring vital signs on recognition and treatment of septic children. Paediatr Child Health. 2017;22(1):13–16. doi: 10.1093/pch/pxw003. PubMed DOI PMC

Paul R, Melendez E, Wathen B, et al. A quality improvement collaborative for pediatric sepsis: lessons learned. Pediatr Qual Saf. 2018;3(1):e051. doi: 10.1097/pq9.0000000000000051. PubMed DOI PMC

Evans IVR, Phillips GS, Alpern ER, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320(4):358–367. doi: 10.1001/jama.2018.9071. PubMed DOI PMC

Samransamruajkit R, Limprayoon K, Lertbunrian R, et al. The utilization of the surviving sepsis campaign care bundles in the treatment of pediatric patients with severe sepsis or septic shock in a resource-limited environment: a prospective multicenter trial. Indian J Crit Care Med. 2018;22(12):846–851. doi: 10.4103/ijccm.IJCCM_367_18. PubMed DOI PMC

Kortz TB, Axelrod DM, Chisti MJ, Kache S. Clinical outcomes and mortality before and after implementation of a pediatric sepsis protocol in a limited resource setting: A retrospective cohort study in Bangladesh. Plos One. 2017;12(7):e0181160. doi: 10.1371/journal.pone.0181160. PubMed DOI PMC

Lane RD, Olson J, Reeder R, et al. Antibiotic timing in pediatric septic shock. Hosp Pediatr. 2020;10(4):311–317. doi: 10.1542/hpeds.2019-0250. PubMed DOI

Kyo M, Ohshimo S, Kosaka T, Fujita N, Shime N. Impact of inappropriate empiric antimicrobial therapy on mortality in pediatric patients with bloodstream infection: a retrospective observational study. J Chemother. 2019;31(7–8):388–393. doi: 10.1080/1120009X.2019.1623362. PubMed DOI

van Paridon BM, Guerra GG, Sheppard C, Joffe AR, Sepsis AN. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Crit Care. 2015;19:293. doi: 10.1186/s13054-015-1010-x. PubMed DOI PMC

Carapetis JR, Jacoby P, Carville K, Ang SJ, Curtis N, Andrews R. Effectiveness of clindamycin and intravenous immunoglobulin, and risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis. 2014;59(3):358–365. doi: 10.1093/cid/ciu304. PubMed DOI

Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–2417. doi: 10.1097/CCM.0000000000000509. PubMed DOI PMC

Fusco NM, Parbuoni KA, Morgan JA. Time to first antimicrobial administration after onset of sepsis in critically ill children. J Pediatr Pharmacol Ther. 2015;20(1):37–44. doi: 10.5863/1551-6776-20.1.37. PubMed DOI PMC

Han M, Fitzgerald JC, Balamuth F, et al. Association of delayed antimicrobial therapy with one-year mortality in pediatric sepsis. Shock. 2017;48(1):29–35. doi: 10.1097/SHK.0000000000000833. PubMed DOI PMC

Li Q, Cheng J, Wu Y, et al. Effects of delayed antibiotic therapy on outcomes in children with streptococcus pneumoniae sepsis. Antimicrob Agents Chemother. 2019 doi: 10.1128/AAC.00623-19. PubMed DOI PMC

Tran P, Dowell E, Hamilton S, et al. Two blood cultures with age-appropriate volume enhance suspected sepsis decision-making. Open Forum Infect Dis. 2020;7(2):ofaa028. doi: 10.1093/ofid/ofaa028. PubMed DOI PMC

Ventura AM, Shieh HH, Bousso A, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43(11):2292–2302. doi: 10.1097/CCM.0000000000001260. PubMed DOI

Ramaswamy KN, Singhi S, Jayashree M, Bansal A, Nallasamy K. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med. 2016;17(11):e502–e512. doi: 10.1097/PCC.0000000000000954. PubMed DOI

Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):6. doi: 10.1186/s13052-019-0768-x. PubMed DOI PMC

Masarwa R, Paret G, Perlman A, Reif S, Raccah BH, Matok I. Role of vasopressin and terlipressin in refractory shock compared to conventional therapy in the neonatal and pediatric population: a systematic review, meta-analysis, and trial sequential analysis. Crit Care. 2017;21(1):1. doi: 10.1186/s13054-016-1589-6. PubMed DOI PMC

Lampin ME, Rousseaux J, Botte A, Sadik A, Cremer R, Leclerc F. Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatr. 2012;101(9):e426–e430. doi: 10.1111/j.1651-2227.2012.02725.x. PubMed DOI

Michel J, Hofbeck M, Spiller G, Renk H, Kumpf M, Neunhoeffer F. Safety and efficacy of terlipressin in pediatric distributive shock: a retrospective analysis in 20 children. Paediatr Drugs. 2017;19(1):35–41. doi: 10.1007/s40272-016-0199-8. PubMed DOI

Patregnani JT, Sochet AA, Klugman D. Short-term peripheral vasoactive infusions in pediatrics: where is the Harm? Pediatr Crit Care Med. 2017;18(8):e378–e381. doi: 10.1097/PCC.0000000000001230. PubMed DOI

Morin L, Kneyber M, Jansen NJG, et al. Translational gap in pediatric septic shock management: an ESPNIC perspective. Ann Intensive Care. 2019;9(1):73. doi: 10.1186/s13613-019-0545-4. PubMed DOI PMC

Ranjit S, Natraj R, Kandath SK, Kissoon N, Ramakrishnan B, Marik PE. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med. 2016;20(10):561–569. doi: 10.4103/0972-5229.192036. PubMed DOI PMC

Ferguson LP, Thiru Y, Staffa SJ, Guillen Ortega M. Reducing cardiac arrests in the PICU: initiative to improve time to administration of prearrest bolus epinephrine in patients with cardiac disease. Crit Care Med. 2020;48(7):e542–e549. doi: 10.1097/CCM.0000000000004349. PubMed DOI

Gamper G, Havel C, Arrich J, et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2016 doi: 10.1002/14651858.CD003709.pub4. PubMed DOI

Misir A, Mehrotra S. Fluid and medication considerations in the traumatized patient. Curr Pediatr Rev. 2018;14(1):9–27. doi: 10.2174/1573396313666170815101504. PubMed DOI

Health RCoPaC Major trauma and the use of tranexamic acid in children Evidence statement Royal College of Paediatrics and Child Health. November 2012. https://www.rcem.ac.uk/docs/ExternalGuidance/

Patel J, Prajapati M, Patel H, Gandhi H, Deodhar S, Pandya H. Topical and low-dose intravenous tranexamic acid in cyanotic cardiac surgery. Asian Cardiovasc Thorac Ann. 2017;25(2):118–122. doi: 10.1177/0218492316688416. PubMed DOI

O’Neil ER, Schmees LR, Resendiz K, Justino H, Anders MM. Inhaled tranexamic acid as a novel treatment for pulmonary hemorrhage in critically ill pediatric patients: an observational study. Crit Care. 2020;2(1):e0075. doi: 10.1097/CCE.0000000000000075. PubMed DOI PMC

Maeda T, Michihata N, Sasabuchi Y, et al. Safety of tranexamic acid during pediatric trauma: a nationwide database study. Pediatr Crit Care Med. 2018;19(12):e637–e642. doi: 10.1097/PCC.0000000000001724. PubMed DOI

Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX) J Trauma Acute Care Surg. 2014;77(6):852–858. doi: 10.1097/TA.0000000000000443. PubMed DOI

Lin CY, Shuhaiber JH, Loyola H, et al. The safety and efficacy of antifibrinolytic therapy in neonatal cardiac surgery. Plos One. 2015;10(5):e0126514. doi: 10.1371/journal.pone.0126514. PubMed DOI PMC

Zhang Y, Wang R, Wang YH, et al. Effects of tranexamic acid on the blood conservation and the long-term prognosis in pediatric patients undergoing repair for tetralogy of fallot. Zhonghua Yi Xue Za Zhi. 2019;99(45):3564–3567. doi: 10.3760/cma.j.issn.0376-2491.2019.45.007. PubMed DOI

Crash-trial collaborators. Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. doi: 10.1016/S0140-6736(10)60835-5.. PubMed DOI

collaborators C-t. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–1723. doi: 10.1016/S0140-6736(19)32233-0.. PubMed DOI PMC

Menon K, McNally D, Choong K, Sampson M. A systematic review and meta-analysis on the effect of steroids in pediatric shock. Pediatr Crit Care Med. 2013;14(5):474–480. doi: 10.1097/PCC.0b013e31828a8125. PubMed DOI

El-Nawawy A, Khater D, Omar H, Wali Y. Evaluation of early corticosteroid therapy in management of pediatric septic shock in pediatric intensive care patients: a randomized clinical study. Pediatr Infect Dis J. 2017;36(2):155–159. doi: 10.1097/INF.0000000000001380. PubMed DOI

Wong HR, Cvijanovich NZ, Anas N, et al. Endotype transitions during the acute phase of pediatric septic shock reflect changing risk and treatment response. Crit Care Med. 2018;46(3):e242–e249. doi: 10.1097/CCM.0000000000002932. PubMed DOI PMC

Wong HR, Atkinson SJ, Cvijanovich NZ, et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med. 2016;44(10):e1000–e1003. doi: 10.1097/CCM.0000000000001833. PubMed DOI PMC

Nichols B, Kubis S, Hewlett J, Yehya N, Srinivasan V. Hydrocortisone therapy in catecholamine-resistant pediatric septic shock: a pragmatic analysis of clinician practice and association with outcomes. Pediatr Crit Care Med. 2017;18(9):e406–e414. doi: 10.1097/PCC.0000000000001237. PubMed DOI PMC

Menon K, McNally JD, Choong K, et al. A cohort study of pediatric shock: frequency of corticosteriod use and association with clinical outcomes. Shock. 2015;44(5):402–409. doi: 10.1097/SHK.0000000000000355. PubMed DOI

Atkinson SJ, Cvijanovich NZ, Thomas NJ, et al. Corticosteroids and pediatric septic shock outcomes: a risk stratified analysis. Plos One. 2014;9(11):e112702. doi: 10.1371/journal.pone.0112702. PubMed DOI PMC

Cooney L, Hawcutt D, Sinha I. The evidence for intravenous theophylline levels between 10–20 mg/L in children suffering an acute exacerbation of asthma: a systematic review. Plos One. 2016;11(4):e0153877. doi: 10.1371/journal.pone.0153877. PubMed DOI PMC

Cooney L, Sinha I, Hawcutt D. Aminophylline dosage in Asthma exacerbations in children: a systematic review. Plos One. 2016;11(8):e0159965. doi: 10.1371/journal.pone.0159965. PubMed DOI PMC

Mathew JL. Systematic review on efficacy of Magnesium (intravenous or nebulized) for acute asthma episodes in children: evidence-based medicine viewpoint. Indian Pediatr. 2017;54(2):133–136. doi: 10.1007/s13312-017-1016-3. PubMed DOI

Vezina K, Chauhan BF, Ducharme FM. Inhaled anticholinergics and short-acting beta(2)-agonists versus short-acting beta2-agonists alone for children with acute asthma in hospital. Cochrane Database Syst Rev. 2014 doi: 10.1002/14651858.CD010283.pub2. PubMed DOI PMC

Knightly R, Milan SJ, Hughes R, et al. Inhaled magnesium sulfate in the treatment of acute asthma. Cochrane Database Syst Rev. 2017 doi: 10.1002/14651858.CD003898.pub6. PubMed DOI PMC

Keeney GE, Gray MP, Morrison AK, et al. Dexamethasone for acute asthma exacerbations in children: a meta-analysis. Pediatrics. 2014;133(3):493–499. doi: 10.1542/peds.2013-2273. PubMed DOI PMC

Pde SS, Barreto SS. Noninvasive ventilation in status asthmaticus in children: levels of evidence. Rev Bras Ter Intensiva. 2015;27(4):390–396. doi: 10.5935/0103-507X.20150065. PubMed DOI PMC

Liu X, Yu T, Rower JE, Campbell SC, Sherwin CM, Johnson MD. Optimizing the use of intravenous magnesium sulfate for acute asthma treatment in children. Pediatr Pulmonol. 2016;51(12):1414–1421. doi: 10.1002/ppul.23482. PubMed DOI

Hon KLE, Leung AKC. Medications and recent patents for status Asthmaticus in children. Recent Pat Inflamm Allergy Drug Discov. 2017;11(1):12–21. doi: 10.2174/1872213X11666170130143524. PubMed DOI

Pardue Jones B, Fleming GM, Otillio JK, Asokan I, Arnold DH. Pediatric acute asthma exacerbations: evaluation and management from emergency department to intensive care unit. J Asthma. 2016;53(6):607–617. doi: 10.3109/02770903.2015.1067323. PubMed DOI

Tiwari A, Guglani V, Jat KR. Ketamine versus aminophylline for acute asthma in children: a randomized, controlled trial. Ann Thorac Med. 2016;11(4):283–288. doi: 10.4103/1817-1737.191874. PubMed DOI PMC

Cronin JJ, McCoy S, Kennedy U, et al. A randomized trial of single-dose oral dexamethasone versus multidose prednisolone for acute exacerbations of asthma in children who attend the emergency department. Ann Emerg Med. 2016;67(5):593–601e3. doi: 10.1016/j.annemergmed.2015.08.001. PubMed DOI

Paniagua N, Lopez R, Munoz N, et al. Randomized trial of dexamethasone versus prednisone for children with acute asthma exacerbations. J Pediatr. 2017;191(e1):190–196e1. doi: 10.1016/j.jpeds.2017.08.030. PubMed DOI

Alangari AA, Malhis N, Mubasher M, et al. Budesonide nebulization added to systemic prednisolone in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. Chest. 2014;145(4):772–778. doi: 10.1378/chest.13-2298. PubMed DOI

Muchao FP, Souza JM, Torres HC, et al. Albuterol via metered-dose inhaler in children: lower doses are effective, and higher doses are safe. Pediatr Pulmonol. 2016;51(11):1122–1130. doi: 10.1002/ppul.23469. PubMed DOI

Arulparithi CS, Babu TA, Ravichandran C, et al. Efficacy of nebulised budesonide versus oral prednisolone in acute severe asthma. Indian J Pediatr. 2015;82(4):328–332. doi: 10.1007/s12098-014-1498-0. PubMed DOI

Iramain R, Castro-Rodriguez JA, Jara A, et al. Salbutamol and ipratropium by inhaler is superior to nebulizer in children with severe acute asthma exacerbation: randomized clinical trial. Pediatr Pulmonol. 2019;54(4):372–377. doi: 10.1002/ppul.24244. PubMed DOI

Cundiff KM, Gerard JM, Flood RG. Critical care interventions for asthmatic patients admitted from the emergency department to the pediatric intensive care unit. Pediatr Emerg Care. 2018;34(6):385–389. doi: 10.1097/PEC.0000000000001163. PubMed DOI

Hudgins JD, Neuman MI, Monuteaux MC, Porter J, Nelson KA. Provision of guideline-based pediatric asthma care in US emergency departments. Pediatr Emerg Care. 2019 doi: 10.1097/PEC.0000000000001706. PubMed DOI

Golden C, Xu M, Estrada CM, Arnold DH. Clinical outcomes after bilevel positive airway pressure treatment for acute asthma exacerbations. JAMA Pediatr. 2015;169(2):186–188. doi: 10.1001/jamapediatrics.2014.2767. PubMed DOI

Rehder KJ. Adjunct therapies for refractory status Asthmaticus in children. Respir Care. 2017;62(6):849–865. doi: 10.4187/respcare.05174. PubMed DOI

Wisecup S, Eades S, Hashmi SS, Samuels C, Mosquera RA. Diastolic hypotension in pediatric patients with asthma receiving continuous albuterol. J Asthma. 2015;52(7):693–698. doi: 10.3109/02770903.2014.1002566. PubMed DOI

Male I, Richter H, Seddon P. Children’s perception of breathlessness in acute asthma. Arch Dis Child. 2000;83(4):325–329. doi: 10.1136/adc.83.4.325. PubMed DOI PMC

Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev. 2013 doi: 10.1002/14651858.CD000052.pub3. PubMed DOI PMC

Watts K, Chavasse RJ. Leukotriene receptor antagonists in addition to usual care for acute asthma in adults and children. Cochrane Database Syst Rev. 2012 doi: 10.1002/14651858.CD006100.pub2. PubMed DOI PMC

Griffiths B, Ducharme FM. Combined inhaled anticholinergics and short-acting beta2-agonists for initial treatment of acute asthma in children. Cochrane Database Syst Rev. 2013 doi: 10.1002/14651858.CD000060.pub2. PubMed DOI

Edmonds ML, Milan SJ, Camargo CA, Jr., Pollack CV, Rowe BH. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2012 doi: 10.1002/14651858.CD002308.pub2. PubMed DOI PMC

Jat KR, Chawla D. Ketamine for management of acute exacerbations of asthma in children. Cochrane Database Syst Rev. 2012 doi: 10.1002/14651858.CD009293.pub2. PubMed DOI PMC

Le Conte P, Terzi N, Mortamet G, et al. Management of severe asthma exacerbation: guidelines from the Societe Francaise de Medecine d’Urgence, the Societe de Reanimation de Langue Francaise and the French Group for Pediatric Intensive Care and Emergencies. Ann Intensive Care. 2019;9(1):115. doi: 10.1186/s13613-019-0584-x. PubMed DOI PMC

Wei J, Lu Y, Han F, Zhang J, Liu L, Chen Q. Oral dexamethasone vs. oral prednisone for children with acute asthma exacerbations: a systematic review and meta-analysis. Front Pediatr. 2019;7:503. doi: 10.3389/fped.2019.00503. PubMed DOI PMC

Murphy KR, Hong JG, Wandalsen G, et al. Nebulized inhaled corticosteroids in asthma treatment in children 5 years or younger: a systematic review and global expert analysis. J Allergy Clin Immunol Pract. 2020;8(6):1815–1827. doi: 10.1016/j.jaip.2020.01.042. PubMed DOI

Liedtke AG, Lava SAG, Milani GP, et al. Selective ss2-Adrenoceptor agonists and relevant hyperlactatemia: systematic review and meta-analysis. J Clin Med. 2019 doi: 10.3390/jcm9010071. PubMed DOI PMC

Kwon JW. High-flow nasal cannula oxygen therapy in children: a clinical review. Clin Exp Pediatr. 2020;63(1):3–7. doi: 10.3345/kjp.2019.00626. PubMed DOI PMC

Katsunuma T, Fujisawa T, Maekawa T, et al. Low-dose l-isoproterenol versus salbutamol in hospitalized pediatric patients with severe acute exacerbation of asthma: A double-blind, randomized controlled trial. Allergol Int. 2019;68(3):335–341. doi: 10.1016/j.alit.2019.02.001. PubMed DOI

Graff DM, Stevenson MD, Berkenbosch JW. Safety of prolonged magnesium sulfate infusions during treatment for severe pediatric status asthmaticus. Pediatr Pulmonol. 2019;54(12):1941–1947. doi: 10.1002/ppul.24499. PubMed DOI

Messer AF, Sampayo EM, Mothner B, et al. Continuous albuterol in pediatric acute care: study demonstrates safety outside the intensive care unit. Pediatr Qual Saf. 2019;4(6):e225. doi: 10.1097/pq9.0000000000000225. PubMed DOI PMC

Boeschoten S, de Hoog M, Kneyber M, Merkus P, Boehmer A, Buysse C. Current practices in children with severe acute asthma across European PICUs: an ESPNIC survey. Eur J Pediatr. 2020;179(3):455–461. doi: 10.1007/s00431-019-03502-9. PubMed DOI PMC

Kapuscinski CA, Stauber SD, Hutchinson DJ. Escalation in therapy based on intravenous Magnesium sulfate dosing in pediatric patients with asthma exacerbations. J Pediatr Pharmacol Ther. 2020;25(4):314–319. doi: 10.5863/1551-6776-25.4.314. PubMed DOI PMC

Lott C, Alfonzo A, Barelli A, González-Salvado V, Hinkelbein J, Nolan JP, Paal P, Perkins GD, Thies K‑C, Yeung J, Zideman DA, Soar J. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation. 2021;161:152–219. doi: 10.1016/j.resuscitation.2021.02.011. PubMed DOI

Muraro A, Roberts G, Worm M, et al. Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy. 2014;69(8):1026–1045. doi: 10.1111/all.12437. PubMed DOI

Simons FE, Ardusso LR, Bilo MB, et al. International consensus on (ICON) anaphylaxis. World Allergy Organ J. 2014;7(1):9. doi: 10.1186/1939-4551-7-9. PubMed DOI PMC

Simons FE, Ebisawa M, Sanchez-Borges M, et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32. doi: 10.1186/s40413-015-0080-1. PubMed DOI PMC

Shaker MS, Wallace DV, Golden DBK, et al. Anaphylaxis-a 2020 practice parameter update, systematic review, and grading of recommendations, assessment, development and evaluation (GRADE) analysis. J Allergy Clin Immunol. 2020;145(4):1082–1123. doi: 10.1016/j.jaci.2020.01.017. PubMed DOI

Sicherer SH, Simons FER, Section On A, Immunology Epinephrine for first-aid management of anaphylaxis. Pediatrics. 2017 doi: 10.1542/peds.2016-4006. PubMed DOI

Halbrich M, Mack DP, Carr S, Watson W, Kim H. CSACI position statement: epinephrine auto-injectors and children 〈 15 kg. Allergy Asthma Clin Immunol. 2015;11(1):20. doi: 10.1186/s13223-015-0086-9. PubMed DOI PMC

Lieberman P, Nicklas RA, Randolph C, et al. Anaphylaxis—a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015;115(5):341–384. doi: 10.1016/j.anai.2015.07.019. PubMed DOI

Campbell RL, Li JT, Nicklas RA, Sadosty AT, Members of the Joint Task F. Practice Parameter W. Emergency department diagnosis and treatment of anaphylaxis: a practice parameter. Ann Allergy Asthma Immunol. 2014;113(6):599–608. doi: 10.1016/j.anai.2014.10.007. PubMed DOI

Atanaskovic-Markovic M, Gomes E, Cernadas JR, et al. Diagnosis and management of drug-induced anaphylaxis in children: An EAACI position paper. Pediatr Allergy Immunol. 2019;30(3):269–276. doi: 10.1111/pai.13034. PubMed DOI

Turner PJ, Worm M, Ansotegui IJ, et al. Time to revisit the definition and clinical criteria for anaphylaxis? World Allergy Organ J. 2019;12(10):100066. doi: 10.1016/j.waojou.2019.100066. PubMed DOI PMC

Resuscitation AaNZCo. First Aid Management of Anaphylaxis. Australian Resuscitation Council. (https://resus.org.au/editorial-changes-guidelines/).

Liyanage CK, Galappatthy P, Seneviratne SL. Corticosteroids in management of anaphylaxis; a systematic review of evidence. Eur Ann Allergy Clin Immunol. 2017;49(5):196–207. doi: 10.23822/EurAnnACI.1764-1489.15. PubMed DOI

Pourmand A, Robinson C, Syed W, Mazer-Amirshahi M. Biphasic anaphylaxis: a review of the literature and implications for emergency management. Am J Emerg Med. 2018;36(8):1480–1485. doi: 10.1016/j.ajem.2018.05.009. PubMed DOI

Alqurashi W, Ellis AK. Do corticosteroids prevent biphasic anaphylaxis? J Allergy Clin Immunol Pract. 2017;5(5):1194–1205. doi: 10.1016/j.jaip.2017.05.022. PubMed DOI

Wang Y, Allen KJ, Suaini NHA, McWilliam V, Peters RL, Koplin JJ. The global incidence and prevalence of anaphylaxis in children in the general population: A systematic review. Allergy. 2019;74(6):1063–1080. doi: 10.1111/all.13732. PubMed DOI

Posner LS, Camargo CA., Jr. Update on the usage and safety of epinephrine auto-injectors, 2017. Drug Healthc Patient Saf. 2017;9:9–18. doi: 10.2147/DHPS.S121733. PubMed DOI PMC

Tanno LK, Alvarez-Perea A, Pouessel G. Therapeutic approach of anaphylaxis. Curr Opin Allergy Clin Immunol. 2019;19(4):393–401. doi: 10.1097/ACI.0000000000000539. PubMed DOI

Anagnostou K. Anaphylaxis in children: epidemiology, risk factors and management. Curr Pediatr Rev. 2018;14(3):180–186. doi: 10.2174/1573396314666180507115115. PubMed DOI

Farbman KS, Michelson KA. Anaphylaxis in children. Curr Opin Pediatr. 2016;28(3):294–297. doi: 10.1097/MOP.0000000000000340. PubMed DOI PMC

Simons FE, Sampson HA. Anaphylaxis: unique aspects of clinical diagnosis and management in infants (birth to age 2 years) J Allergy Clin Immunol. 2015;135(5):1125–1131. doi: 10.1016/j.jaci.2014.09.014. PubMed DOI

Gabrielli S, Clarke A, Morris J, et al. Evaluation of prehospital management in a Canadian emergency department anaphylaxis cohort. J Allergy Clin Immunol Pract. 2019;7(7):2232–2238e3. doi: 10.1016/j.jaip.2019.04.018. PubMed DOI

Krmpotic K, Weisser C, O’Hanley A, Soder C. Incidence and outcomes of severe anaphylaxis in paediatric patients in atlantic Canada. J Pediatr Intensive Care. 2019;8(2):113–116. doi: 10.1055/s-0039-1683869. PubMed DOI PMC

Maa T, Scherzer DJ, Harwayne-Gidansky I, et al. Prevalence of errors in anaphylaxis in kids (PEAK): a multicenter simulation-based study. J Allergy Clin Immunol Pract. 2020;8(4):1239–1246e3. doi: 10.1016/j.jaip.2019.11.013. PubMed DOI

Choi YJ, Kim J, Jung JY, Kwon H, Park JW. Underuse of epinephrine for pediatric anaphylaxis victims in the emergency department: a population-based study. Allergy Asthma Immunol Res. 2019;11(4):529–537. doi: 10.4168/aair.2019.11.4.529. PubMed DOI PMC

Cohen N, Capua T, Pivko D, Ben-Shoshan M, Benor S, Rimon A. Trends in the diagnosis and management of anaphylaxis in a tertiary care pediatric emergency department. Ann Allergy Asthma Immunol. 2018;121(3):348–352. doi: 10.1016/j.anai.2018.06.033. PubMed DOI

Ruiz Oropeza A, Lassen A, Halken S, Bindslev-Jensen C, Mortz CG. Anaphylaxis in an emergency care setting: a one year prospective study in children and adults. Scand J Trauma Resusc Emerg Med. 2017;25(1):111. doi: 10.1186/s13049-017-0402-0. PubMed DOI PMC

Michelson KA, Monuteaux MC, Neuman MI. Glucocorticoids and hospital length of stay for children with anaphylaxis: a retrospective study. J Pediatr. 2015;167(3):719–724.e1–3. doi: 10.1016/j.jpeds.2015.05.033. PubMed DOI

Fleming JT, Clark S, Camargo CA, Jr., Rudders SA. Early treatment of food-induced anaphylaxis with epinephrine is associated with a lower risk of hospitalization. J Allergy Clin Immunol Pract. 2015;3(1):57–62. doi: 10.1016/j.jaip.2014.07.004. PubMed DOI

van der Valk JPM, Berends I, Gerth van Wijk R, et al. Small percentage of anaphylactic reactions treated with epinephrine during food challenges in Dutch children. Ann Allergy Asthma Immunol. 2018;120(3):300–303. doi: 10.1016/j.anai.2017.08.018. PubMed DOI

Ninchoji T, Iwatani S, Nishiyama M, et al. Current situation of treatment for anaphylaxis in a Japanese pediatric emergency center. Pediatr Emerg Care. 2018;34(4):e64–e67. doi: 10.1097/PEC.0000000000000691. PubMed DOI

Dubus JC, Le MS, Vitte J, et al. Use of epinephrine in emergency department depends on anaphylaxis severity in children. Eur J Pediatr. 2019;178(1):69–75. doi: 10.1007/s00431-018-3246-3. PubMed DOI

Sidhu N, Jones S, Perry T, et al. Evaluation of anaphylaxis management in a pediatric emergency department. Pediatr Emerg Care. 2016;32(8):508–513. doi: 10.1097/PEC.0000000000000864. PubMed DOI

Robinson M, Greenhawt M, Stukus DR. Factors associated with epinephrine administration for anaphylaxis in children before arrival to the emergency department. Ann Allergy Asthma Immunol. 2017;119(2):164–169. doi: 10.1016/j.anai.2017.06.001. PubMed DOI

Latimer AJ, Husain S, Nolan J, et al. Syringe administration of epinephrine by emergency medical technicians for anaphylaxis. Prehosp Emerg Care. 2018;22(3):319–325. doi: 10.1080/10903127.2017.1392667. PubMed DOI

Cristiano LM, Hiestand B, Caldwell JW, et al. Prehospital administration of epinephrine in pediatric anaphylaxis—a statewide perspective. Prehosp Emerg Care. 2018;22(4):452–456. doi: 10.1080/10903127.2017.1399184. PubMed DOI

Carrillo E, Hern HG, Barger J. Prehospital administration of epinephrine in pediatric anaphylaxis. Prehosp Emerg Care. 2016;20(2):239–244. doi: 10.3109/10903127.2015.1086843. PubMed DOI

Andrew E, Nehme Z, Bernard S, Smith K. Pediatric anaphylaxis in the prehospital setting: incidence, characteristics, and management. Prehosp Emerg Care. 2018;22(4):445–451. doi: 10.1080/10903127.2017.1402110. PubMed DOI

Kim L, Nevis IF, Tsai G, et al. Children under 15 kg with food allergy may be at risk of having epinephrine auto-injectors administered into bone. Allergy Asthma Clin Immunol. 2014;10(1):40. doi: 10.1186/1710-1492-10-40. PubMed DOI PMC

Topal E, Bakirtas A, Yilmaz O, et al. Anaphylaxis in infancy compared with older children. Allergy Asthma Proc. 2013;34(3):233–238. doi: 10.2500/aap.2013.34.3658. PubMed DOI

Grabenhenrich LB, Dolle S, Moneret-Vautrin A, et al. Anaphylaxis in children and adolescents: the European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137(4):1128–1137e1. doi: 10.1016/j.jaci.2015.11.015. PubMed DOI

Loprinzi Brauer CE, Motosue MS, Li JT, et al. Prospective validation of the NIAID/FAAN criteria for emergency department diagnosis of Anaphylaxis. J Allergy Clin Immunol Pract. 2016;4(6):1220–1226. doi: 10.1016/j.jaip.2016.06.003. PubMed DOI

Mintegi S, Azkunaga B, Prego J, et al. International epidemiological differences in acute poisonings in pediatric emergency departments. Pediatr Emerg Care. 2019;35(1):50–57. doi: 10.1097/PEC.0000000000001031. PubMed DOI

Avau B, Borra V, Vanhove AC, Vandekerckhove P, De Paepe P, De Buck E. First aid interventions by laypeople for acute oral poisoning. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD013230. PubMed DOI PMC

Mintegi S, Dalziel SR, Azkunaga B, et al. International variability in gastrointestinal decontamination with acute poisonings. Pediatrics. 2017 doi: 10.1542/peds.2017-0006. PubMed DOI

Quinn N, Palmer CS, Bernard S, Noonan M, Teague WJ. Thoracostomy in children with severe trauma: an overview of the paediatric experience in Victoria, Australia. Emerg Med Australas. 2020;32(1):117–126. doi: 10.1111/1742-6723.13392. PubMed DOI

Terboven T, Leonhard G, Wessel L, et al. Chest wall thickness and depth to vital structures in paediatric patients—implications for prehospital needle decompression of tension pneumothorax. Scand J Trauma Resusc Emerg Med. 2019;27(1):45. doi: 10.1186/s13049-019-0623-5. PubMed DOI PMC

Leonhard G, Overhoff D, Wessel L, et al. Determining optimal needle size for decompression of tension pneumothorax in children—a CT-based study. Scand J Trauma Resusc Emerg Med. 2019;27(1):90. doi: 10.1186/s13049-019-0671-x. PubMed DOI PMC

Pelland-Marcotte MC, Tucker C, Klaassen A, et al. Outcomes and risk factors of massive and submassive pulmonary embolism in children: a retrospective cohort study. Lancet Haematol. 2019;6(3):e144–e153. doi: 10.1016/S2352-3026(18)30224-2. PubMed DOI

Morgan JK, Brown J, Bray RM. Resilience as a moderating factor between stress and alcohol-related consequences in the Army National Guard. Addict Behav. 2018;80:22–27. doi: 10.1016/j.addbeh.2018.01.002. PubMed DOI

Belsky J, Warren P, Stanek J, Kumar R. Catheter-directed thrombolysis for submassive pulmonary embolism in children: a case series. Pediatr Blood Cancer. 2020;67(4):e28144. doi: 10.1002/pbc.28144. PubMed DOI

Akam-Venkata J, Forbes TJ, Schreiber T, et al. Catheter-directed therapy for acute pulmonary embolism in children. Cardiol Young. 2018 doi: 10.1017/S1047951118002135. PubMed DOI

Kayashima K. Factors affecting survival in pediatric cardiac tamponade caused by central venous catheters. J Anesth. 2015;29(6):944–952. doi: 10.1007/s00540-015-2045-5. PubMed DOI

Jat KR, Lodha R, Kabra SK. Arrhythmias in children. Indian J Pediatr. 2011;78(2):211–218. doi: 10.1007/s12098-010-0276-x. PubMed DOI

Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and management of bradycardia in neonates and children. Eur J Pediatr. 2016;175(2):151–161. doi: 10.1007/s00431-015-2689-z. PubMed DOI

Eisa L, Passi Y, Lerman J, Raczka M, Heard C. Do small doses of atropine (〈0.1 mg) cause bradycardia in young children? Arch Dis Child. 2015;100(7):684–688. doi: 10.1136/archdischild-2014-307868. PubMed DOI

Brugada J, Blom N, Sarquella-Brugada G, et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace. 2013;15(9):1337–1382. doi: 10.1093/europace/eut082. PubMed DOI

Brugada J, Katritsis DG, Arbelo E, et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardiaThe Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC) Eur Heart J. 2020;41(5):655–720. doi: 10.1093/eurheartj/ehz467. PubMed DOI

BET 1: Intraosseous adenosine for the termination of paroxysmal supraventricular tachycardia in children. Emergency Medicine 2014;31(7):604–605. 10.1136/emermed-2014-203947.1. PubMed

Quail MA, Till J. Question 3 Does a higher initial dose of adenosine improve cardioversion rates in supraventricular tachycardia? Arch Dis Child. 2012;97(2):177–179. doi: 10.1136/archdischild-2011-301079. PubMed DOI

Campbell M, Buitrago SR. BET 2: Ice water immersion, other vagal manoeuvres or adenosine for SVT in children. Emerg Med Clin North Am. 2017;34(1):58–60. doi: 10.1136/emermed-2016-206487.2. PubMed DOI

Richardson C, Silver ES. Management of supraventricular tachycardia in infants. Paediatr Drugs. 2017;19(6):539–551. doi: 10.1007/s40272-017-0254-0. PubMed DOI

Bronzetti G, Brighenti M, Mariucci E, et al. Upside-down position for the out of hospital management of children with supraventricular tachycardia. Int J Cardiol. 2018;252:106–109. doi: 10.1016/j.ijcard.2017.10.120. PubMed DOI

Gill BU, Bukhari SN, Rashid MA, Saleemi MS, Zaffar MZ. Comparing the efficacy of intravenous adenosine and verapamil in termination of acute paroxysmal supra ventricular tachycardia. J Ayub Med Coll Abbottabad. 2014;26(1):29–31. PubMed

Clausen H, Theophilos T, Jackno K, Babl FE. Paediatric arrhythmias in the emergency department. Emerg Med Clin North Am. 2012;29(9):732–737. doi: 10.1136/emermed-2011-200242. PubMed DOI

Chrysostomou C, Morell VO, Wearden P, Sanchez-de-Toledo J, Jooste EH, Beerman L. Dexmedetomidine: therapeutic use for the termination of reentrant supraventricular tachycardia. Congenit Heart Dis. 2013;8(1):48–56. doi: 10.1111/j.1747-0803.2012.00669.x. PubMed DOI

Moffett BS, Lupo PJ, dela Uz CM, et al. Efficacy of digoxin in comparison with propranolol for treatment of infant supraventricular tachycardia: analysis of a large, national database. Cardiol Young. 2015;25(6):1080–1085. doi: 10.1017/S1047951114001619. PubMed DOI

Qureshi AU, Hyder SN, Sheikh AM, Sadiq M. Optimal dose of adenosine effective for supraventricular tachycardia in children. J Coll Physicians Surg Pak. 2012;22(10):648–651. doi: 10.2012/JCPSP.648651. PubMed DOI

Chu PY, Hill KD, Clark RH, Smith PB, Hornik CP. Treatment of supraventricular tachycardia in infants: analysis of a large multicenter database. Early Hum Dev. 2015;91(6):345–350. doi: 10.1016/j.earlhumdev.2015.04.001. PubMed DOI PMC

Diaz-Parra S, Sanchez-Yanez P, Zabala-Arguelles I, et al. Use of adenosine in the treatment of supraventricular tachycardia in a pediatric emergency department. Pediatr Emerg Care. 2014;30(6):388–393. doi: 10.1097/PEC.0000000000000144. PubMed DOI

Morello ML, Khoury PR, Knilans TK, et al. Risks and outcomes of direct current cardioversion in children and young adults with congenital heart disease. Pacing Clin Electrophysiol. 2018;41(5):472–479. doi: 10.1111/pace.13315. PubMed DOI

Lewis J, Arora G, Tudorascu DL, Hickey RW, Saladino RA, Manole MD. Acute management of refractory and unstable pediatric supraventricular tachycardia. J Pediatr. 2017;181:177–182e2. doi: 10.1016/j.jpeds.2016.10.051. PubMed DOI

Kim JH, Jung JY, Lee SU, Park JW, Choi JY. Delayed adenosine therapy is associated with the refractory supraventricular tachycardia in children. Am J Emerg Med. 2020;38(11):2291–2296. doi: 10.1016/j.ajem.2019.10.018. PubMed DOI

Weberding NT, Saladino RA, Minnigh MB, et al. Adenosine administration with a stopcock technique delivers lower-than-intended drug doses. Ann Emerg Med. 2018;71(2):220–224. doi: 10.1016/j.annemergmed.2017.09.002. PubMed DOI

Palatinus JA, Lieber SB, Joyce KE, Richards JB. Extracorporeal membrane oxygenation support for hypokalemia-induced cardiac arrest: a case report and review of the literature. J Emerg Med. 2015;49(2):159–164. doi: 10.1016/j.jemermed.2015.02.046. PubMed DOI

Rehman Siddiqu NU, Merchant Q, Hasan BS, et al. Comparison of enteral versus intravenous potassium supplementation in hypokalaemia in paediatric patients in intensive care post cardiac surgery: open-label randomised equivalence trial (EIPS) BMJ Open. 2017;7(5):e011179. doi: 10.1136/bmjopen-2016-011179. PubMed DOI PMC

Amirnovin R, Lieu P, Imperial-Perez F, Taketomo C, Markovitz BP, Moromisato DY. Safety, efficacy, and timeliness of intravenous potassium chloride replacement protocols in a pediatric cardiothoracic intensive care unit. J Intensive Care Med. 2020;35(4):371–377. doi: 10.1177/0885066617752659. PubMed DOI

Knudson JD, Lowry AW, Price JF, Moffett BS. Response to intravenous potassium chloride supplementation in pediatric cardiac intensive care patients. Pediatr Cardiol. 2013;34(4):887–892. doi: 10.1007/s00246-012-0565-4. PubMed DOI

Varallo FR, Trombotto V, Lucchetta RC, Mastroianni PC. Efficacy and safety of the pharmacotherapy used in the management of hyperkalemia: a systematic review. J Pharm Pract. 2019;17(1):1361. doi: 10.18549/PharmPract.2019.1.1361. PubMed DOI PMC

Depret F, Peacock WF, Liu KD, Rafique Z, Rossignol P, Legrand M. Management of hyperkalemia in the acutely ill patient. Ann Intensive Care. 2019;9(1):32. doi: 10.1186/s13613-019-0509-8. PubMed DOI PMC

Chime NO, Luo X, McNamara L, Nishisaki A, Hunt EA. A survey demonstrating lack of consensus on the sequence of medications for treatment of hyperkalemia among pediatric critical care providers. Pediatr Crit Care Med. 2015;16(5):404–409. doi: 10.1097/PCC.0000000000000384. PubMed DOI

Howard-Quijano KJ, Stiegler MA, Huang YM, Canales C, Steadman RH. Anesthesiology residents’ performance of pediatric resuscitation during a simulated hyperkalemic cardiac arrest. Anesthesiology. 2010;112(4):993–997. doi: 10.1097/ALN.0b013e3181d31fbe. PubMed DOI

Arnholt AM, Duval-Arnould JM, McNamara LM, Rosen MA, Singh K, Hunt EA. Comparatively evaluating medication preparation sequences for treatment of hyperkalemia in pediatric cardiac arrest: a prospective, randomized, simulation-based study. Pediatr Crit Care Med. 2015;16(7):e224–e230. doi: 10.1097/PCC.0000000000000497. PubMed DOI

Lee J, Moffett BS. Treatment of pediatric hyperkalemia with sodium polystyrene sulfonate. Pediatr Nephrol. 2016;31(11):2113–2117. doi: 10.1007/s00467-016-3414-5. PubMed DOI

Abraham MB, Jones TW, Naranjo D, et al. ISPAD clinical practice consensus guidelines 2018: assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes. 2018;19(Suppl 27):178–192. doi: 10.1111/pedi.12698. PubMed DOI

Weston PJ, Harris DL, Battin M, Brown J, Hegarty JE, Harding JE. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst Rev. 2016 doi: 10.1002/14651858.CD011027.pub2. PubMed DOI

De Buck E, Borra V, Carlson JN, Zideman DA, Singletary EM, Djarv T. First aid glucose administration routes for symptomatic hypoglycaemia. Cochrane Database Syst Rev. 2019 doi: 10.1002/14651858.CD013283.pub2. PubMed DOI PMC

Kim SY. Endocrine and metabolic emergencies in children: hypocalcemia, hypoglycemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis. Ann Pediatr Endocrinol Metab. 2015;20(4):179–186. doi: 10.6065/apem.2015.20.4.179. PubMed DOI PMC

Rostykus P, Kennel J, Adair K, et al. Variability in the treatment of prehospital hypoglycemia: a structured review of EMS protocols in the United States. Prehosp Emerg Care. 2016;20(4):524–530. doi: 10.3109/10903127.2015.1128031. PubMed DOI

Remick K, Redgate C, Ostermayer D, Kaji AH, Gausche-Hill M. Prehospital glucose testing for children with seizures: a proposed change in management. Prehosp Emerg Care. 2017;21(2):216–221. doi: 10.1080/10903127.2016.1218979. PubMed DOI

Walsh BM, Gangadharan S, Whitfill T, et al. Safety threats during the care of infants with hypoglycemic seizures in the emergency department: a multicenter, simulation-based prospective cohort study. J Emerg Med. 2017;53(4):467–474e7. doi: 10.1016/j.jemermed.2017.04.028. PubMed DOI

Sherr JL, Ruedy KJ, Foster NC, et al. Glucagon nasal powder: a promising alternative to Intramuscular Glucagon in youth with type 1 diabetes. Diabetes Care. 2016;39(4):555–562. doi: 10.2337/dc15-1606. PubMed DOI PMC

Singletary EM, Zideman DA, Bendall JC, et al. 2020 international consensus on first aid science with treatment recommendations. Resuscitation. 2020;156:A240–A282. doi: 10.1016/j.resuscitation.2020.09.016. PubMed DOI

Lipman GS, Gaudio FG, Eifling KP, Ellis MA, Otten EM, Grissom CK. Wilderness medical society clinical practice guidelines for the prevention and treatment of heat illness: 2019 update. Wilderness Environ Med. 2019;30(4S):S33–S46. doi: 10.1016/j.wem.2018.10.004. PubMed DOI

Tate RC, Selde W. Heat trap. How to treat vehicular hyperthermia in children. JEMS. 2013;38(7):36–38, 40, 42. PubMed

Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93. doi: 10.1186/s13023-015-0310-1. PubMed DOI PMC

Jardine DS. Heat illness and heat stroke. Pediatr Rev. 2007;28(7):249–258. doi: 10.1542/pir.28-7-249. PubMed DOI

Nelson P, Litman RS. Malignant hyperthermia in children: an analysis of the North American malignant hyperthermia registry. Anesth Analg. 2014;118(2):369–374. doi: 10.1213/ANE.0b013e3182a8fad0. PubMed DOI

Adato B, Dubnov-Raz G, Gips H, Heled Y, Epstein Y. Fatal heat stroke in children found in parked cars: autopsy findings. Eur J Pediatr. 2016;175(9):1249–1252. doi: 10.1007/s00431-016-2751-5. PubMed DOI

Natsume J, Hamano SI, Iyoda K, et al. New guidelines for management of febrile seizures in Japan. Brain Dev. 2017;39(1):2–9. doi: 10.1016/j.braindev.2016.06.003. PubMed DOI

Glauser T, Shinnar S, Gloss D, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the guideline committee of the American Epilepsy Society. Epilepsy Curr. 2016;16(1):48–61. doi: 10.5698/1535-7597-16.1.48. PubMed DOI PMC

Health NSW Infants and children—acute management of seizures. New South Wales health. https://www1.health.nsw.gov.au/pds/ActivePDSDocuments/GL2018_015.pdf (Erstellt: 7. Juni 2018)

Li L, Zhang Y, Jia L, et al. Levetiracetam versus phenytoin for the treatment of established status epilepticus: a systematic review and meta-analysis of randomized controlled trials. Seizure. 2020;78:43–48. doi: 10.1016/j.seizure.2020.03.002. PubMed DOI

Chen D, Bian H, Zhang L. A meta-analysis of levetiracetam for randomized placebo-controlled trials in patients with refractory epilepsy. Neuropsychiatr Dis Treat. 2019;15:905–917. doi: 10.2147/NDT.S188111. PubMed DOI PMC

Sanchez Fernandez I, Gainza-Lein M, Lamb N, Loddenkemper T. Meta-analysis and cost-effectiveness of second-line antiepileptic drugs for status epilepticus. Neurology. 2019;92(20):e2339–e2348. doi: 10.1212/WNL.0000000000007503. PubMed DOI

Brigo F, Bragazzi NL, Bacigaluppi S, Nardone R, Trinka E. Is intravenous lorazepam really more effective and safe than intravenous diazepam as first-line treatment for convulsive status epilepticus? A systematic review with meta-analysis of randomized controlled trials. Epilepsy Behav. 2016;64(Pt A):29–36. doi: 10.1016/j.yebeh.2016.09.020. PubMed DOI

Ortiz de la Rosa JS, Ladino LD, Rodriguez PJ, Rueda MC, Polania JP, Castaneda AC. Efficacy of lacosamide in children and adolescents with drug-resistant epilepsy and refractory status epilepticus: a systematic review. Seizure. 2018;56:34–40. doi: 10.1016/j.seizure.2018.01.014. PubMed DOI

Uppal P, Cardamone M, Lawson JA. Outcomes of deviation from treatment guidelines in status epilepticus: a systematic review. Seizure. 2018;58:147–153. doi: 10.1016/j.seizure.2018.04.005. PubMed DOI

Au CC, Branco RG, Tasker RC Management protocols for status epilepticus in the pediatric emergency room: systematic review article. J Pediatr. 2017;93(Suppl 1):84–94. doi: 10.1016/j.jped.2017.08.004. PubMed DOI

Zhao ZY, Wang HY, Wen B, Yang ZB, Feng K, Fan JC. A comparison of Midazolam, Lorazepam, and diazepam for the treatment of status epilepticus in children: a network meta-analysis. J Child Neurol. 2016;31(9):1093–1107. doi: 10.1177/0883073816638757. PubMed DOI

Trinka E, Hofler J, Zerbs A, Brigo F. Efficacy and safety of intravenous valproate for status epilepticus: a systematic review. CNS Drugs. 2014;28(7):623–639. doi: 10.1007/s40263-014-0167-1. PubMed DOI PMC

Strzelczyk A, Zollner JP, Willems LM, et al. Lacosamide in status epilepticus: systematic review of current evidence. Epilepsia. 2017;58(6):933–950. doi: 10.1111/epi.13716. PubMed DOI

Jain P, Sharma S, Dua T, Barbui C, Das RR, Aneja S. Efficacy and safety of anti-epileptic drugs in patients with active convulsive seizures when no IV access is available: systematic review and meta-analysis. Epilepsy Res. 2016;122:47–55. doi: 10.1016/j.eplepsyres.2016.02.006. PubMed DOI

McTague A, Martland T, Appleton R. Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD001905.pub3. PubMed DOI PMC

Alshehri A, Abulaban A, Bokhari R, et al. Intravenous versus nonintravenous benzodiazepines for the cessation of seizures: a systematic review and meta-analysis of randomized controlled trials. Acad Emerg Med. 2017;24(7):875–883. doi: 10.1111/acem.13190. PubMed DOI

Sanchez Fernandez I, Goodkin HP, Scott RC. Pathophysiology of convulsive status epilepticus. Seizure. 2019;68:16–21. doi: 10.1016/j.seizure.2018.08.002. PubMed DOI PMC

Ciccone O, Mathews M, Birbeck GL. Management of acute seizures in children: a review with special consideration of care in resource-limited settings. Afr J Emerg Med. 2017;7(Suppl):S3–S9. doi: 10.1016/j.afjem.2017.09.003. PubMed DOI PMC

Silverman EC, Sporer KA, Lemieux JM, et al. Prehospital care for the adult and pediatric seizure patient: current evidence-based recommendations. West J Emerg Med. 2017;18(3):419–436. doi: 10.5811/westjem.2016.12.32066. PubMed DOI PMC

Lawton B, Davis T, Goldstein H, Tagg A. An update in the initial management of paediatric status epilepticus. Curr Opin Pediatr. 2018;30(3):359–363. doi: 10.1097/MOP.0000000000000616. PubMed DOI

Stredny CM, Abend NS, Loddenkemper T. Towards acute pediatric status epilepticus intervention teams: do we need “Seizure Codes”? Seizure. 2018;58:133–140. doi: 10.1016/j.seizure.2018.04.011. PubMed DOI

Smith DM, McGinnis EL, Walleigh DJ, Abend NS. Management of status epilepticus in children. J Clin Med. 2016 doi: 10.3390/jcm5040047. PubMed DOI PMC

Kapur J, Elm J, Chamberlain JM, et al. Randomized trial of three anticonvulsant medications for status epilepticus. N Engl J Med. 2019;381(22):2103–2113. doi: 10.1056/NEJMoa1905795. PubMed DOI PMC

Alansari K, Barkat M, Mohamed AH, Al Jawala SA, Othman SA. Intramuscular versus buccal midazolam for pediatric seizures: a randomized double-blinded trial. Pediatr Neurol. 2020;109:28–34. doi: 10.1016/j.pediatrneurol.2020.03.011. PubMed DOI

Vignesh V, Rameshkumar R, Mahadevan S. Comparison of Phenytoin, Valproate and Levetiracetam in pediatric convulsive status Epilepticus: a randomized double-blind controlled clinical trial. Indian Pediatr. 2020;57(3):222–227. doi: 10.1007/s13312-020-1755-4. PubMed DOI

Chamberlain JM, Kapur J, Shinnar S, et al. Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet. 2020;395(10231):1217–1224. doi: 10.1016/S0140-6736(20)30611-5.. PubMed DOI PMC

Chamberlain DB, Chamberlain JM. Making sense of a negative clinical trial result: a Bayesian analysis of a clinical trial of lorazepam and diazepam for pediatric status epilepticus. Ann Emerg Med. 2017;69(1):117–124. doi: 10.1016/j.annemergmed.2016.08.449. PubMed DOI

Portela JL, Garcia PC, Piva JP, et al. Intramuscular midazolam versus intravenous diazepam for treatment of seizures in the pediatric emergency department: a randomized clinical trial. Med Intensiva. 2015;39(3):160–166. doi: 10.1016/j.medin.2014.04.003. PubMed DOI

Singh K, Aggarwal A, Faridi MMA, Sharma S. IV Levetiracetam versus IV phenytoin in childhood seizures: a randomized controlled trial. J Pediatr Neurosci. 2018;13(2):158–164. doi: 10.4103/jpn.JPN_126_17. PubMed DOI PMC

Khajeh A, Yaghoubinia F, Yaghoubi S, Fayyazi A, Miri Aliabad G. Comparison of the effect of phenobarbital versus sodium Valproate in management of children with status epilepticus. Iran J Child Neurol. 2018;12(4):85–93. PubMed PMC

Lyttle MD, Rainford NEA, Gamble C, et al. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet. 2019;393(10186):2125–2134. doi: 10.1016/S0140-6736(19)30724-X. PubMed DOI PMC

Birbeck GL, Herman ST, Capparelli EV, et al. A clinical trial of enteral Levetiracetam for acute seizures in pediatric cerebral malaria. BMC Pediatr. 2019;19(1):399. doi: 10.1186/s12887-019-1766-2. PubMed DOI PMC

Wani G, Imran A, Dhawan N, Gupta A, Giri JI. Levetiracetam versus phenytoin in children with status epilepticus. J Family Med Prim Care. 2019;8(10):3367–3371. doi: 10.4103/jfmpc.jfmpc_750_19. PubMed DOI PMC

Silbergleit R, Elm JJ. Levetiracetam no better than phenytoin in children with convulsive status epilepticus. Lancet. 2019;393(10186):2101–2102. doi: 10.1016/S0140-6736(19)30896-7.. PubMed DOI

Momen AA, Azizi Malamiri R, Nikkhah A, et al. Efficacy and safety of intramuscular midazolam versus rectal diazepam in controlling status epilepticus in children. Eur J Paediatr Neurol. 2015;19(2):149–154. doi: 10.1016/j.ejpn.2014.11.007. PubMed DOI

Welch RD, Nicholas K, Durkalski-Mauldin VL, et al. Intramuscular midazolam versus intravenous lorazepam for the prehospital treatment of status epilepticus in the pediatric population. Epilepsia. 2015;56(2):254–262. doi: 10.1111/epi.12905. PubMed DOI PMC

Burman RJ, Ackermann S, Shapson-Coe A, Ndondo A, Buys H, Wilmshurst JM. A comparison of parenteral phenobarbital vs. parenteral phenytoin as second-line management for pediatric convulsive status Epilepticus in a resource-limited setting. Front Neurol. 2019;10:506. doi: 10.3389/fneur.2019.00506. PubMed DOI PMC

Noureen N, Khan S, Khursheed A, et al. Clinical efficacy and safety of injectable levetiracetam versus phenytoin as second-line therapy in the management of generalized convulsive status Epilepticus in children: an open-label randomized controlled trial. J Clin Neurol. 2019;15(4):468–472. doi: 10.3988/jcn.2019.15.4.468. PubMed DOI PMC

Dalziel SR, Borland ML, Furyk J, et al. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet. 2019;393(10186):2135–2145. doi: 10.1016/S0140-6736(19)30722-6. PubMed DOI

Chiarello D, Duranti F, Lividini A, et al. Clinical characterization of status epilepticus in childhood: a retrospective study in 124 patients. Seizure. 2020;78:127–133. doi: 10.1016/j.seizure.2020.03.019. PubMed DOI

Wang T, Wang J, Dou Y, et al. Clinical characteristics and prognosis in a large paediatric cohort with status epilepticus. Seizure. 2020;80:5–11. doi: 10.1016/j.seizure.2020.04.001. PubMed DOI

Sanchez Fernandez I, Abend NS, Agadi S, et al. Time from convulsive status epilepticus onset to anticonvulsant administration in children. Neurology. 2015;84(23):2304–2311. doi: 10.1212/WNL.0000000000001673. PubMed DOI PMC

Lee YJ, Yum MS, Kim EH, Ko TS. Intravenous levetiracetam versus phenobarbital in children with status epilepticus or acute repetitive seizures. Korean J Pediatr. 2016;59(1):35–39. doi: 10.3345/kjp.2016.59.1.35. PubMed DOI PMC

Incecik F, Horoz OO, Herguner OM, et al. Intravenous levetiracetam in critically ill children. Ann Indian Acad Neurol. 2016;19(1):79–82. doi: 10.4103/0972-2327.167702. PubMed DOI PMC

Johnson PN, Nguyen A, Neely SB, Johnson M. Intramuscular Lorazepam for status epilepticus in children with complex medical and physical disabilities. Ann Pharmacother. 2017;51(8):656–662. doi: 10.1177/1060028017706522. PubMed DOI

Santhanam I, Yoganathan S, Sivakumar VA, Ramakrishnamurugan R, Sathish S, Thandavarayan M. Predictors of outcome in children with status epilepticus during resuscitation in pediatric emergency department: a retrospective observational study. Ann Indian Acad Neurol. 2017;20(2):142–148. doi: 10.4103/aian.AIAN_369_16. PubMed DOI PMC

Nishiyama M, Nagase H, Tomioka K, et al. Fosphenytoin vs. continuous midazolam for pediatric febrile status epilepticus. Brain Dev. 2018;40(10):884–890. doi: 10.1016/j.braindev.2018.08.001. PubMed DOI

Ulusoy E, Duman M, Turker HD, et al. The effect of early midazolam infusion on the duration of pediatric status epilepticus patients. Seizure. 2019;71:50–55. doi: 10.1016/j.seizure.2019.06.011. PubMed DOI

Theusinger OM, Schenk P, Dette-Oltmann K, Mariotti S, Baulig W. Treatment of seizures in children and adults in the emergency medical system of the city of zurich, Switzerland—Midazolam vs. Diazepam—a retrospective analysis. J Emerg Med. 2019;57(3):345–353. doi: 10.1016/j.jemermed.2019.05.036. PubMed DOI

Tasker RC, Goodkin HP, Sanchez Fernandez I, et al. Refractory status epilepticus in children: intention to treat with continuous infusions of Midazolam and pentobarbital. Pediatr Crit Care Med. 2016;17(10):968–975. doi: 10.1097/PCC.0000000000000900. PubMed DOI PMC

Shtull-Leber E, Silbergleit R, Meurer WJ. Pre-hospital midazolam for benzodiazepine-treated seizures before and after the rapid anticonvulsant medication prior to arrival trial: a national observational cohort study. Plos One. 2017;12(3):e0173539. doi: 10.1371/journal.pone.0173539. PubMed DOI PMC

Gurcharran K, Grinspan ZM. The burden of pediatric status epilepticus: epidemiology, morbidity, mortality, and costs. Seizure. 2019;68:3–8. doi: 10.1016/j.seizure.2018.08.021. PubMed DOI

Isguder R, Guzel O, Ceylan G, Yilmaz U, Agin H. A comparison of intravenous levetiracetam and valproate for the treatment of refractory status epilepticus in children. J Child Neurol. 2016;31(9):1120–1126. doi: 10.1177/0883073816641187. PubMed DOI

Olasveengen TM, Mancini ME, Perkins GD, et al. Adult basic life support: international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2020;156:A35–A79. doi: 10.1016/j.resuscitation.2020.09.010. PubMed DOI PMC

Zhan L, Yang LJ, Huang Y, He Q, Liu GJ. Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2017 doi: 10.1002/14651858.CD010134.pub2. PubMed DOI PMC

Maeda T, Yamashita A, Myojo Y, Wato Y, Inaba H. Augmented survival of out-of-hospital cardiac arrest victims with the use of mobile phones for emergency communication under the DA-CPR protocol getting information from callers beside the victim. Resuscitation. 2016;107:80–87. doi: 10.1016/j.resuscitation.2016.08.010. PubMed DOI

Steensberg AT, Eriksen MM, Andersen LB, et al. Bystander capability to activate speaker function for continuous dispatcher assisted CPR in case of suspected cardiac arrest. Resuscitation. 2017;115:52–55. doi: 10.1016/j.resuscitation.2017.04.002. PubMed DOI

Mortensen RB, Hoyer CB, Pedersen MK, Brindley PG, Nielsen JC. Comparison of the quality of chest compressions on a dressed versus an undressed manikin: a controlled, randomised, cross-over simulation study. Scand J Trauma Resusc Emerg Med. 2010;18:16. doi: 10.1186/1757-7241-18-16. PubMed DOI PMC

Birkenes TS, Myklebust H, Kramer-Johansen J. Time delays and capability of elderly to activate speaker function for continuous telephone CPR. Scand J Trauma Resusc Emerg Med. 2013;21:40. doi: 10.1186/1757-7241-21-40. PubMed DOI PMC

Eisenberg Chavez D, Meischke H, Painter I, Rea TD. Should dispatchers instruct lay bystanders to undress patients before performing CPR? A randomized simulation study. Resuscitation. 2013;84(7):979–981. doi: 10.1016/j.resuscitation.2012.12.010. PubMed DOI

Tobin JM, Ramos WD, Greenshields J, et al. Outcome of conventional bystander cardiopulmonary resuscitation in cardiac arrest following drowning. Prehosp Disaster med. 2020;35(2):141–147. doi: 10.1017/S1049023X20000060. PubMed DOI

Naim MY, Burke RV, McNally BF, et al. Association of bystander cardiopulmonary resuscitation with overall and neurologically favorable survival after pediatric out-of-hospital cardiac arrest in the United States: a report from the cardiac arrest registry to enhance survival surveillance registry. JAMA Pediatr. 2017;171(2):133–141. doi: 10.1001/jamapediatrics.2016.3643. PubMed DOI

Fukuda T, Ohashi-Fukuda N, Kobayashi H, et al. Conventional versus compression-only versus no-bystander cardiopulmonary resuscitation for pediatric out-of-hospital cardiac arrest. Circulation. 2016;134(25):2060–2070. doi: 10.1161/CIRCULATIONAHA.116.023831. PubMed DOI

Sutton RM, Reeder RW, Landis WP, et al. Ventilation rates and pediatric in-hospital cardiac arrest survival outcomes. Crit Care Med. 2019;47(11):1627–1636. doi: 10.1097/CCM.0000000000003898. PubMed DOI PMC

Derkenne C, Jost D, Thabouillot O, et al. Improving emergency call detection of out-of-hospital cardiac arrests in the greater paris area: efficiency of a global system with a new method of detection. Resuscitation. 2020;146:34–42. doi: 10.1016/j.resuscitation.2019.10.038. PubMed DOI

Donoghue AJ, Kou M, Good GL, et al. Impact of personal protective equipment on pediatric cardiopulmonary resuscitation performance: a controlled trial. Pediatr Emerg Care. 2020;36(6):267–273. doi: 10.1097/PEC.0000000000002109. PubMed DOI PMC

De Maio VJ, Osmond MH, Stiell IG, et al. Epidemiology of out-of hospital pediatric cardiac arrest due to trauma. Prehosp Emerg Care. 2012;16(2):230–236. doi: 10.3109/10903127.2011.640419. PubMed DOI

Vassallo J, Webster M, Barnard EBG, Lyttle MD, Smith JE, Peruki Epidemiology and aetiology of paediatric traumatic cardiac arrest in England and Wales. Arch Dis Child. 2019;104(5):437–443. doi: 10.1136/archdischild-2018-314985. PubMed DOI

Deasy C, Bray J, Smith K, et al. Paediatric traumatic out-of-hospital cardiac arrests in Melbourne, Australia. Resuscitation. 2012;83(4):471–475. doi: 10.1016/j.resuscitation.2011.11.009. PubMed DOI

Barnard EBG, Sandbach DD, Nicholls TL, Wilson AW, Ercole A. Prehospital determinants of successful resuscitation after traumatic and non-traumatic out-of-hospital cardiac arrest. Emerg Med Clin North Am. 2019;36(6):333–339. doi: 10.1136/emermed-2018-208165. PubMed DOI PMC

Lu CH, Fang PH, Lin CH. Dispatcher-assisted cardiopulmonary resuscitation for traumatic patients with out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med. 2019;27(1):97. doi: 10.1186/s13049-019-0679-2. PubMed DOI PMC

Balhara KS, Bustamante ND, Selvam A, et al. Bystander assistance for trauma victims in low- and middle-income countries: a systematic review of prevalence and training interventions. Prehosp Emerg Care. 2019;23(3):389–410. doi: 10.1080/10903127.2018.1513104. PubMed DOI

Lin CH, Chiang WC, Ma MH, Wu SY, Tsai MC, Chi CH. Use of automated external defibrillators in patients with traumatic out-of-hospital cardiac arrest. Resuscitation. 2013;84(5):586–591. doi: 10.1016/j.resuscitation.2012.09.028. PubMed DOI

Tibballs J, Weeranatna C. The influence of time on the accuracy of healthcare personnel to diagnose paediatric cardiac arrest by pulse palpation. Resuscitation. 2010;81(6):671–675. doi: 10.1016/j.resuscitation.2010.01.030. PubMed DOI

O’Connell KJ, Keane RR, Cochrane NH, et al. Pauses in compressions during pediatric CPR: Opportunities for improving CPR quality. Resuscitation. 2019;145:158–165. doi: 10.1016/j.resuscitation.2019.08.015. PubMed DOI

Donoghue A, Berg RA, Hazinski MF, Praestgaard AH, Roberts K, Nadkarni VM. Cardiopulmonary resuscitation for bradycardia with poor perfusion versus pulseless cardiac arrest. Pediatrics. 2009;124(6):1541–1548. doi: 10.1542/peds.2009-0727. PubMed DOI

Considine J, Gazmuri RJ, Perkins GD, et al. Chest compression components (rate, depth, chest wall recoil and leaning): a scoping review. Resuscitation. 2020;146:188–202. doi: 10.1016/j.resuscitation.2019.08.042. PubMed DOI

Manrique G, Gonzalez A, Iguiniz M, et al. Quality of chest compressions during pediatric resuscitation with 15:2 and 30:2 compressions-to-ventilation ratio in a simulated scenario. Sci Rep. 2020;10(1):6828. doi: 10.1038/s41598-020-63921-9. PubMed DOI PMC

Gregson RK, Cole TJ, Skellett S, Bagkeris E, Welsby D, Peters MJ. Randomised crossover trial of rate feedback and force during chest compressions for paediatric cardiopulmonary resuscitation. Arch Dis Child. 2017;102(5):403–409. doi: 10.1136/archdischild-2016-310691. PubMed DOI PMC

Kandasamy J, Theobald PS, Maconochie IK, Jones MD. Can real-time feedback improve the simulated infant cardiopulmonary resuscitation performance of basic life support and lay rescuers? Arch Dis Child. 2019;104(8):793–801. doi: 10.1136/archdischild-2018-316576. PubMed DOI

Cheng A, Hunt EA, Grant D, et al. Variability in quality of chest compressions provided during simulated cardiac arrest across nine pediatric institutions. Resuscitation. 2015;97:13–19. doi: 10.1016/j.resuscitation.2015.08.024. PubMed DOI

Zimmerman E, Cohen N, Maniaci V, Pena B, Lozano JM, Linares M. Use of a metronome in cardiopulmonary resuscitation: a simulation study. Pediatrics. 2015;136(5):905–911. doi: 10.1542/peds.2015-1858. PubMed DOI

Lin Y, Cheng A, Grant VJ, Currie GR, Hecker KG. Improving CPR quality with distributed practice and real-time feedback in pediatric healthcare providers—a randomized controlled trial. Resuscitation. 2018;130:6–12. doi: 10.1016/j.resuscitation.2018.06.025. PubMed DOI

Haque IU, Udassi JP, Udassi S, Theriaque DW, Shuster JJ, Zaritsky AL. Chest compression quality and rescuer fatigue with increased compression to ventilation ratio during single rescuer pediatric CPR. Resuscitation. 2008;79(1):82–89. doi: 10.1016/j.resuscitation.2008.04.026. PubMed DOI

Sutton RM, Reeder RW, Landis W, et al. Chest compression rates and pediatric in-hospital cardiac arrest survival outcomes. Resuscitation. 2018;130:159–166. doi: 10.1016/j.resuscitation.2018.07.015. PubMed DOI PMC

Braga MS, Dominguez TE, Pollock AN, et al. Estimation of optimal CPR chest compression depth in children by using computer tomography. Pediatrics. 2009;124(1):e69–74. doi: 10.1542/peds.2009-0153. PubMed DOI

Kao PC, Chiang WC, Yang CW, et al. What is the correct depth of chest compression for infants and children? A radiological study. Pediatrics. 2009;124(1):49–55. doi: 10.1542/peds.2008-2536. PubMed DOI

Skogvoll E, Nordseth T, Sutton RM, et al. Factors affecting the course of resuscitation from cardiac arrest with pulseless electrical activity in children and adolescents. Resuscitation. 2020;152:116–122. doi: 10.1016/j.resuscitation.2020.05.013. PubMed DOI

Lin CY, Hsia SH, Lee EP, Chan OW, Lin JJ, Wu HP. Effect of audiovisual cardiopulmonary resuscitation feedback device on improving chest compression quality. Sci Rep. 2020;10(1):398. doi: 10.1038/s41598-019-57320-y. PubMed DOI PMC

Donoghue AJ, Myers S, Kerrey B, et al. Analysis of CPR quality by individual providers in the pediatric emergency department. Resuscitation. 2020;153:37–44. doi: 10.1016/j.resuscitation.2020.05.026. PubMed DOI

Jones SI, Jeffers JM, Perretta J, et al. Closing the gap: optimizing performance to reduce interruptions in cardiopulmonary resuscitation. Pediatr Crit Care Med. 2020;21(9):e592–e598. doi: 10.1097/PCC.0000000000002345. PubMed DOI

Rodriguez SA, Sutton RM, Berg MD, et al. Simplified dispatcher instructions improve bystander chest compression quality during simulated pediatric resuscitation. Resuscitation. 2014;85(1):119–123. doi: 10.1016/j.resuscitation.2013.09.003. PubMed DOI PMC

Kim YH, Lee JH, Cho KW, et al. Verification of the optimal chest compression depth for children in the 2015 American Heart Association guidelines: computed tomography study. Pediatr Crit Care Med. 2018;19(1):e1–e6. doi: 10.1097/PCC.0000000000001369. PubMed DOI

Austin AL, Spalding CN, Landa KN, et al. A randomized control trial of cardiopulmonary feedback devices and their impact on infant chest compression quality: a simulation study. Pediatr Emerg Care. 2020;36(2):e79–e84. doi: 10.1097/PEC.0000000000001312. PubMed DOI

Enriquez D, Firenze L, Fernandez Diaz J, et al. Changes in the depth of chest compressions during cardiopulmonary resuscitation in a pediatric simulator. Arch Argent Pediatr. 2018;116(6):e730–e735. doi: 10.5546/aap.2018.eng.e730. PubMed DOI

Oh JH, Kim SE, Kim CW, Lee DH. Should we change chest compression providers every 2 min when performing one-handed chest compressions? Emerg Med Australas. 2015;27(2):108–112. doi: 10.1111/1742-6723.12364. PubMed DOI

Niles DE, Nishisaki A, Sutton RM, et al. Improved retention of chest compression psychomotor skills with brief “rolling refresher” training. Simul Healthc. 2017;12(4):213–219. doi: 10.1097/SIH.0000000000000228. PubMed DOI

Morgan RW, Landis WP, Marquez A, et al. Hemodynamic effects of chest compression interruptions during pediatric in-hospital cardiopulmonary resuscitation. Resuscitation. 2019;139:1–8. doi: 10.1016/j.resuscitation.2019.03.032. PubMed DOI

Dezfulian C, Fink EL. How bad is it to fail at pushing hard and fast in pediatric cardiopulmonary resuscitation? Pediatr Crit Care Med. 2018;19(5):495–496. doi: 10.1097/PCC.0000000000001529. PubMed DOI PMC

Kim MJ, Lee HS, Kim S, Park YS. Optimal chest compression technique for paediatric cardiac arrest victims. Scand J Trauma Resusc Emerg Med. 2015;23:36. doi: 10.1186/s13049-015-0118-y. PubMed DOI PMC

Mayrand KP, Fischer EJ, Ten Eyck RP. A simulation-based randomized controlled study of factors influencing chest compression depth. West J Emerg Med. 2015;16(7):1135–1140. doi: 10.5811/westjem.2015.9.28167. PubMed DOI PMC

Millin MG, Bogumil D, Fishe JN, Burke RV. Comparing the two-finger versus two-thumb technique for single person infant CPR: a systematic review and meta-analysis. Resuscitation. 2020;148:161–172. doi: 10.1016/j.resuscitation.2019.12.039. PubMed DOI

Lee JE, Lee J, Oh J, et al. Comparison of two-thumb encircling and two-finger technique during infant cardiopulmonary resuscitation with single rescuer in simulation studies: A systematic review and meta-analysis. Medicine. 2019;98(45):e17853. doi: 10.1097/MD.0000000000017853. PubMed DOI PMC

Douvanas A, Koulouglioti C, Kalafati M. A comparison between the two methods of chest compression in infant and neonatal resuscitation. A review according to 2010 CPR guidelines. J Matern Fetal Neonatal Med. 2018;31(6):805–816. doi: 10.1080/14767058.2017.1295953. PubMed DOI

Lee KH, Kim EY, Park DH, et al. Evaluation of the 2010 American Heart Association Guidelines for infant CPR finger/thumb positions for chest compression: a study using computed tomography. Resuscitation. 2013;84(6):766–769. doi: 10.1016/j.resuscitation.2012.11.005. PubMed DOI

Lee SH, Cho YC, Ryu S, et al. A comparison of the area of chest compression by the superimposed-thumb and the alongside-thumb techniques for infant cardiopulmonary resuscitation. Resuscitation. 2011;82(9):1214–1217. doi: 10.1016/j.resuscitation.2011.04.016. PubMed DOI

Park M, Oh WS, Chon SB, Cho S. Optimum chest compression point for cardiopulmonary resuscitation in children revisited using a 3D coordinate system imposed on CT: a retrospective, cross-sectional study. Pediatr Crit Care Med. 2018;19(11):e576–e584. doi: 10.1097/PCC.0000000000001679. PubMed DOI

Jang HY, Wolfe H, Hsieh TC, et al. Infant chest compression quality: a video-based comparison of two-thumb versus one-hand technique in the emergency department. Resuscitation. 2018;122:36–40. doi: 10.1016/j.resuscitation.2017.11.044. PubMed DOI

Lim JS, Cho Y, Ryu S, et al. Comparison of overlapping (OP) and adjacent thumb positions (AP) for cardiac compressions using the encircling method in infants. Emerg Med Clin North Am. 2013;30(2):139–142. doi: 10.1136/emermed-2011-200978. PubMed DOI

Jung JY, Kwak YH, Kwon H, et al. Effectiveness of finger-marker for maintaining the correct compression point during paediatric resuscitation: a simulation study. Am J Emerg Med. 2017;35(9):1303–1308. doi: 10.1016/j.ajem.2017.04.003. PubMed DOI

Jiang J, Zou Y, Shi W, et al. Two-thumb-encircling hands technique is more advisable than 2-finger technique when lone rescuer performs cardiopulmonary resuscitation on infant manikin. Am J Emerg Med. 2015;33(4):531–534. doi: 10.1016/j.ajem.2015.01.025. PubMed DOI

Yang D, Kim KH, Oh JH, Son S, Cho J, Seo KM. Development and evaluation of a new chest compression technique for cardiopulmonary resuscitation in infants. Pediatr Cardiol. 2019;40(6):1217–1223. doi: 10.1007/s00246-019-02135-x. PubMed DOI

Ladny JR, Smereka J, Rodriguez-Nunez A, Leung S, Ruetzler K, Szarpak L. Is there any alternative to standard chest compression techniques in infants? A randomized manikin trial of the new “2-thumb-fist” option. Medicine. 2018;97(5):e9386. doi: 10.1097/MD.0000000000009386. PubMed DOI PMC

Rodriguez-Ruiz E, Martinez-Puga A, Carballo-Fazanes A, Abelairas-Gomez C, Rodriguez-Nunez A. Two new chest compression methods might challenge the standard in a simulated infant model. Eur J Pediatr. 2019;178(10):1529–1535. doi: 10.1007/s00431-019-03452-2. PubMed DOI

Rodriguez-Ruiz E, Guerra MV, Abelairas-Gomez C, et al. A new chest compression technique in infants. Med Intensiva. 2019;43(6):346–351. doi: 10.1016/j.medin.2018.04.010. PubMed DOI

Jo CH, Cho GC, Lee CH. Two-thumb encircling technique over the head of patients in the setting of lone rescuer infant CPR occurred during ambulance transfer: a crossover simulation study. Pediatr Emerg Care. 2017;33(7):462–466. doi: 10.1097/PEC.0000000000000833. PubMed DOI

Na JU, Choi PC, Lee HJ, Shin DH, Han SK, Cho JH. A vertical two-thumb technique is superior to the two-thumb encircling technique for infant cardiopulmonary resuscitation. Acta Paediatr. 2015;104(2):e70–e75. doi: 10.1111/apa.12857. PubMed DOI

Pellegrino JL, Bogumil D, Epstein JL, Burke RV. Two-thumb-encircling advantageous for lay responder infant CPR: a randomised manikin study. Arch Dis Child. 2019;104(6):530–534. doi: 10.1136/archdischild-2018-314893. PubMed DOI

Tsou JY, Kao CL, Chang CJ, Tu YF, Su FC, Chi CH. Biomechanics of two-thumb versus two-finger chest compression for cardiopulmonary resuscitation in an infant manikin model. Eur J Emerg Med. 2020;27(2):132–136. doi: 10.1097/MEJ.0000000000000631. PubMed DOI

Kim YS, Oh JH, Kim CW, Kim SE, Lee DH, Hong JY. Which fingers should we perform two-finger chest compression technique with when performing cardiopulmonary resuscitation on an infant in cardiac arrest? J Korean Med Sci. 2016;31(6):997–1002. doi: 10.3346/jkms.2016.31.6.997. PubMed DOI PMC

Nasiri E, Nasiri R. A comparison between over-the-head and lateral cardiopulmonary resuscitation with a single rescuer by bag-valve mask. Saudi J Anaesth. 2014;8(1):30–37. doi: 10.4103/1658-354X.125923. PubMed DOI PMC

Cheong SA, Oh JH, Kim CW, Kim SE, Lee DH. Effects of alternating hands during in-hospital one-handed chest compression: a randomised cross-over manikin trial. Emerg Med Australas. 2015;27(6):567–572. doi: 10.1111/1742-6723.12492. PubMed DOI

Oh JH, Kim CW, Kim SE, Lee DH, Lee SJ. One-handed chest compression technique for paediatric cardiopulmonary resuscitation: dominant versus non-dominant hand. Emerg Med Clin North Am. 2015;32(7):544–546. doi: 10.1136/emermed-2014-203932. PubMed DOI

Lee SY, Hong JY, Oh JH, Son SH. The superiority of the two-thumb over the two-finger technique for single-rescuer infant cardiopulmonary resuscitation. Eur J Emerg Med. 2018;25(5):372–376. doi: 10.1097/MEJ.0000000000000461. PubMed DOI

Lee SS, Lee SD, Oh JH. Comparison between modified and conventional one-handed chest compression techniques for child cardiopulmonary resuscitation: A randomised, non-blind, cross-over simulation trial. J Paediatr Child Health. 2019;55(11):1361–1366. doi: 10.1111/jpc.14422. PubMed DOI

Kherbeche H, Exer N, Schuhwerk W, Ummenhofer W, Osterwalder J. Chest compression using the foot or hand method: a prospective, randomized, controlled manikin study with school children. Eur J Emerg Med. 2017;24(4):262–267. doi: 10.1097/MEJ.0000000000000335. PubMed DOI

Smereka J, Szarpak L, Ladny JR, Rodriguez-Nunez A, Ruetzler K. A novel method of newborn chest compression: a randomized crossover simulation study. Front Pediatr. 2018;6:159. doi: 10.3389/fped.2018.00159. PubMed DOI PMC

Park JW, Jung JY, Kim J, et al. A novel infant chest compression assist device using a palm rather than fingers: a randomized crossover trial. Prehosp Emerg Care. 2019;23(1):74–82. doi: 10.1080/10903127.2018.1471559. PubMed DOI

Jung WJ, Hwang SO, Kim HI, et al. ‘Knocking-fingers’ chest compression technique in infant cardiac arrest: single-rescuer manikin study. Eur J Emerg Med. 2019;26(4):261–265. doi: 10.1097/MEJ.0000000000000539. PubMed DOI

Smereka J, Szarpak L, Rodriguez-Nunez A, Ladny JR, Leung S, Ruetzler K. A randomized comparison of three chest compression techniques and associated hemodynamic effect during infant CPR: a randomized manikin study. Am J Emerg Med. 2017;35(10):1420–1425. doi: 10.1016/j.ajem.2017.04.024. PubMed DOI

Lopez-Herce J, Almonte E, Alvarado M, et al. Latin American consensus for pediatric cardiopulmonary resuscitation 2017: latin American pediatric critical care society pediatric cardiopulmonary resuscitation committee. Pediatr Crit Care Med. 2018;19(3):e152–e156. doi: 10.1097/PCC.0000000000001427. PubMed DOI

Rossano JW, Jones WE, Lerakis S, et al. The use of automated external defibrillators in infants: a report from the American red cross scientific advisory council. Pediatr Emerg Care. 2015;31(7):526–530. doi: 10.1097/PEC.0000000000000490. PubMed DOI

Hoyt WJ, Jr., Fish FA, Kannankeril PJ. Automated external defibrillator use in a previously healthy 31-day-old infant with out-of-hospital cardiac arrest due to ventricular fibrillation. J Cardiovasc Electrophysiol. 2019;30(11):2599–2602. doi: 10.1111/jce.14125. PubMed DOI

Johnson MA, Grahan BJ, Haukoos JS, et al. Demographics, bystander CPR, and AED use in out-of-hospital pediatric arrests. Resuscitation. 2014;85(7):920–926. doi: 10.1016/j.resuscitation.2014.03.044. PubMed DOI PMC

Mitani Y, Ohta K, Yodoya N, et al. Public access defibrillation improved the outcome after out-of-hospital cardiac arrest in school-age children: a nationwide, population-based, Utstein registry study in Japan. Europace. 2013;15(9):1259–1266. doi: 10.1093/europace/eut053. PubMed DOI PMC

Swor R, Grace H, McGovern H, Weiner M, Walton E. Cardiac arrests in schools: assessing use of automated external defibrillators (AED) on school campuses. Resuscitation. 2013;84(4):426–429. doi: 10.1016/j.resuscitation.2012.09.014. PubMed DOI

Nagata T, Abe T, Noda E, Hasegawa M, Hashizume M, Hagihara A. Factors associated with the clinical outcomes of paediatric out-of-hospital cardiac arrest in Japan. Bmj Open. 2014;4(2):e003481. doi: 10.1136/bmjopen-2013-003481. PubMed DOI PMC

Hunt EA, Duval-Arnould JM, Bembea MM, et al. Association between time to Defibrillation and survival in pediatric in-hospital cardiac arrest with a first documented Shockable rhythm. JAMA Netw Open. 2018;1(5):e182643. doi: 10.1001/jamanetworkopen.2018.2643. PubMed DOI PMC

Tsuda T, Geary EM, Temple J. Significance of automated external defibrillator in identifying lethal ventricular arrhythmias. Eur J Pediatr. 2019;178(9):1333–1342. doi: 10.1007/s00431-019-03421-9. PubMed DOI

El-Assaad I, Al-Kindi SG, McNally B, et al. Automated external defibrillator application before EMS arrival in pediatric cardiac arrests. Pediatrics. 2018 doi: 10.1542/peds.2017-1903. PubMed DOI

Goto Y, Funada A, Goto Y. Subsequent Shockable rhythm during out-of-hospital cardiac arrest in children with initial non-Shockable rhythms: a nationwide population-based observational study. JAHA. 2016 doi: 10.1161/JAHA.116.003589. PubMed DOI PMC

Pundi KN, Bos JM, Cannon BC, Ackerman MJ. Automated external defibrillator rescues among children with diagnosed and treated long QT syndrome. Heart Rhythm. 2015;12(4):776–781. doi: 10.1016/j.hrthm.2015.01.002. PubMed DOI

Griffis H, Wu L, Naim MY, et al. Characteristics and outcomes of AED use in pediatric cardiac arrest in public settings: the influence of neighborhood characteristics. Resuscitation. 2020;146:126–131. doi: 10.1016/j.resuscitation.2019.09.038. PubMed DOI

Rehn M, Hyldmo PK, Magnusson V, et al. Scandinavian SSAI clinical practice guideline on pre-hospital airway management. Acta Anaesthesiol Scand. 2016;60(7):852–864. doi: 10.1111/aas.12746. PubMed DOI PMC

Borra V, Avau B, De Paepe P, Vandekerckhove P, De Buck E. Is placing a victim in the left lateral decubitus position an effective first aid intervention for acute oral poisoning? A systematic review. Clin Toxicol. 2019;57(7):603–616. doi: 10.1080/15563650.2019.1574975. PubMed DOI

Hyldmo PK, Vist GE, Feyling AC, et al. Is the supine position associated with loss of airway patency in unconscious trauma patients? A systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2015;23:50. doi: 10.1186/s13049-015-0116-0. PubMed DOI PMC

Hyldmo PK, Vist GE, Feyling AC, et al. Does turning trauma patients with an unstable spinal injury from the supine to a lateral position increase the risk of neurological deterioration?—A systematic review. Scand J Trauma Resusc Emerg Med. 2015;23:65. doi: 10.1186/s13049-015-0143-x. PubMed DOI PMC

Freire-Tellado M, Navarro-Paton R, Pavon-Prieto MDP, Fernandez-Lopez M, Mateos-Lorenzo J, Lopez-Forneas I. Does lying in the recovery position increase the likelihood of not delivering cardiopulmonary resuscitation? Resuscitation. 2017;115:173–177. doi: 10.1016/j.resuscitation.2017.03.008. PubMed DOI

Navarro-Paton R, Freire-Tellado M, Fernandez-Gonzalez N, Basanta-Camino S, Mateos-Lorenzo J, Lago-Ballesteros J. What is the best position to place and re-evaluate an unconscious but normally breathing victim? A randomised controlled human simulation trial on children. Resuscitation. 2019;134:104–109. doi: 10.1016/j.resuscitation.2018.10.030. PubMed DOI

Fukushima H, Imanishi M, Iwami T, et al. Abnormal breathing of sudden cardiac arrest victims described by laypersons and its association with emergency medical service dispatcher-assisted cardiopulmonary resuscitation instruction. Emerg Med Clin North Am. 2015;32(4):314–317. doi: 10.1136/emermed-2013-203112. PubMed DOI PMC

Hyldmo PK, Horodyski M, Conrad BP, et al. Does the novel lateral trauma position cause more motion in an unstable cervical spine injury than the logroll maneuver? Am J Emerg Med. 2017;35(11):1630–1635. doi: 10.1016/j.ajem.2017.05.002. PubMed DOI

Hyldmo PK, Horodyski MB, Conrad BP, et al. Safety of the lateral trauma position in cervical spine injuries: a cadaver model study. Acta Anaesthesiol Scand. 2016;60(7):1003–1011. doi: 10.1111/aas.12714. PubMed DOI PMC

Julliand S, Desmarest M, Gonzalez L, et al. Recovery position significantly associated with a reduced admission rate of children with loss of consciousness. Arch Dis Child. 2016;101(6):521–526. doi: 10.1136/archdischild-2015-308857. PubMed DOI

Del Rossi G, Dubose D, Scott N, et al. Motion produced in the unstable cervical spine by the HAINES and lateral recovery positions. Prehosp Emerg Care. 2014;18(4):539–543. doi: 10.3109/10903127.2014.916019. PubMed DOI

Cheng J, Liu B, Farjat AE, Routh J. National estimations of airway foreign bodies in children in the United States, 2000 to 2009. Clin Otolaryngol. 2019;44(3):235–239. doi: 10.1111/coa.13261. PubMed DOI PMC

Redding JS. The choking controversy: critique of evidence on the Heimlich maneuver. Crit Care Med. 1979;7(10):475–479. doi: 10.1097/00003246-197910000-00008. PubMed DOI

Langhelle A, Sunde K, Wik L, Steen PA. Airway pressure with chest compressions versus Heimlich manoeuvre in recently dead adults with complete airway obstruction. Resuscitation. 2000;44(2):105–108. doi: 10.1016/S0300-9572(00)00161-1. PubMed DOI

Vilke GM, Smith AM, Ray LU, Steen PJ, Murrin PA, Chan TC. Airway obstruction in children aged less than 5 years: the prehospital experience. Prehosp Emerg Care. 2004;8(2):196–199. PubMed

Heimlich HJ, Patrick EA. The Heimlich maneuver. Best technique for saving any choking victim’s life. Postgrad Med. 1990;87(6):38–48, 53. doi: 10.1080/00325481.1990.11716329. PubMed DOI

Chillag S, Krieg J, Bhargava R. The Heimlich maneuver: breaking down the complications. South Med J. 2010;103(2):147–150. doi: 10.1097/SMJ.0b013e3181c99140. PubMed DOI

Dunne CL, Peden AE, Queiroga AC, Gomez Gonzalez C, Valesco B, Szpilman D. A systematic review on the effectiveness of anti-choking suction devices and identification of research gaps. Resuscitation. 2020;153:219–226. doi: 10.1016/j.resuscitation.2020.02.021. PubMed DOI

Kleinman ME, Chameides L, Schexnayder SM, et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S876–S908. doi: 10.1161/CIRCULATIONAHA.110.971101. PubMed DOI

de Caen AR, Maconochie IK, Aickin R, et al. Part 6: pediatric basic life support and pediatric advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(16 Suppl 1):S177–S203. doi: 10.1161/CIR.0000000000000275. PubMed DOI

Maconochie IK, Bingham R, Eich C, et al. European resuscitation council guidelines for resuscitation 2015: section 6. Paediatric life support. Resuscitation. 2015;95:223–248. doi: 10.1016/j.resuscitation.2015.07.028. PubMed DOI

Nadkarni VM, Larkin GL, Peberdy MA, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295(1):50–57. doi: 10.1001/jama.295.1.50. PubMed DOI

Gilhooley C, Burnhill G, Gardiner D, Vyas H, Davies P. Oxygen saturation and haemodynamic changes prior to circulatory arrest: implications for transplantation and resuscitation. J Intensive Care Soc. 2019;20(1):27–33. doi: 10.1177/1751143718764541. PubMed DOI PMC

Morgan RW, Reeder RW, Meert KL, et al. Survival and hemodynamics during pediatric cardiopulmonary resuscitation for Bradycardia and poor perfusion versus pulseless cardiac arrest. Crit Care Med. 2020;48(6):881–889. doi: 10.1097/CCM.0000000000004308. PubMed DOI PMC

Khera R, Tang Y, Girotra S, et al. Pulselessness after initiation of cardiopulmonary resuscitation for Bradycardia in hospitalized children. Circulation. 2019;140(5):370–378. doi: 10.1161/CIRCULATIONAHA.118.039048. PubMed DOI PMC

Fraser J, Sidebotham P, Frederick J, Covington T, Mitchell EA. Learning from child death review in the USA, England, Australia, and New Zealand. Lancet. 2014;384(9946):894–903. doi: 10.1016/S0140-6736(13)61089-2. PubMed DOI

Bhalala US, Balakumar N, Zamora M, Appachi E. Hands-on defibrillation skills of pediatric acute care providers during a simulated ventricular fibrillation cardiac arrest scenario. Front Pediatr. 2018;6:107. doi: 10.3389/fped.2018.00107. PubMed DOI PMC

Tibballs J, Carter B, Kiraly NJ, Ragg P, Clifford M. External and internal biphasic direct current shock doses for pediatric ventricular fibrillation and pulseless ventricular tachycardia. Pediatr Crit Care Med. 2011;12(1):14–20. doi: 10.1097/PCC.0b013e3181dbb4fc. PubMed DOI

Ristagno G, Yu T, Quan W, Freeman G, Li Y. Comparison of defibrillation efficacy between two pads placements in a pediatric porcine model of cardiac arrest. Resuscitation. 2012;83(6):755–759. doi: 10.1016/j.resuscitation.2011.12.010. PubMed DOI

Weisfeldt ML. A three phase temporal model for cardiopulmonary resuscitation following cardiac arrest. Trans Am Clin Climatol Assoc. 2004;115:115–122. PubMed PMC

Society of Thoracic Surgeons Task Force on Resuscitation After Cardiac S The society of thoracic surgeons expert consensus for the resuscitation of patients who arrest after cardiac surgery. Ann Thorac Surg. 2017;103(3):1005–1020. doi: 10.1016/j.athoracsur.2016.10.033. PubMed DOI

Soar J, Carli P, Couper K, Deakin CD, Djarv T, Lott C, Olasveengen T, Paal P, Pellis T, Perkins GD, Sandroni C, Nolan JP. European resuscitation council guidelines 2021: advanced life support. Resuscitation. 2021;161:115–151. doi: 10.1016/j.resuscitation.2021.02.010. PubMed DOI

Fukuda T, Ohashi-Fukuda N, Kobayashi H, et al. Public access defibrillation and outcomes after pediatric out-of-hospital cardiac arrest. Resuscitation. 2017;111:1–7. doi: 10.1016/j.resuscitation.2016.11.010. PubMed DOI

Mercier E, Laroche E, Beck B, et al. Defibrillation energy dose during pediatric cardiac arrest: Systematic review of human and animal model studies. Resuscitation. 2019;139:241–252. doi: 10.1016/j.resuscitation.2019.04.028. PubMed DOI

Hoyme DB, Zhou Y, Girotra S, et al. Improved survival to hospital discharge in pediatric in-hospital cardiac arrest using 2Joules/kilogram as first defibrillation dose for initial pulseless ventricular arrhythmia. Resuscitation. 2020;153:88–96. doi: 10.1016/j.resuscitation.2020.05.048. PubMed DOI

Deakin CD, Morley P, Soar J, Drennan IR. Double (dual) sequential defibrillation for refractory ventricular fibrillation cardiac arrest: a systematic review. Resuscitation. 2020;155:24–31. doi: 10.1016/j.resuscitation.2020.06.008. PubMed DOI

Huang Y, He Q, Yang LJ, Liu GJ, Jones A. Cardiopulmonary resuscitation (CPR) plus delayed defibrillation versus immediate defibrillation for out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2014 doi: 10.1002/14651858.CD009803.pub2. PubMed DOI PMC

Bradley SM, Liu W, Chan PS, et al. Defibrillation time intervals and outcomes of cardiac arrest in hospital: retrospective cohort study from Get With The Guidelines-Resuscitation registry. BMJ. 2016;353:i1653. doi: 10.1136/bmj.i1653. PubMed DOI PMC

Roh YI, Jung WJ, Hwang SO, et al. Shorter defibrillation interval promotes successful defibrillation and resuscitation outcomes. Resuscitation. 2019;143:100–105. doi: 10.1016/j.resuscitation.2019.08.022. PubMed DOI

Brugger H, Durrer B, Elsensohn F, et al. Resuscitation of avalanche victims: Evidence-based guidelines of the international commission for mountain emergency medicine (ICAR MEDCOM): intended for physicians and other advanced life support personnel. Resuscitation. 2013;84(5):539–546. doi: 10.1016/j.resuscitation.2012.10.020. PubMed DOI

Saczkowski RS, Brown DJA, Abu-Laban RB, Fradet G, Schulze CJ, Kuzak ND. Prediction and risk stratification of survival in accidental hypothermia requiring extracorporeal life support: an individual patient data meta-analysis. Resuscitation. 2018;127:51–57. doi: 10.1016/j.resuscitation.2018.03.028. PubMed DOI

Bauman BD, Louiselle A, Nygaard RM, et al. Treatment of hypothermic cardiac arrest in the pediatric drowning victim, a case report, and systematic review. Pediatr Emerg Care. 2019 doi: 10.1097/PEC.0000000000001735. PubMed DOI

Sepehripour AH, Gupta S, Lall KS. When should cardiopulmonary bypass be used in the setting of severe hypothermic cardiac arrest? Interact CardioVasc Thorac Surg. 2013;17(3):564–569. doi: 10.1093/icvts/ivt208. PubMed DOI PMC

Dunne B, Christou E, Duff O, Merry C. Extracorporeal-assisted rewarming in the management of accidental deep hypothermic cardiac arrest: a systematic review of the literature. Heart Lung Circ. 2014;23(11):1029–1035. doi: 10.1016/j.hlc.2014.06.011. PubMed DOI

Paal P, Gordon L, Strapazzon G, et al. Accidental hypothermia-an update : the content of this review is endorsed by the international commission for mountain emergency medicine (ICAR MEDCOM) Scand J Trauma Resusc Emerg Med. 2016;24(1):111. doi: 10.1186/s13049-016-0303-7. PubMed DOI PMC

Best RR, Harris BHL, Walsh JL, Manfield T. Pediatric drowning: a standard operating procedure to aid the prehospital management of pediatric cardiac arrest resulting from submersion. Pediatr Emerg Care. 2020;36(3):143–146. doi: 10.1097/PEC.0000000000001169. PubMed DOI

Strapazzon G, Plankensteiner J, Mair P, et al. Prehospital management and outcome of avalanche patients with out-of-hospital cardiac arrest: a retrospective study in Tyrol, Austria. Eur J Emerg Med. 2017;24(6):398–403. doi: 10.1097/MEJ.0000000000000390. PubMed DOI

Svendsen OS, Grong K, Andersen KS, Husby P. Outcome after rewarming from accidental hypothermia by use of extracorporeal circulation. Ann Thorac Surg. 2017;103(3):920–925. doi: 10.1016/j.athoracsur.2016.06.093. PubMed DOI

Mentzelopoulos SD, Couper K, Van de Voorde P, et al. Ethik der Reanimation und Entscheidungen am Lebensende. Leitlinien des European Resuscitation Council 2021. Notfall Rettungsmed. 2021 doi: 10.1007/s10049-021-00888-8. PubMed DOI PMC

Patel JK, Kataya A, Parikh PB. Association between intra- and post-arrest hyperoxia on mortality in adults with cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2018;127:83–88. doi: 10.1016/j.resuscitation.2018.04.008. PubMed DOI

Soar J, Maconochie I, Wyckoff MH, et al. 2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2019;145:95–150. doi: 10.1016/j.resuscitation.2019.10.016. PubMed DOI

Okubo M, Komukai S, Izawa J, et al. Prehospital advanced airway management for paediatric patients with out-of-hospital cardiac arrest: a nationwide cohort study. Resuscitation. 2019;145:175–184. doi: 10.1016/j.resuscitation.2019.09.007. PubMed DOI

Fukuda T, Sekiguchi H, Taira T, et al. Type of advanced airway and survival after pediatric out-of-hospital cardiac arrest. Resuscitation. 2020;150:145–153. doi: 10.1016/j.resuscitation.2020.02.005. PubMed DOI

Lopez J, Fernandez SN, Gonzalez R, Solana MJ, Urbano J, Lopez-Herce J. Different respiratory rates during resuscitation in a pediatric animal model of Asphyxial cardiac arrest. Plos One. 2016;11(9):e0162185. doi: 10.1371/journal.pone.0162185. PubMed DOI PMC

Gonzalez R, Pascual L, Sava A, Tolon S, Urbano J, Lopez-Herce J. Ventilation during cardiopulmonary resuscitation in children: a survey on clinical practice. World J Pediatr. 2017;13(6):544–550. doi: 10.1007/s12519-017-0061-2. PubMed DOI

Aufderheide TP, Sigurdsson G, Pirrallo RG, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation. 2004;109(16):1960–1965. doi: 10.1161/01.CIR.0000126594.79136.61. PubMed DOI

Yannopoulos D, Tang W, Roussos C, Aufderheide TP, Idris AH, Lurie KG. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care. 2005;50(5):628–635. PubMed

Lapid FM, O’Brien CE, Kudchadkar SR, et al. The use of pressure-controlled mechanical ventilation in a swine model of intraoperative pediatric cardiac arrest. Paediatr Anaesth. 2020;30(4):462–468. doi: 10.1111/pan.13820. PubMed DOI PMC

Kjaergaard B, Bavarskis E, Magnusdottir SO, et al. Four ways to ventilate during cardiopulmonary resuscitation in a porcine model: a randomized study. Scand J Trauma Resusc Emerg Med. 2016;24:67. doi: 10.1186/s13049-016-0262-z. PubMed DOI PMC

Tan D, Xu J, Shao S, et al. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model. Plos One. 2017;12(2):e0171869. doi: 10.1371/journal.pone.0171869. PubMed DOI PMC

Kill C, Hahn O, Dietz F, et al. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model. Crit Care Med. 2014;42(2):e89–e95. doi: 10.1097/CCM.0b013e3182a63fa0. PubMed DOI

Kill C, Galbas M, Neuhaus C, et al. Chest compression synchronized ventilation versus intermitted positive pressure ventilation during cardiopulmonary resuscitation in a pig model. Plos One. 2015;10(5):e0127759. doi: 10.1371/journal.pone.0127759. PubMed DOI PMC

Schaller SJ, Altmann S, Unsworth A, et al. Continuous chest compressions with a simultaneous triggered ventilator in the Munich Emergency Medical Services: a case series. Ger Med Sci. 2019;17:Doc06. doi: 10.3205/000272. PubMed DOI PMC

Mendler MR, Maurer M, Hassan MA, et al. Different techniques of respiratory support do not significantly affect gas exchange during cardiopulmonary resuscitation in a newborn piglet model. Neonatology. 2015;108(1):73–80. doi: 10.1159/000381416. PubMed DOI

Mendler MR, Weber C, Hassan MA, Huang L, Mayer B, Hummler HD. Tidal Volume Delivery and Endotracheal Tube Leak during Cardiopulmonary Resuscitation in Intubated Newborn Piglets with Hypoxic Cardiac Arrest Exposed to Different Modes of Ventilatory Support. Neonatology. 2017;111(2):100–106. doi: 10.1159/000447663. PubMed DOI

Salas N, Wisor B, Agazio J, Branson R, Austin PN. Comparison of ventilation and cardiac compressions using the Impact Model 730 automatic transport ventilator compared to a conventional bag valve with a facemask in a model of adult cardiopulmonary arrest. Resuscitation. 2007;74(1):94–101. doi: 10.1016/j.resuscitation.2006.01.023. PubMed DOI

Hurst VT, West S, Austin P, Branson R, Beck G. Comparison of ventilation and chest compression performance by bystanders using the Impact Model 730 ventilator and a conventional bag valve with mask in a model of adult cardiopulmonary arrest. Resuscitation. 2007;73(1):123–130. doi: 10.1016/j.resuscitation.2006.07.027. PubMed DOI

Allen SG, Brewer L, Gillis ES, Pace NL, Sakata DJ, Orr JA. A turbine-driven ventilator improves adherence to advanced cardiac life support guidelines during a cardiopulmonary resuscitation simulation. Respir Care. 2017;62(9):1166–1170. doi: 10.4187/respcare.05368. PubMed DOI

Grieco DL, Brochard LJ, Drouet A, et al. Intrathoracic airway closure impacts CO2 signal and delivered ventilation during cardiopulmonary resuscitation. Am J Respir Crit Care Med. 2019;199(6):728–737. doi: 10.1164/rccm.201806-1111OC. PubMed DOI

Holmberg MJ, Nicholson T, Nolan JP, et al. Oxygenation and ventilation targets after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2020;152:107–115. doi: 10.1016/j.resuscitation.2020.04.031. PubMed DOI

Andersen LW, Berg KM, Saindon BZ, et al. Time to epinephrine and survival after pediatric in-hospital cardiac arrest. JAMA. 2015;314(8):802–810. doi: 10.1001/jama.2015.9678. PubMed DOI PMC

Meert K, Telford R, Holubkov R, et al. Paediatric in-hospital cardiac arrest: factors associated with survival and neurobehavioural outcome one year later. Resuscitation. 2018;124:96–105. doi: 10.1016/j.resuscitation.2018.01.013. PubMed DOI PMC

Hoyme DB, Patel SS, Samson RA, et al. Epinephrine dosing interval and survival outcomes during pediatric in-hospital cardiac arrest. Resuscitation. 2017;117:18–23. doi: 10.1016/j.resuscitation.2017.05.023. PubMed DOI

Raymond TT, Praestgaard A, Berg RA, Nadkarni VM, Parshuram CS, American Heart Association The Association of Hospital Rate of Delayed Epinephrine Administration With Survival to Discharge for Pediatric Nonshockable In-Hospital Cardiac Arrest. Pediatr Crit Care Med. 2019;20(5):405–416. doi: 10.1097/PCC.0000000000001863. PubMed DOI

Bellamy D, Nuthall G, Dalziel S, Skinner JR. Catecholaminergic polymorphic ventricular tachycardia: the cardiac arrest where epinephrine is contraindicated. Pediatr Crit Care Med. 2019;20(3):262–268. doi: 10.1097/PCC.0000000000001847. PubMed DOI PMC

Lin YR, Li CJ, Huang CC, et al. Early epinephrine improves the stabilization of initial post-resuscitation Hemodynamics in children with non-shockable out-of-hospital cardiac arrest. Front Pediatr. 2019;7:220. doi: 10.3389/fped.2019.00220. PubMed DOI PMC

Lin YR, Wu MH, Chen TY, et al. Time to epinephrine treatment is associated with the risk of mortality in children who achieve sustained ROSC after traumatic out-of-hospital cardiac arrest. Crit Care. 2019;23(1):101. doi: 10.1186/s13054-019-2391-z. PubMed DOI PMC

Hansen M, Schmicker RH, Newgard CD, et al. Time to epinephrine administration and survival from nonshockable out-of-hospital cardiac arrest among children and adults. Circulation. 2018;137(19):2032–2040. doi: 10.1161/CIRCULATIONAHA.117.033067. PubMed DOI PMC

Fukuda T, Kondo Y, Hayashida K, Sekiguchi H, Kukita I. Time to epinephrine and survival after paediatric out-of-hospital cardiac arrest. Eur Heart J Cardiovasc Pharmacother. 2018;4(3):144–151. doi: 10.1093/ehjcvp/pvx023. PubMed DOI

Lin YR, Syue YJ, Buddhakosai W, et al. Impact of different initial epinephrine treatment time points on the early postresuscitative hemodynamic status of children with traumatic out-of-hospital cardiac arrest. Medicine. 2016;95(12):e3195. doi: 10.1097/MD.0000000000003195. PubMed DOI PMC

Wall JJ, Iyer RV. Catecholaminergic polymorphic ventricular tachycardia. Pediatr Emerg Care. 2017;33(6):427–431. doi: 10.1097/PEC.0000000000001156. PubMed DOI

Soar J, Perkins GD, Maconochie I, et al. European resuscitation council guidelines for resuscitation: 2018 update—antiarrhythmic drugs for cardiac arrest. Resuscitation. 2019;134:99–103. doi: 10.1016/j.resuscitation.2018.11.018. PubMed DOI

Holmberg MJ, Ross CE, Atkins DL, et al. Lidocaine versus amiodarone for pediatric in-hospital cardiac arrest: an observational study. Resuscitation. 2020;149:191–201. doi: 10.1016/j.resuscitation.2019.12.033. PubMed DOI PMC

Mok YH, Loke AP, Loh TF, Lee JH. Characteristics and risk factors for mortality in paediatric in-hospital cardiac events in Singapore: retrospective single centre experience. Ann Acad Med Singap. 2016;45(12):534–541. PubMed

Lasa JJ, Alali A, Minard CG, et al. Cardiopulmonary resuscitation in the pediatric cardiac catheterization laboratory: a report from the American Heart Association’s get with the guidelines-resuscitation registry. Pediatr Crit Care Med. 2019;20(11):1040–1047. doi: 10.1097/PCC.0000000000002038. PubMed DOI

Writer H. Cardiorespiratory arrest in children (out of hospital) BMJ Clin Evid. 2010;2010:0307. PubMed PMC

Wu ET, Li MJ, Huang SC, et al. Survey of outcome of CPR in pediatric in-hospital cardiac arrest in a medical center in Taiwan. Resuscitation. 2009;80(4):443–448. doi: 10.1016/j.resuscitation.2009.01.006. PubMed DOI

Del Castillo J, Lopez-Herce J, Canadas S, et al. Cardiac arrest and resuscitation in the pediatric intensive care unit: a prospective multicenter multinational study. Resuscitation. 2014;85(10):1380–1386. doi: 10.1016/j.resuscitation.2014.06.024. PubMed DOI

Wolfe HA, Sutton RM, Reeder RW, et al. Functional outcomes among survivors of pediatric in-hospital cardiac arrest are associated with baseline neurologic and functional status, but not with diastolic blood pressure during CPR. Resuscitation. 2019;143:57–65. doi: 10.1016/j.resuscitation.2019.08.006. PubMed DOI PMC

Matamoros M, Rodriguez R, Callejas A, et al. In-hospital pediatric cardiac arrest in Honduras. Pediatr Emerg Care. 2015;31(1):31–35. doi: 10.1097/PEC.0000000000000323. PubMed DOI

Lopez-Herce J, del Castillo J, Canadas S, Rodriguez-Nunez A, Carrillo A, Spanish Study Group of Cardiopulmonary Arrest in C In-hospital pediatric cardiac arrest in Spain. Rev Esp Cardiol. 2014;67(3):189–195. doi: 10.1016/j.rec.2013.07.017. PubMed DOI

Raymond TT, Stromberg D, Stigall W, Burton G, Zaritsky A, American Heart Association’s Get With The Guidelines-Resuscitation I Sodium bicarbonate use during in-hospital pediatric pulseless cardiac arrest—a report from the American Heart Association Get With The Guidelines((R))-Resuscitation. Resuscitation. 2015;89:106–113. doi: 10.1016/j.resuscitation.2015.01.007. PubMed DOI PMC

Berg RA, Reeder RW, Meert KL, et al. End-tidal carbon dioxide during pediatric in-hospital cardiopulmonary resuscitation. Resuscitation. 2018;133:173–179. doi: 10.1016/j.resuscitation.2018.08.013. PubMed DOI PMC

Stine CN, Koch J, Brown LS, Chalak L, Kapadia V, Wyckoff MH. Quantitative end-tidal CO2 can predict increase in heart rate during infant cardiopulmonary resuscitation. Heliyon. 2019;5(6):e01871. doi: 10.1016/j.heliyon.2019.e01871. PubMed DOI PMC

Yates AR, Sutton RM, Reeder RW, et al. Survival and cardiopulmonary resuscitation hemodynamics following cardiac arrest in children with surgical compared to medical heart disease. Pediatr Crit Care Med. 2019;20(12):1126–1136. doi: 10.1097/PCC.0000000000002088. PubMed DOI PMC

Berg RA, Sutton RM, Reeder RW, et al. Association between diastolic blood pressure during pediatric in-hospital cardiopulmonary resuscitation and survival. Circulation. 2018;137(17):1784–1795. doi: 10.1161/CIRCULATIONAHA.117.032270. PubMed DOI PMC

Caglar A, Er A, Ulusoy E, et al. Cerebral oxygen saturation monitoring in pediatric cardiopulmonary resuscitation patients in the emergency settings: a small descriptive study. Turk J Pediatr. 2017;59(6):642–647. doi: 10.24953/turkjped.2017.06.004. PubMed DOI

Abramo TJ, Meredith M, Jaeger M, et al. Cerebral oximetry with blood volume index in asystolic pediatric cerebrospinal fluid malfunctioning shunt patients. Am J Emerg Med. 2014;32(11):1439.e1-7. doi: 10.1016/j.ajem.2014.04.007. PubMed DOI

Pasquier M, Hugli O, Paal P, et al. Hypothermia outcome prediction after extracorporeal life support for hypothermic cardiac arrest patients: the HOPE score. Resuscitation. 2018;126:58–64. doi: 10.1016/j.resuscitation.2018.02.026. PubMed DOI

Hilmo J, Naesheim T, Gilbert M. “Nobody is dead until warm and dead”: prolonged resuscitation is warranted in arrested hypothermic victims also in remote areas—a retrospective study from northern Norway. Resuscitation. 2014;85(9):1204–1211. doi: 10.1016/j.resuscitation.2014.04.029. PubMed DOI

Wollenek G, Honarwar N, Golej J, Marx M. Cold water submersion and cardiac arrest in treatment of severe hypothermia with cardiopulmonary bypass. Resuscitation. 2002;52(3):255–263. doi: 10.1016/S0300-9572(01)00474-9. PubMed DOI

Huang SC, Wu ET, Wang CC, et al. Eleven years of experience with extracorporeal cardiopulmonary resuscitation for paediatric patients with in-hospital cardiac arrest. Resuscitation. 2012;83(6):710–714. doi: 10.1016/j.resuscitation.2012.01.031. PubMed DOI

De Mul A, Nguyen DA, Doell C, Perez MH, Cannizzaro V, Karam O. Prognostic evaluation of mortality after pediatric resuscitation assisted by extracorporeal life support. J Pediatr Intensive Care. 2019;8(2):57–63. doi: 10.1055/s-0038-1667012. PubMed DOI PMC

Pasquier M, Rousson V. Qualification for extracorporeal life support in accidental hypothermia: the HOPE score. Ann Thorac Surg. 2020 doi: 10.1016/j.athoracsur.2020.06.146. PubMed DOI

Dunning J, Fabbri A, Kolh PH, et al. Guideline for resuscitation in cardiac arrest after cardiac surgery. Eur J Cardiothorac Surg. 2009;36(1):3–28. doi: 10.1016/j.ejcts.2009.01.033. PubMed DOI

Tsou PY, Kurbedin J, Chen YS, et al. Accuracy of point-of-care focused echocardiography in predicting outcome of resuscitation in cardiac arrest patients: A systematic review and meta-analysis. Resuscitation. 2017;114:92–99. doi: 10.1016/j.resuscitation.2017.02.021. PubMed DOI

Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–350. doi: 10.1213/01.ane.0000268712.00756.dd. PubMed DOI

Spyres MB, Farrugia LA, Kang AM, et al. The toxicology investigators consortium case registry-the 2018 annual report. J Med Toxicol. 2019;15(4):228–254. doi: 10.1007/s13181-019-00736-9. PubMed DOI PMC

Larach MG, Rosenberg H, Gronert GA, Allen GC. Hyperkalemic cardiac arrest during anesthesia in infants and children with occult myopathies. Clin Pediatr (Phila) 1997;36(1):9–16. doi: 10.1177/000992289703600102. PubMed DOI

Carreiro S, Miller S, Wang B, Wax P, Campleman S, Manini AF. Clinical predictors of adverse cardiovascular events for acute pediatric drug exposures. Clin Toxicol. 2020;58(3):183–189. doi: 10.1080/15563650.2019.1634272. PubMed DOI PMC

Morgan RW, Fitzgerald JC, Weiss SL, Nadkarni VM, Sutton RM, Berg RA. Sepsis-associated in-hospital cardiac arrest: epidemiology, pathophysiology, and potential therapies. J Crit Care. 2017;40:128–135. doi: 10.1016/j.jcrc.2017.03.023. PubMed DOI

Workman JK, Bailly DK, Reeder RW, et al. Risk factors for mortality in refractory pediatric septic shock supported with extracorporeal life support. ASAIO J. 2020;66(10):1152–1160. doi: 10.1097/MAT.0000000000001147. PubMed DOI PMC

Sole A, Jordan I, Bobillo S, et al. Venoarterial extracorporeal membrane oxygenation support for neonatal and pediatric refractory septic shock: more than 15 years of learning. Eur J Pediatr. 2018;177(8):1191–1200. doi: 10.1007/s00431-018-3174-2. PubMed DOI

Torres-Andres F, Fink EL, Bell MJ, Sharma MS, Yablonsky EJ, Sanchez-de-Toledo J. Survival and long-term functional outcomes for children with cardiac arrest treated with extracorporeal cardiopulmonary resuscitation. Pediatr Crit Care Med. 2018;19(5):451–458. doi: 10.1097/PCC.0000000000001524. PubMed DOI PMC

Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(4):456–463. doi: 10.1097/MAT.0000000000000603. PubMed DOI PMC

Shin HJ, Song S, Park HK, Park YH. Results of extracorporeal cardiopulmonary resuscitation in children. Korean J Thorac Cardiovasc Surg. 2016;49(3):151–156. doi: 10.5090/kjtcs.2016.49.3.151. PubMed DOI PMC

Oberender F, Ganeshalingham A, Fortenberry JD, et al. Venoarterial extracorporeal membrane oxygenation versus conventional therapy in severe pediatric septic shock. Pediatr Crit Care Med. 2018;19(10):965–972. doi: 10.1097/PCC.0000000000001660. PubMed DOI

Weiss SL, Balamuth F, Hensley J, et al. The epidemiology of hospital death following pediatric severe sepsis: when, why, and how children with sepsis die. Pediatr Crit Care Med. 2017;18(9):823–830. doi: 10.1097/PCC.0000000000001222. PubMed DOI PMC

Cunningham A, Auerbach M, Cicero M, Jafri M. Tourniquet usage in prehospital care and resuscitation of pediatric trauma patients-Pediatric Trauma Society position statement. J Trauma Acute Care Surg. 2018;85(4):665–667. doi: 10.1097/TA.0000000000001839. PubMed DOI

American College of Surgeons Committee on T. American College of Emergency Physicians Pediatric Emergency Medicine C. National Association of Ems P. American Academy of Pediatrics Committee on Pediatric Emergency M. Fallat ME. Withholding or termination of resuscitation in pediatric out-of-hospital traumatic cardiopulmonary arrest. Pediatrics. 2014;133(4):e1104–e1116. doi: 10.1542/peds.2014-0176. PubMed DOI

Zwingmann J, Mehlhorn AT, Hammer T, Bayer J, Sudkamp NP, Strohm PC. Survival and neurologic outcome after traumatic out-of-hospital cardiopulmonary arrest in a pediatric and adult population: a systematic review. Crit Care. 2012;16(4):R117. doi: 10.1186/cc11410. PubMed DOI PMC

Donoghue AJ, Nadkarni V, Berg RA, et al. Out-of-hospital pediatric cardiac arrest: an epidemiologic review and assessment of current knowledge. Ann Emerg Med. 2005;46(6):512–522. doi: 10.1016/j.annemergmed.2005.05.028. PubMed DOI

Alqudah Z, Nehme Z, Alrawashdeh A, Williams B, Oteir A, Smith K. Paediatric traumatic out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2020;149:65–73. doi: 10.1016/j.resuscitation.2020.01.037. PubMed DOI

Moore L, Champion H, Tardif PA, et al. Impact of trauma system structure on injury outcomes: a systematic review and meta-analysis. World J Surg. 2018;42(5):1327–1339. doi: 10.1007/s00268-017-4292-0. PubMed DOI

Puzio T, Murphy P, Gazzetta J, Phillips M, Cotton BA, Hartwell JL. Extracorporeal life support in pediatric trauma: a systematic review. Trauma Surg Acute Care Open. 2019;4(1):e000362. doi: 10.1136/tsaco-2019-000362. PubMed DOI PMC

Tan BK, Pothiawala S, Ong ME. Emergency thoracotomy: a review of its role in severe chest trauma. Minerva Chir. 2013;68(3):241–250. PubMed

Allen CJ, Valle EJ, Thorson CM, et al. Pediatric emergency department thoracotomy: a large case series and systematic review. J Pediatr Surg. 2015;50(1):177–181. doi: 10.1016/j.jpedsurg.2014.10.042. PubMed DOI

Moskowitz EE, Burlew CC, Kulungowski AM, Bensard DD. Survival after emergency department thoracotomy in the pediatric trauma population: a review of published data. Pediatr Surg Int. 2018;34(8):857–860. doi: 10.1007/s00383-018-4290-9. PubMed DOI

Bennett M, Kissoon N. Is cardiopulmonary resuscitation warranted in children who suffer cardiac arrest post trauma? Pediatr Emerg Care. 2007;23(4):267–272. doi: 10.1097/PEC.0b013e3180403088. PubMed DOI

Cameron A, Erdogan M, Lanteigne S, Hetherington A, Green RS. Organ donation in trauma victims: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2018;84(6):994–1002. doi: 10.1097/TA.0000000000001886. PubMed DOI

Shibahashi K, Sugiyama K, Hamabe Y. Pediatric out-of-hospital traumatic cardiopulmonary arrest after traffic accidents and termination of resuscitation. Ann Emerg Med. 2020;75(1):57–65. doi: 10.1016/j.annemergmed.2019.05.036. PubMed DOI

Brindis SL, Gausche-Hill M, Young KD, Putnam B. Universally poor outcomes of pediatric traumatic arrest: a prospective case series and review of the literature. Pediatr Emerg Care. 2011;27(7):616–621. doi: 10.1097/PEC.0b013e31822255c9. PubMed DOI

Matos RI, Watson RS, Nadkarni VM, et al. Duration of cardiopulmonary resuscitation and illness category impact survival and neurologic outcomes for in-hospital pediatric cardiac arrests. Circulation. 2013;127(4):442–451. doi: 10.1161/circulationaha.112.125625. PubMed DOI

Duron V, Burke RV, Bliss D, Ford HR, Upperman JS. Survival of pediatric blunt trauma patients presenting with no signs of life in the field. J Trauma Acute Care Surg. 2014;77(3):422–426. doi: 10.1097/TA.0000000000000394. PubMed DOI

Noje C, Bembea MM, McMillan NKL, et al. A national survey on Interhospital transport of children in cardiac arrest. Pediatr Crit Care Med. 2019;20(1):e30–e36. doi: 10.1097/PCC.0000000000001768. PubMed DOI

Wieck MM, Cunningham AJ, Behrens B, et al. Direct to operating room trauma resuscitation decreases mortality among severely injured children. J Trauma Acute Care Surg. 2018;85(4):659–664. doi: 10.1097/TA.0000000000001908. PubMed DOI

Michelson KA, Hudgins JD, Monuteaux MC, Bachur RG, Finkelstein JA. Cardiac arrest survival in pediatric and general emergency departments. Pediatrics. 2018 doi: 10.1542/peds.2017-2741. PubMed DOI PMC

Moore HB, Moore EE, Bensard DD. Pediatric emergency department thoracotomy: a 40-year review. J Pediatr Surg. 2016;51(2):315–318. doi: 10.1016/j.jpedsurg.2015.10.040. PubMed DOI PMC

Schauer SG, Hill GJ, Connor RE, Oh JS, April MD. The pediatric resuscitative thoracotomy during combat operations in Iraq and Afghanistan—a retrospective cohort study. Injury. 2018;49(5):911–915. doi: 10.1016/j.injury.2018.01.034. PubMed DOI

Flynn-O’Brien KT, Stewart BT, Fallat ME, et al. Mortality after emergency department thoracotomy for pediatric blunt trauma: analysis of the national trauma data bank 2007–2012. J Pediatr Surg. 2016;51(1):163–167. doi: 10.1016/j.jpedsurg.2015.10.034. PubMed DOI

Capizzani AR, Drongowski R, Ehrlich PF. Assessment of termination of trauma resuscitation guidelines: are children small adults? J Pediatr Surg. 2010;45(5):903–907. doi: 10.1016/j.jpedsurg.2010.02.014. PubMed DOI

TraumaRegister DGU. Zwingmann J, Lefering R, et al. Outcome and risk factors in children after traumatic cardiac arrest and successful resuscitation. Resuscitation. 2015;96:59–65. doi: 10.1016/j.resuscitation.2015.07.022. PubMed DOI

McLaughlin C, Zagory JA, Fenlon M, et al. Timing of mortality in pediatric trauma patients: a national trauma data bank analysis. J Pediatr Surg. 2018;53(2):344–351. doi: 10.1016/j.jpedsurg.2017.10.006. PubMed DOI PMC

Alqudah Z, Nehme Z, Williams B, Oteir A, Bernard S, Smith K. A descriptive analysis of the epidemiology and management of paediatric traumatic out-of-hospital cardiac arrest. Resuscitation. 2019;140:127–134. doi: 10.1016/j.resuscitation.2019.05.020. PubMed DOI

Kaestner M, Schranz D, Warnecke G, Apitz C, Hansmann G, Miera O. Pulmonary hypertension in the intensive care unit. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart. 2016;102(Suppl 2):ii57–ii66. doi: 10.1136/heartjnl-2015-307774. PubMed DOI

Marino BS, Tabbutt S, MacLaren G, et al. Cardiopulmonary resuscitation in infants and children with cardiac disease: a scientific statement from the American Heart Association. Circulation. 2018;137(22):e691–e782. doi: 10.1161/CIR.0000000000000524. PubMed DOI

Morgan RW, Topjian AA, Wang Y, et al. Prevalence and outcomes of pediatric in-hospital cardiac arrest associated with pulmonary hypertension. Pediatr Crit Care Med. 2020;21(4):305–313. doi: 10.1097/PCC.0000000000002187. PubMed DOI PMC

Loaec M, Himebauch AS, Kilbaugh TJ, et al. Pediatric cardiopulmonary resuscitation quality during intra-hospital transport. Resuscitation. 2020;152:123–130. doi: 10.1016/j.resuscitation.2020.05.003. PubMed DOI PMC

Anton-Martin P, Moreira A, Kang P, Green ML. Outcomes of paediatric cardiac patients after 30 minutes of cardiopulmonary resuscitation prior to extracorporeal support. Cardiol Young. 2020;30(5):607–616. doi: 10.1017/S1047951120000591. PubMed DOI

Morell E, Rajagopal SK, Oishi P, Thiagarajan RR, Fineman JR, Steurer MA. Extracorporeal membrane oxygenation in pediatric pulmonary hypertension. Pediatr Crit Care Med. 2020;21(3):256–266. doi: 10.1097/PCC.0000000000002127. PubMed DOI

Melvan JN, Davis J, Heard M, et al. Factors associated with survival following extracorporeal cardiopulmonary resuscitation in children. World J Pediatr Congenit Heart Surg. 2020;11(3):265–274. doi: 10.1177/2150135120902102. PubMed DOI

Esangbedo ID, Brunetti MA, Campbell FM, Lasa JJ. Pediatric extracorporeal cardiopulmonary resuscitation: a systematic review. Pediatr Crit Care Med. 2020;21(10):e934–e943. doi: 10.1097/PCC.0000000000002373. PubMed DOI

Kido T, Iwagami M, Yasunaga H, et al. Outcomes of paediatric out-of-hospital cardiac arrest according to hospital characteristic defined by the annual number of paediatric patients with invasive mechanical ventilation: a nationwide study in Japan. Resuscitation. 2020;148:49–56. doi: 10.1016/j.resuscitation.2019.12.020. PubMed DOI

Amagasa S, Kashiura M, Moriya T, et al. Relationship between institutional case volume and one-month survival among cases of paediatric out-of-hospital cardiac arrest. Resuscitation. 2019;137:161–167. doi: 10.1016/j.resuscitation.2019.02.021. PubMed DOI

Gupta P, Tang X, Gall CM, Lauer C, Rice TB, Wetzel RC. Epidemiology and outcomes of in-hospital cardiac arrest in critically ill children across hospitals of varied center volume: a multi-center analysis. Resuscitation. 2014;85(11):1473–1479. doi: 10.1016/j.resuscitation.2014.07.016. PubMed DOI

Stub D, Nichol G. Hospital care after resuscitation from out-of-hospital cardiac arrest: the emperor’s new clothes? Resuscitation. 2012;83(7):793–794. doi: 10.1016/j.resuscitation.2012.03.034. PubMed DOI

Topjian AA, Telford R, Holubkov R, et al. The association of early post-resuscitation hypotension with discharge survival following targeted temperature management for pediatric in-hospital cardiac arrest. Resuscitation. 2019;141:24–34. doi: 10.1016/j.resuscitation.2019.05.032. PubMed DOI PMC

Laverriere EK, Polansky M, French B, Nadkarni VM, Berg RA, Topjian AA. Association of duration of hypotension with survival after pediatric cardiac arrest. Pediatr Crit Care Med. 2020;21(2):143–149. doi: 10.1097/PCC.0000000000002119. PubMed DOI

Topjian AA, Sutton RM, Reeder RW, et al. The association of immediate post cardiac arrest diastolic hypertension and survival following pediatric cardiac arrest. Resuscitation. 2019;141:88–95. doi: 10.1016/j.resuscitation.2019.05.033. PubMed DOI PMC

Topjian AA, Telford R, Holubkov R, et al. Association of early postresuscitation hypotension with survival to discharge after targeted temperature management for pediatric out-of-hospital cardiac arrest: secondary analysis of a randomized clinical trial. JAMA Pediatr. 2018;172(2):143–153. doi: 10.1001/jamapediatrics.2017.4043. PubMed DOI PMC

Lopez-Herce J, del Castillo J, Matamoros M, et al. Post return of spontaneous circulation factors associated with mortality in pediatric in-hospital cardiac arrest: a prospective multicenter multinational observational study. Crit Care. 2014;18(6):607. doi: 10.1186/s13054-014-0607-9. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Airway Management in Pediatric Patients: Cuff-Solved Problem?

. 2022 Sep 28 ; 9 (10) : . [epub] 20220928

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...