Recent innovations in the production of selected specialty (non-traditional) beers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34097198
DOI
10.1007/s12223-021-00881-1
PII: 10.1007/s12223-021-00881-1
Knihovny.cz E-zdroje
- MeSH
- fermentace MeSH
- pivo * mikrobiologie normy MeSH
- potravinářský průmysl * trendy MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Zobrazit více v PubMed
Adamenko K, Kawa-Rygielska J, Kucharska AZ (2020) Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem 312:125968. https://doi.org/10.1016/j.foodchem.2019.125968 PubMed DOI
Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23(1):37–46. https://doi.org/10.1017/S0954422410000090 PubMed DOI
Alcantara BM, Marques DR, Chinellato MM, Marchi LB, da Costa SC, Monteiro ARG (2016) Assessment of quality and production process of a non-alcoholic stout beer using reverse osmosis. J I Brewing 122(4):714–718. https://doi.org/10.1002/jib.368 DOI
Ambrosi A, Motke MB, Souza-Silva ÉA, Zini CA, McCutcheon JR, Cardozo NSM, Tessaro IC (2020) Beer dealcoholization by forward osmosis diafiltration. Innov Food Sci Emerg 63:102371. https://doi.org/10.1016/j.ifset.2020.102371 DOI
Andrés-Iglesias C, Blanco CA, García-Serna J, Pando V, Montero O (2016) Volatile compound profiling in commercial lager regular beers and derived alcohol-free beers after dealcoholization by vacuum distillation. Food Anal Method 9:3230–3241. https://doi.org/10.1007/s12161-016-0513-7 DOI
Bamforth CW (2009) Producing gluten-free beer—an overview. In: Arendt EK, Dal Bello F (eds) The science of gluten-free foods and beverages. AACC International, St Paul MN, pp 113–117 DOI
Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86(8):112–120. https://doi.org/10.1016/j.foodres.2016.06.002 DOI
Bellut K, Arendt EK (2019) Chance and challenge: non-Saccharomyces yeasts in nonalcoholic and low alcohol beer brewing: a review. J Am Soc Brew Chem 77:77–91. https://doi.org/10.1080/03610470.2019.1569452 DOI
Bellut K, Krogerus K, Arendt EK (2020) Lachancea fermentati strains isolated from kombucha: fundamental insights, and practical application in low alcohol beer brewing. Front Microbiol 11:764. https://doi.org/10.3389/fmicb.2020.00764 PubMed DOI PMC
Bellut K, Michel M, Zarnkow M, Hutzler M, Jacob F, Atzler JJ, Hoehnel A, Lynch KM, Arendt EK (2019a) Screening and application of Cyberlindnera yeasts to produce a fruity, non-alcoholic beer. Fermentation 5(4):103. https://doi.org/10.3390/fermentation5040103 DOI
Bellut K, Michel M, Zarnkow M, Hutzler M, Jacob F, Lynch KM, Arendt EK (2019b) On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. Eur Food Res Technol 245(11):2549–2564. https://doi.org/10.1007/s00217-019-03372-3 DOI
Bellut K, Michel M, Hutzler M, Zarnkow M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK (2019c) Investigation into the potential of Lachancea fermentati strain KBI 12.1 for low alcohol beer brewing. J Am Soc Brew Chem 77(3):157–169. https://doi.org/10.1080/03610470.2019.1629227
Bellut K, Michel M, Zarnkow M, Hutzler M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK (2018) Application of non-Saccharomyces yeasts isolated from Kombucha in the production of alcohol-free beer. Fermentation 4(3):66. https://doi.org/10.3390/fermentation4030066 DOI
Blaise P, Phiarais N, Arendt EK (2008) Malting and brewing with gluten-free cereals. In: Arendt EK, Bello FD (eds) Gluten-free cereal products and beverages. Academic Press, San Diego, CA, pp 347–372
Blanco CA, Andrés-Iglesias C, Montero O (2016) Low-alcohol beers: flavor compounds, defects, and improvement strategies. Crit Rev Food Sci Nutr 56:1379–1388. https://doi.org/10.1080/10408398.2012.733979 PubMed DOI
Bokulich NA, Bamforth CW, Mills DA (2012) Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS One 7(4):e35507. https://doi.org/10.1371/journal.pone.0035507 PubMed DOI PMC
Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, Van Breemen RB, Pauli GF, Dietz BM (2019) The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol 32:222–233. https://doi.org/10.1021/acs.chemrestox.8b00345 PubMed DOI PMC
Bossaert S, Crauwels S, De Rouck G, Lievens B (2019) The power of sour—a review: old traditions, new opportunities. Brew Sci 72(3–4):78–88. https://doi.org/10.23763/BrSc19-10bossaert
Brányik T, Silva DP, Baszczynski M, Lehnert R, Almeida e Silva JB, (2012) A review of methods of low alcohol and alcohol-free beer production. J Food Eng 108(4):493–506. https://doi.org/10.1016/j.jfoodeng.2011.09.020 DOI
Broekaert WF, Courtin CM, Verbeke K, van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51(2):178–194. https://doi.org/10.1080/10408390903044768 PubMed DOI
Buiatti S, Bertoli S, Passaghe P (2018) Influence of gluten-free adjuncts on beer colloidal stability. Eur Food Res Technol 244:903–912. https://doi.org/10.1007/s00217-017-3010-3 DOI
Bustos L, Soto E, Parra F, Echiburu-Chau C, Parra C (2019) Brewing of a porter craft beer enriched with the plant Parastrephia lucida: a promising source of antioxidant compounds. J Am Soc Brew Chem 77(4):261–266. https://doi.org/10.1080/03610470.2019.1644478 DOI
Butel MJ (2014) Probiotics, gut microbiota and health. Medecine Et Maladies Infectieuses 44(1):1–8. https://doi.org/10.1016/j.medmal.2013.10.002 PubMed DOI
Buts JP (2009) Twenty-five years of research on Saccharomyces boulardii trophic effects: updates and perspectives. Digest Dis Sci 54:15–18. https://doi.org/10.1007/s10620-008-0322-y PubMed DOI
Callejo MJ, García Navas JJ, Alba R, Escott C, Loira I, González MC, Morata A (2019) Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. Eur Food Res Technol 245:1229–1238. https://doi.org/10.1007/s00217-019-03244-w DOI
Capece A, Romaniello R, Pietrafesa A, Siesto G, Pietrafesa R, Zambuto M, Romano P (2018a) Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int J Food Microbiol 284:22–30. https://doi.org/10.1016/j.ijfoodmicro.2018.06.028 PubMed DOI
Capece A, Romaniello R, Siesto G, Romano P (2018b) Conventional and non-conventional yeasts in beer production. Fermentation 4(2):38. https://doi.org/10.3390/fermentation4020038 DOI
Carvalho DO, Guido LF, Andersen ML (2016) Implications of xanthohumol enrichment on the oxidative stability of pale and dark beers. J Am Soc Brew Chem 74(1):24–29. https://doi.org/10.1094/ASBCJ-2016-1209-01 DOI
Castro-Muñoz R (2019) Pervaporation-based membrane processes for the production of non-alcoholic beverages. J Food Sci Technol 56:2333–2344. https://doi.org/10.1007/s13197-019-03751-4 PubMed DOI PMC
Ceccaroni D, Marconi O, Sileoni V, Wray E, Perretti G (2019a) Rice malting optimization for the production of top fermented gluten-free beer. J Sci Food Agric 99(6):2726–2734. https://doi.org/10.1002/jsfa.9440 PubMed DOI
Ceccaroni D, Sileoni V, Marconi O, De Francesco G, Lee EG, Perretti G (2019b) Specialty rice malt optimization and improvement of rice malt beer aspect and aroma. LWT-Food Sci Technol 99:299–305. https://doi.org/10.1016/j.lwt.2018.09.060 DOI
Cela N, Condelli N, Caruso MC, Perretti G, Di Cairano M, Tolve R, Galgano F (2020) Gluten-free brewing: issues and perspectives. Fermentation 6(2):53. https://doi.org/10.3390/fermentation6020053 DOI
Ceppi ELM, Brenna OV (2010) Brewing with rice malt—a gluten-free alternative. J I Brewing 116(3):275–279. https://doi.org/10.1002/j.2050-0416.2010.tb00431.x DOI
Chan MZA, Chua JY, Toh M, Liu SQ (2019) Survival of probiotic strain Lactobacillus paracasei L26 during co-fermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiol 82:541–550. https://doi.org/10.1016/j.fm.2019.04.001 DOI
Ciosek A, Rusiecka I, Poreda A (2020) Sour beer production: impact of pitching sequence of yeast and lactic acid bacteria. J I Brewing 126(1):53–58. https://doi.org/10.1002/jib.590 DOI
Coors J (1976) Practical experience with different adjuncts. Technical Quarterly-Master Brewers Association of the Americas 13:117–119
Das S, Deb D, Adak A, Khan MR (2019) Exploring the microbiota and metabolites of traditional rice beer varieties of Assam and their functionalities. 3 Biotech 9(5):174. https://doi.org/10.1007/s13205-019-1702-z
Datta S, Timson DJ, Annapure US (2017) Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. J Sci Food Agric 97(9):3039–3049. https://doi.org/10.1002/jsfa.8147
De Francesco G, Sannino C, Sileoni V, Marconi O, Filippucci S, Tasselli G, Turchetti B (2018) Mrakia gelida in brewing process: an innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 76:354–362. https://doi.org/10.1016/j.fm.2018.06.018 PubMed DOI
De Fusco DO, Madaleno LL, Del Bianchi VL, Bernardo ADS, Assis RR, de Almeida Teixeira GH (2019) Development of low-alcohol isotonic beer by interrupted fermentation. Int J Food Sci Technol 54(7):2416–2424. https://doi.org/10.1111/ijfs.14156 DOI
De Roos J, De Vuyst L (2019) Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. J Sci Food Agric 99(1):25-38. https://doi.org/10.1002/jsfa.9291
Deng Y, Lim J, Lee GH, Nguyen TTH, Xiao Y, Piao M, Kim D (2019) Brewing rutin-enriched lager beer with buckwheat malt as adjuncts. J Microbiol Biotechnol 29(6):877–886. https://doi.org/10.4014/jmb.1904.04041 PubMed DOI
Deng Y, Lim J, Nguyen TTH, Mok IK, Piao M, Kim D (2020) Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis Baillon (omija) fruits. Food Sci Biotechnol 29:609–617. https://doi.org/10.1007/s10068-019-00714-5 PubMed DOI
Deželak M, Gebremariam MM, Zarnkow M, Becker T, Košir IJ (2015) Part III: the influence of serial repitching of Saccharomyces pastorianus on the production dynamics of some important aroma compounds during the fermentation of barley and gluten-free buckwheat and quinoa wort. J I Brewing 121(3):387–399. https://doi.org/10.1002/jib.243 DOI
Di Ghionno L, Marconi O, Lee EG, Rice CJ, Sileoni V, Perretti G (2017a) Gluten-free sources of fermentable extract: effect of temperature and germination time on quality attributes of teff [Eragrostis tef (zucc.) trotter] malt and wort. J Agric Food Chem 65(23):4777–4785. https://doi.org/10.1021/acs.jafc.7b01717
Di Ghionno L, Sileoni V, Marconi O, De Francesco G, Perretti G (2017b) Comparative study on quality attributes of gluten-free beer from malted and unmalted teff [Eragrostis tef (zucc.) trotter]. LWT-Food Sci Technol 84:746–752. https://doi.org/10.1016/j.lwt.2017.06.044 DOI
Diakabana P, Mvoula-Tsiéri M, Dhellot J, Kobawila SC, Louembé D (2013) Physico-chemical characterization of brew during the brewing corn malt in the production of maize beer in Congo. Adv J Food Sci Technol 5(6):671–677 DOI
Djameh C, Ellis WO, Oduro I, Saalia FK, Haslbeck K, Komlaga GA (2019) West African sorghum beer fermented with Lactobacillus delbrueckii and Saccharomyces cerevisiae: fermentation by-products. J I Brewing 125(3):326–332. https://doi.org/10.1002/jib.562 DOI
Đorđević S, Popović D, Despotović S, Veljović M, Atanacković M, Cvejić J, Nedovic V, Leskošek-Čukalović I (2016) Extracts of medicinal plants as functional beer additives. Chem Ind Chem Eng Q 22(3):301–308. https://doi.org/10.2298/CICEQ150501044D DOI
Dostalek P, Hochel I, Mendez E, Hernando A, Gabrovska D (2006) Immunochemical determination of gluten in malts and beers. Food Addit Contam 23:1074–1078. https://doi.org/10.1080/02652030600740637 PubMed DOI
Ducruet J, Rébénaque P, Diserens S, Kosińska-Cagnazzo A, Héritier I, Andlauer W (2017) Amber ale beer enriched with goji berries—the effect on bioactive compound content and sensorial properties. Food Chem 226:109–118. https://doi.org/10.1016/j.foodchem.2017.01.047 PubMed DOI
Duliński R, Zdaniewicz M, Pater A, Poniewska D, Żyła K (2020) The impact of phytases on the release of bioactive inositols, the profile of inositol phosphates, and the release of selected minerals in the technology of buckwheat beer production. Biomolecules 10(2):166. https://doi.org/10.3390/biom10020166 DOI PMC
Dysvik A, La Rosa SL, Buffetto F, Liland KH, Myhrer KS, Rukke EO, Wicklund T, Westereng B (2020a) Secondary lactic acid bacteria fermentation with wood-derived xylooligosaccharides as a tool to expedite sour beer production. J Agr Food Chem 68(1):301–314. https://doi.org/10.1021/acs.jafc.9b05459 DOI
Dysvik A, La Rosa SL, Liland KH, Myhrer KS, Østlie HM, De Rouck G, Rukke EO, Westereng B, Wicklund T (2020b) Co-fermentation involving Saccharomyces cerevisiae and Lactobacillus species tolerant to brewing-related stress factors for controlled and rapid production of sour beer. Front Microbiol 11:279. https://doi.org/10.3389/fmicb.2020.00279 PubMed DOI PMC
Dysvik A, Liland KH, Myhrer KS, Westereng B, Rukke EO, De Rouck G, Wicklund T (2019) Pre-fermentation with lactic acid bacteria in sour beer production. J I Brewing 125(3):342–356. https://doi.org/10.1002/jib.569 DOI
Eksiri M, Nateghi L, Haghverdi A (2014) Use of pasteurization unit for estimation of microbial quality of Iranian non–alcoholic beer using different thermal treatments and various types of packaging. Int J Biosci 5(9):316–320. https://doi.org/10.12692/ijb/5.9.316-320
Embashu W, Iileka O, Nantanga KK (2019) Namibian opaque beer: a review. J I Brewing 125(1):4–9. https://doi.org/10.1002/jib.533 DOI
Espinosa-Ramírez J, Pérez-Carrillo E, Serna-Saldívar SO (2013) Production of lager beers from different types of sorghum malts and adjuncts supplemented with β-amylase or amyloglucosidase. J Am Soc Brew Chem 71:208–213. https://doi.org/10.1094/ASBCJ-2013-0914-01 DOI
Gallego CG, Salminen S (2016) Novel probiotics and prebiotics: how can they help in human gut microbiota dysbiosis. Appl Food Biotechnol 3(2):72–81. https://doi.org/10.22037/afb.v3i2.11276
Gebremariam MM, Zarnkow M, Becker T (2014) Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. J Food Sci Technol 51(11):2881–2895. https://doi.org/10.1007/s13197-012-0745-5 PubMed DOI
Gernat DC, Brouwer E, Ottens M (2020a) Aldehydes as wort off-flavours in alcohol-free beers—origin and control. Food Bioprocess Tech 13:195–216. https://doi.org/10.1007/s11947-019-02374-z DOI
Gernat DC, Penning MM, Swinkels FM, Brouwer ER, Ottens M (2020b) Selective off-flavor reduction by adsorption: a case study in alcohol-free beer. Food Bioprod Process 121:91–104. https://doi.org/10.1016/j.fbp.2019.12.007 DOI
Gibson B, Geertman JMA, Hittinger CT, Krogerus K, Libkind D, Louis EJ, Magalhães F, Sampaio JP (2017a) New yeasts—new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res 17(4):1–13. https://doi.org/10.1093/femsyr/fox038 DOI
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017b) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastro Hepat 14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75 DOI
Guerdrum LJ, Bamforth CW (2011) Levels of gliadin in commercial beers. Food Chem 129:1783–1784. https://doi.org/10.1016/j.foodchem.2011.06.021 DOI
Habschied K, Živković A, Krstanović V, Mastanjević K (2020) Functional beer—A review on possibilities. Beverages 6(3):51. https://doi.org/10.3390/beverages6030051 DOI
Haffner FB, Pasc A (2018) Freeze-dried alginate-silica microparticles as carriers of probiotic bacteria in apple juice and beer. LWT – Food Sci Technol 91:175–179. https://doi.org/10.1016/j.lwt.2018.01.050
Hager AS, Taylor JP, Waters DM, Arendt EK (2014) Gluten free beer—a review. Trends Food Sci Technol 36(1):44–54. https://doi.org/10.1016/j.tifs.2014.01.001 DOI
Hardwick WA (1995) The properties of beer. In: Hardwick WA (ed) Handbook of brewing. Marcel Dekker, New York, NY, USA, pp 551–586
Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421. https://doi.org/10.3389/fmicb.2012.00421 PubMed DOI PMC
Heller L (2009) Commercial aspects of gluten-free products. In: Gallagher E (ed) Gluten-Free Food Science and Technology. Wiley-Blackwell, Oxford, UK, pp 99–106
Heredia-Olea E, Cortés-Ceballos E, Serna-Saldívar SO (2017) Malting sorghum with Aspergillus oryzae enhances gluten-free wort yield and extract. J Am Soc Brew Chem 75:116–121. https://doi.org/10.1094/ASBCJ-2017-2481-01 DOI
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastro Hepat 11:506–514. https://doi.org/10.1038/nrgastro.2014.66 DOI
Holt S, Mukherjee V, Lievens B, Verstrepen KJ, Thevelein JM (2018) Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol 72:55–66. https://doi.org/10.1016/j.fm.2017.11.008 PubMed DOI
Horincar G, Enachi E, Bolea C, Râpeanu G, Aprodu I (2020) Value-added lager beer enriched with eggplant (Solanum melongena L.) peel extract. Molecules 25(3):731. https://doi.org/10.3390/molecules25030731
Humia BV, Santos KS, Schneider JK, Leal IL, de Abreu BG, Batista T, Machado BAS, Druzian JI, Krause LC, da Costa MM, Padilha FF (2020) Physicochemical and sensory profile of Beauregard sweet potato beer. Food Chem 312:126087. https://doi.org/10.1016/j.foodchem.2019.126087 PubMed DOI
Im E, Pothoulakis C (2010) Recent advances in Saccharomyces boulardii research. Gastroenterol Clin Biol 34:S62–S70. https://doi.org/10.1016/S0399-8320(10)70023-3 PubMed DOI
Inui T, Yonezawa D, Abe H, Ishizuka Y (2018) Development of supercritical CO
Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9:1–13. https://doi.org/10.3389/fphar.2018.00530 DOI
Joint FAO/WHO (2002) Working group report on drafting for the evaluation of probiotics in food. Guidelines for the evaluation of probiotics in food. London Ontario, Canada
Kabbani TA, Pallav K, Dowd SE, Villafuerte-Galvez J, Vanga RR, Castillo NE, Hansen J, Dennis M, Leffler DA, Kelly CP (2017) Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes 8(1):17–32. https://doi.org/10.1080/19490976.2016.1267890 PubMed DOI
Karabín M, Jelínek L, Kotrba P, Cejnar R, Dostálek P (2018) Enhancing the performance of brewing yeasts. Biotechnol Adv 36(3):691–706. https://doi.org/10.1016/j.biotechadv.2017.12.014 PubMed DOI
Kechagia M, Basoulis D, Konstantopoulou S, Dimitriad D, Gyftopoulou K, Skarmoutsou N, Fakiri EM (2013) Health benefits of probiotics: a review. ISRN Nutrition ID481651. https://doi.org/10.5402/2013/481651
Kelesidis T, Pothoulakis C (2012) Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 5(2):111–125. https://doi.org/10.1177/1756283X11428502 PubMed DOI PMC
Kerpes R, Fischer S, Becker T (2017) The production of gluten-free beer: degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci Technol 67:129–138. https://doi.org/10.1016/j.tifs.2017.07.004 DOI
Klose C, Mauch A, Wunderlich S, Thiele F, Zarnkow M, Jacob F, Arendt EK (2011) Brewing with 100% oat malt. J I Brewing 117(3):411–421. https://doi.org/10.1002/j.2050-0416.2011.tb00487.x DOI
Kochlanova T, Kij D, Kopecka J, Kubizniakova P, Matoulkova D (2016a) Brettanomyces (Dekkera)/ non-Saccharomyces yeasts and their importance in the brewing industry Part I -Brettanomyces (Dekkera). Kvasny Prumysl, 62(7–8):198–205. https://doi.org/10.18832/kp2016024
Kochlanova T, Kij D, Kopecka J, Kubizniakova P, Matoulkova D (2016b) Non-Saccharomyces yeasts and their importance in the brewing industry. Part II. Kvasny Prumysl 62(7–8):206–214. https://doi.org/10.18832/kp2016025
Kordialik-Bogacka E, Bogdan P, Diowksz A (2014) Malted and unmalted oats in brewing. J I Brewing 120(4):390–398. https://doi.org/10.1002/jib.178 DOI
Krebs G, Müller M, Becker T, Gastl M (2019) Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Res Int 116:508–517. https://doi.org/10.1016/j.foodres.2018.08.067 PubMed DOI
Kubo R (2016) The reason for the preferential use of finger millet (Eleusine coracana) in eastern African brewing. J I Brewing 122(1):175–180. https://doi.org/10.1002/jib.309 DOI
Kumar H, Salminen S, Verhagen H, Rowland I, Heimbach J, Banares S, Young T, Nomoto K, Lalonde M (2015a) Novel probiotics and prebiotics: road to the market. Curr Opin Biotechnol 32:99–103. https://doi.org/10.1016/j.copbio.2014.11.021 PubMed DOI
Kumar S, Singh A, Shahi NC, Chand K, Gupta K (2015b) Optimization of substrate ratio for beer production from finger millet and barley. Int J Agr Biol Eng 8(2):110–120
Kyselová L, Brányik T (2015) Quality improvement and fermentation control in beer. In: Advances in Fermented Foods and Beverages (pp. 477–500). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-015-6.00020-7
Lahtinen SJ (2012) Probiotic viability—does it matter? Microb Ecol Health Dis 23:18567. https://doi.org/10.3402/mehd.v23i0.18567 DOI
Langenaeken NA, De Schutter DP, Courtin CM (2020) Arabinoxylan from non-malted cereals can act as mouthfeel contributor in beer. Carbohydr Polym 239:116257. https://doi.org/10.1016/j.carbpol.2020.116257 PubMed DOI
Leuck AM, Rothenberger MK, Green JS (2014) Fungemia due to Lachancea fermentati: a case report. BMC Infect Dis 14:1–4. https://doi.org/10.1186/1471-2334-14-250 DOI
Liguori L, De Francesco G, Russo P, Perretti G, Albanese D, Di Matteo M (2015) Production and characterization of alcohol-free beer by membrane process. Food Bioprod Process 94:158–168. https://doi.org/10.1016/j.fbp.2015.03.003 DOI
Liu Y, Ma TJ, Chen J (2013) Changes of the flavonoid and phenolic acid content and antioxidant activity of tartary buckwheat beer during the fermentation. In: Advanced Materials Research (Vol. 781–784, pp. 1619–1624). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.781-784.1619
Lyumugabe F, Gros J, Songa EB, Thonart P (2015) Sorghum beer brewing using Eleusine coracana “Finger Millet” to improve the saccharification. Am J Food Technol 10(4):167–175 DOI
Mateo-Gallego R, Pérez-Calahorra S, Lamiquiz-Moneo I, Marco-Benedí V, Bea AM, Fumanal AJ, Prieto-Martín A, Laclaustra M, Cenarro A, Civeira F (2020) Effect of an alcohol-free beer enriched with isomaltulose and a resistant dextrin on insulin resistance in diabetic patients with overweight or obesity. Clin Nutr 39(2):475–483. https://doi.org/10.1016/j.clnu.2019.02.025 PubMed DOI
Mayer H, Ceccaroni D, Marconi O, Sileoni V, Perretti G, Fantozzi P (2016) Development of an all rice malt beer: a gluten free alternative. LWT-Food Sci Technol 67:67–73. https://doi.org/10.1016/j.lwt.2015.11.037 DOI
Mellor DD, Hanna-Khalil B, Carson R (2020) A review of the potential health benefits of low alcohol and alcohol-free beer: effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 6(2):25. https://doi.org/10.3390/beverages6020025 DOI
Meng C, Bai C, Brown TD, Hood LE, Tian Q (2018) Human gut microbiota and gastrointestinal cancer. Genom Proteom Bioinf 16:33–49. https://doi.org/10.1016/j.gpb.2017.06.002 DOI
Meo B, Freeman G, Marconi O, Booer C, Perretti G, Fantozzi P (2011) Behaviour of malted cereals and pseudo-cereals for gluten-free beer production. J I Brewing 117(4):541–546. https://doi.org/10.1002/j.2050-0416.2011.tb00502.x DOI
Michel M, Meier- Dörnberg T, Jacob F, Methner FJ, Wagner RS, Hutzler M (2016) Review: pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J I Brewing 122:569–587. https://doi.org/10.1002/jib.381 DOI
Montanari L, Marconi O, Mayer H, Fantozzi P (2009) Production of alcohol-free beer. In: Beer in Health and Disease Prevention (ed. Preedy, R. V.), Academic Press, 61–75. https://doi.org/10.1016/B978-0-12-373891-2.00006-7
Mulero-Cerezo J, Briz-Redón Á, Serrano-Aroca Á (2019) Saccharomyces cerevisiae var. boulardii: valuable probiotic starter for craft beer production. Appl Sci 9(16):3250. https://doi.org/10.3390/app9163250
Muller C, Neves LE, Gomes L, Guimaraes M, Ghesti G (2020) Processes for alcohol-free beer production: a review. Food Sci Technol 40(2):273–281. https://doi.org/10.1590/fst.32318 DOI
Nielsen NB, Schmidt F (1985) The fate of carbohydrates during fermentation of low calorie beer. Carlsberg Res Commun 50(6):325 DOI
Ogata T, Iwashita Y, Kawada T (2017) Construction of a brewing yeast expressing the glucoamylase gene STA1 by mating. J I Brewing 123(1):66–69. https://doi.org/10.1002/jib.394 DOI
Osorio-Paz I, Brunauer R, Alavez S (2020) Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 60(20):3492-3505. https://doi.org/10.1080/10408398.2019.1696278 PubMed DOI
Ouwehand AC, Invernici MM, Furlaneto FAC, Messora MR (2018) Effectiveness of multi-strain versus single-strain probiotics. J Clin Gastroenterol 52:S35–S40. https://doi.org/10.1097/MCG.0000000000001052 PubMed DOI
Park JY, Lee JY, Choi SH, Ko HM, Kim IC, Lee HB, Bai S (2014) Construction of dextrin and isomaltose-assimilating brewer’s yeasts for production of low-carbohydrate beer. Biotechnol Lett 36(8):1693–1699. https://doi.org/10.1007/s10529-014-1530-5 PubMed DOI
Pelembe LAM, Dewar J, Taylor JRN (2004) Effect of germination moisture and time on pearl millet malt quality—with respect to its opaque and lager beer brewing potential. J I Brewing 110(4):320–325 DOI
Phiarais BPN, Mauch A, Schehl BD, Zarnkow M, Gastl M, Herrmann M, Zannini E, Arendt EK (2010) Processing of a top fermented beer brewed from 100% buckwheat malt with sensory and analytical characterisation. J I Brewing 3:265–274. https://doi.org/10.1002/j.2050-0416.2010.tb00430.x DOI
Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR, Thomaz-Soccol V, Soccol CR (2015) Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 6:1177. https://doi.org/10.3389/fmicb.2015.01177 PubMed DOI PMC
Prestes Alves KM, da Silva BJG, de Paula SA (2020) Beer aroma recovery and dealcoholisation by a two-step pervaporation process. J I Brewing 126(1):67–76. https://doi.org/10.1002/jib.587 DOI
Prestes DN, Spessato A, Talhamento A, Gularte MA, Schirmer MA, Vanier NL, Rombaldi CV (2019) The addition of defatted rice bran to malted rice improves the quality of rice beer. LWT-Food Sci Technol 112:108262. https://doi.org/10.1016/j.lwt.2019.108262 DOI
Reid G (2016) Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol 30:17–25. https://doi.org/10.1016/j.bpg.2015.12.001 PubMed DOI
Rezac S, Kok CR, Heermann M, Hutkins R (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785. https://doi.org/10.3389/fmicb.2018.01785 PubMed DOI PMC
Rodrigues KL, Araújo TH, Schneedorf JM, Ferreira CS, Moraes GOI, Coimbra RS, Rodrigues MR (2016) A novel beer fermented by kefir enhances anti-inflammatory and anti-ulcerogenic activities found isolated in its constituents. J Funct Foods 21:58–69. https://doi.org/10.1016/j.jff.2015.11.035 DOI
Rošul MD, Mandic AI, Misan AC, Deric NR, Pejin JD (2019) Review of trends in formulation of functional beer. Food Feed Res 46(1):23–35. https://doi.org/10.5937/FFR1901023R DOI
Rubio-Flores M, Serna-Saldivar SO (2016) Technological and engineering trends for production of gluten-free beers. Food Eng Rev 8(4):468–482. https://doi.org/10.1007/s12393-016-9142-6 DOI
Rubio-Flores M, García-Arellano AR, Perez-Carrillo E, Serna-Saldivar SO (2020) Use of Aspergillus oryzae during sorghum malting to enhance yield and quality of gluten-free lager beers. Bioresour Bioprocess 7:40. https://doi.org/10.1186/s40643-020-00330-w DOI
Schmelzle A, Lindemann B, Methner FJ (2013) Sensory descriptive analysis and consumer acceptance of non-alcoholic beer. Brew Sci 66(9–10):144–153
Schneedorf JM (2012) Kefir D'Aqua and its probiotic properties. In: Rigobelo EC (ed), Probiotic in Animals (pp. 284) Intech Open Access Publisher
Senkarcinova B, Graça Dias IA, Nespor J, Branyik T (2019) Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT-Food Sci Technol 100:362–367. https://doi.org/10.1016/j.lwt.2018.10.082 DOI
Sieuwerts S, Bron PA, Smid EJ (2018) Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT– Food Sci Technol 90:201–206. https://doi.org/10.1016/j.lwt.2017.12.022
Sohrabvandi S, Mousavi SM, Razavi SH, Mortazavian AM, Rezaei K (2010a) Alcohol-free beer: methods of production, sensorial defects, and healthful effects. Food Rev Int 26(4):335–352. https://doi.org/10.1080/87559129.2010.496022 DOI
Sohrabvandi S, Razavi SH, Mousavi SM, Mortazavian A, Rezaei K (2009) Application of Saccharomyces rouxii for the production of non-alcoholic beer. Food Sci Biotechnol 18(5):1132–1137
Sohrabvandi S, Razavi SH, Mousavi SM, Mortazavian AM (2010b) Viability of probiotic bacteria in low alcohol- and non-alcoholic beer during refrigerated storage. Philipp Agric Sci 93:24–28
Spitaels F, Van Kerrebroeck S, Wieme AD, Snauwaert I, Aerts M, Van Landschoot A, De Vuyst L, Vandamme P (2015a) Microbiota and metabolites of aged bottled gueuze beers converge to the same composition. Food Microbiol 47:1–11. https://doi.org/10.1016/j.fm.2014.10.004 PubMed DOI
Spitaels F, Wieme AD, Janssens M, Aerts M, Daniel HM, Van Landschoot A, De Vuyst L, Vandamme P (2014) The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One 9:e95384. https://doi.org/10.1371/journal.pone.0095384 PubMed DOI PMC
Spitaels F, Wieme AD, Janssens M, Aerts M, Van Landschoot A, De Vuyst L, Vandamme P (2015b) The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Food Microbiol 49:23–32. https://doi.org/10.1016/j.fm.2015.01.008 PubMed DOI
Steenackers B, De Cooman L, De Vos D (2015) Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review. Food Chem 172:742–756. https://doi.org/10.1016/j.foodchem.2014.09.139 PubMed DOI
Stevens JF, Taylor AW, Clawson JE, Deinzer ML (1999) Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem 47:2421–2428. https://doi.org/10.1021/jf990101k PubMed DOI
Suharja AAS, Henriksson A, Liu SQ (2014) Impact of Saccharomyces cerevisiae on viability of probiotic Lactobacillus rhamnosus in fermented milk under ambient conditions. J Food Process Preserv 38(1):326–337. https://doi.org/10.1111/j.1745-4549.2012.00780.x DOI
Suzuki K (2011) 125th anniversary review: microbiological instability of beer caused by spoilage bacteria. J I Brewing 117(2):131–155. https://doi.org/10.1002/j.2050-0416.2011.tb00454.x DOI
Taylor JRN, Dlamini BC, Kruger J (2013) 125th anniversary review: the science of the tropical cereals sorghum, maize and rice in relation to lager beer brewing. J I Brewing 119:1–14 DOI
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11:1591. https://doi.org/10.3390/nu11071591 DOI PMC
Toh M, Liu SQ (2017) Influence of commercial inactivated yeast derivatives on the survival of probiotic bacterium Lactobacillus rhamnosus HN001 in an acidic environment. AMB Express 7:156. https://doi.org/10.1186/s13568-017-0456-4 PubMed DOI PMC
Tonsmeire M (2014) American sour beers: innovative techniques for mixed fermentations. Brewers Publications, Boulder, CO
Troilo A, De Francesco G, Marconi O, Sileoni V, Turchetti B, Perretti G (2020) Low carbohydrate beers produced by a selected yeast strain from an alternative source. J Am Soc Brew Chem 78(1):80–88. https://doi.org/10.1080/03610470.2019.1682887 DOI
Van Landschoot A (2011) Gluten-free barley malt beers. Cerevisia 36(3):93–97. https://doi.org/10.1016/j.cervis.2011.09.001 DOI
Varela J, Varela C (2019) Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 56(4):88–96. https://doi.org/10.1016/j.copbio.2018.10.003 PubMed DOI
Vaughan-Martini A, Martini A (2011) Saccharomyces Meyen ex Reess (1870). In: Kurtzman CP, Fell JW, Boekhout T (ed) The yeasts: a taxonomic study, 5th edition, Chapter 61, pp. 733–746. https://doi.org/10.1016/B978-0-444-52149-1.00061-6
Wunderlich S, Zürcher A, Back W (2005) Enrichment of xanthohumol in the brewing process. Mol Nutr Food Res 49(9):874–881 DOI
Xu K, Guo M, Du J, Zhang ZA (2018) Cloudy wheat beer enriched with okra [Abelmoschus esculentus (L.) Moench]: effects on volatile compound and sensorial attributes. Int J Food Prop 21(1):289–300. https://doi.org/10.1080/10942912.2018.1454468
Yeo HQ, Liu SQ (2014) Review. An overview of selected specialty beers: developments, challenges and prospects. Int J Food Sci Technol 49:1607–1618. https://doi.org/10.1111/ijfs.12488 DOI
Zapata PJ, Martínez-Esplá A, Gironés-Vilaplana A, Santos-Lax D, Noguera-Artiaga L, Carbonell-Barrachina ÁA (2019) Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT - Food Sci Technol 103:139–146. https://doi.org/10.1016/j.lwt.2019.01.002 DOI
Zarnkow M, Kessler M, Burberg F, Kreisz S, Back W (2005) Gluten free beer from malted cereals and pseudocereals. Prague, Fachverlag Hans Carl, Nürnberg, CD ROM Contribution, Proc. Brew. Conv. Congr, p 104
Zarnkow M, Mauch A, Burberg F, Back W, Arendt EK, Kreisz S, Gastl M (2009) Proso millet (Panicum miliaceum L.) a sustainable raw material for the malting and brewing process: a review. Brew Sci 62(7/8):119–140
Zdaniewicz M, Satora P, Pater A, Bogacz S (2020) Low lactic acid-producing strain of Lachancea thermotolerans as a new starter for beer production. Biomolecules 10(2):256. https://doi.org/10.3390/biom10020256 DOI PMC
Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P (2019) Probiotics database: a potential source of fermented foods. Int J Food Prop 22(1):198–217. https://doi.org/10.1080/10942912.2019.1579737 DOI