Chicken-eaters and pork-eaters have different gut microbiota and tryptophan metabolites
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34099832
PubMed Central
PMC8184825
DOI
10.1038/s41598-021-91429-3
PII: 10.1038/s41598-021-91429-3
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika MeSH
- dieta * MeSH
- dospělí MeSH
- feces chemie mikrobiologie MeSH
- kur domácí MeSH
- kyseliny mastné těkavé metabolismus MeSH
- lidé MeSH
- maso * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prasata MeSH
- RNA ribozomální 16S genetika MeSH
- stravovací zvyklosti fyziologie MeSH
- střevní mikroflóra fyziologie MeSH
- tryptofan metabolismus MeSH
- vepřové maso * MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny mastné těkavé MeSH
- RNA ribozomální 16S MeSH
- tryptofan MeSH
This study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman's correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.
Zobrazit více v PubMed
Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J. Gastroenterol. 2016;22(40):8905–8909. doi: 10.3748/wjg.v22.i40.8905. PubMed DOI PMC
Zhang YB, Pan XF, Chen J, Cao A, Zhang YG, Xia L, Wang J, Li H, Liu G, Pan A. Combined lifestyle factors, incident cancer, and cancer mortality: A systematic review and meta-analysis of prospective cohort studies. Br. J. Cancer. 2020;122(7):1085–1093. doi: 10.1038/s41416-020-0741-x. PubMed DOI PMC
Clark MA, Springmann M, Hill J, Tilman D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. 2019;116(46):23357–23362. doi: 10.1073/pnas.1906908116. PubMed DOI PMC
Bender AE, Zia M. Meat quality and protein quality. Int. J. Food Sci. Technol. 1976;11(5):495–498. doi: 10.1111/j.1365-2621.1976.tb00749.x. DOI
Dehnhard M, Bernal-Barragan H, Claus R. Rapid and accurate high-performance liquid chromatographic method for the determination of 3-methylindole (skatole) in faeces of various species. J. Chromatogr. B. 1991;566:101–107. doi: 10.1016/0378-4347(91)80114-R. PubMed DOI
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 2017;8:1047. doi: 10.3389/fphys.2017.01047. PubMed DOI PMC
Ruangyuttikarn W, Appleton ML, Yost GS. Metabolism of 3-methylindole in human tissues. Drug Metab. Dispos. 1991;19:977–984. PubMed
Suyama Y, Hirayama C. Serum indole and skatole in patients with various liver diseases. Clin. Chim. Acta. 1988;176:203–206. doi: 10.1016/0009-8981(88)90208-2. PubMed DOI
Herter CA. The occurrence of skatole in the human intestine. J. Biol. Chem. 1908;4:101–109. doi: 10.1016/S0021-9258(17)45972-2. DOI
Riggio O, Mannaioni G, Ridola L, Angeloni S, Merli M, Caria V, Salvatori FM, Moroni F. Peripheral and splanchnic indole and oxindole levels in cirrhotic patients: A study on the pathophysiology of hepatic encephalopathy. Am. J. Gastroenterol. 2010;105:1374–1381. doi: 10.1038/ajg.2009.738. PubMed DOI
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC
Claus R, Losel D, Lacorn M, Mentschel J, Schenkel H. Effects of butyrate on apoptosis in the pig colon and its consequences for skatole formation and tissue accumulation. J. Anim. Sci. 2003;81:239–248. doi: 10.2527/2003.811239x. PubMed DOI
Shi J, Zhao D, Song S, Zhang M, Zamaratskaia G, Xu X, Zhou G, Li C. High meat protein high fat diet induced the dysbiosis of gut microbiota and tryptophan metabolism in Wistar rats. J. Agric. Food Chem. 2020;68(23):6333–6346. doi: 10.1021/acs.jafc.0c00245. PubMed DOI
Liu D, Wei Y, Liu X, Zhou Y, Jiang L, Yin J, Wang F, Hu Y, Nanjaraj Urs AN, Liu Y, et al. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. Commun. 2018;9(1):4224. doi: 10.1038/s41467-018-06627-x. PubMed DOI PMC
Pereira PMCC, Vicente AFRB. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013;93(3):586–592. doi: 10.1016/j.meatsci.2012.09.018. PubMed DOI
Hou Y, Wu G. Nutritionally essential amino acids. Adv. Nutr. 2018;9(6):849–851. doi: 10.1093/advances/nmy054. PubMed DOI PMC
Tang ZZ, Chen G, Hong Q, Huang S, Smith HM, Shah RD, Scholz M, Ferguson JF. Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Front. Genet. 2019;10:454. doi: 10.3389/fgene.2019.00454. PubMed DOI PMC
Canfora EE, Meex R, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019;15(5):261–273. doi: 10.1038/s41574-019-0156-z. PubMed DOI
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016;7:185. doi: 10.3389/fmicb.2016.00185. PubMed DOI PMC
Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen H, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9(1):3294. doi: 10.1038/s41467-018-05470-4. PubMed DOI PMC
Hendrikx T, Schnabl B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019;286(1):32–40. doi: 10.1111/joim.12892. PubMed DOI
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell Infect. Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013. PubMed DOI PMC
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385. doi: 10.1016/j.immuni.2013.08.003. PubMed DOI
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol. Neurobiol. 2017;54(6):4432–4451. doi: 10.1007/s12035-016-0004-2. PubMed DOI
Islam J, Sato S, Watanabe K, Watanabe T, Ardiansyah, Hirahara K, Aoyama Y, Tomita S, Aso H, Komai M, Shirakawa H. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J. Nutr. Biochem. 2017;42:43–50. doi: 10.1016/j.jnutbio.2016.12.019. PubMed DOI
Kurata K, Kawahara H, Nishimura K, et al. Skatole regulates intestinal epithelial cellular functions through activating aryl hydrocarbon receptors and p38. Biochem. Biophys. Res. Commun. 2019;510(4):649–655. doi: 10.1016/j.bbrc.2019.01.122. PubMed DOI
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 2010;107(33):14691–14696. doi: 10.1073/pnas.1005963107. PubMed DOI PMC
Pareek S, Kurakawa T, Das B, Motooka D, Nakaya S, Rongsen-Chandola T, Goyal N, Kayama H, Dodd D, Okumura R, et al. Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi. Npj Biofilms Microbiomes. 2019;5(1):37. doi: 10.1038/s41522-019-0110-9. PubMed DOI PMC
Xie YT, Zhou GH, Wang C, Xu XL, Li CB. Specific microbiota dynamically regulate the bidirectional gut−brain axis communications in mice fed meat protein diets. J. Agric. Food Chem. 2019;67:1003–1017. doi: 10.1021/acs.jafc.8b05654. PubMed DOI
Zhu Y, Shi X, Lin X, Ye K, Xu X, Li C, Zhou G. Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Front. Microbiol. 2017;8:1395. doi: 10.3389/fmicb.2017.01395. PubMed DOI PMC