Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34131156
PubMed Central
PMC8206353
DOI
10.1038/s41598-021-91653-x
PII: 10.1038/s41598-021-91653-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An important goal of sustainable agriculture is to maintain soil quality. Soil aggregation, which can serve as a measure of soil quality, plays an important role in maintaining soil structure, fertility, and stability. The process of soil aggregation can be affected through impacts on biotic and abiotic factors. Here, we tested whether soil management involving application of organic and mineral fertilizers could significantly improve soil aggregation and if variation among differently fertilized soils could be specifically attributed to a particular biotic and/or abiotic soil parameter. In a field experiment within Central Europe, we assessed stability of 1-2 mm soil aggregates together with other parameters of soil samples from differently fertilized soils. Application of compost and digestates increased stability of soil aggregates. Most of the variation in soil aggregation caused by different fertilizers was associated with soil organic carbon lability, occurrence of aromatic functional groups, and variations in abundance of eubacteria, total glomalins, concentrations of total S, N, C, and hot water extractable C. In summary, we have shown that application of compost and digestates improves stability of soil aggregates and that this is accompanied by increased soil fertility, decomposition resistance, and abundance of total glomalins and eubacteria. These probably play significant roles in increasing stability of soil aggregates.
Central Institute for Testing and Supervising in Agriculture Hroznová 63 Brno Czech Republic
Crop Research Institute Drnovská 507 Prague 6 Czech Republic
Zobrazit více v PubMed
Lal R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004;33:528–544. doi: 10.1007/s00267-003-9110-9. PubMed DOI
Six J, Elliot ET, Paustian K. Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under no-tillage agriculture. Soil Biol. Biochem. 2000;32:2099–2103. doi: 10.1016/S0038-0717(00)00179-6. DOI
Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018;9:1636. doi: 10.3389/fmicb.2018.01636. PubMed DOI PMC
Bronick CJ, Lal R. Soil structure and management: A review. Geoderma. 2005;124:3–22. doi: 10.1016/j.geoderma.2004.03.005. DOI
Reganold JP, Glover JD, Andrews PK, Hinman HR. Sustainability of three apple production systems. Nature. 2001;410:926–930. doi: 10.1038/35073574. PubMed DOI
Aziz I, Mahmood T, Islam KR. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 2013;131:28–35. doi: 10.1016/j.still.2013.03.002. DOI
Gautam A, Guzman J, Kovacs P, Kumar S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. 2021 doi: 10.1080/03650340.2021.1887480. DOI
Lin Y, Ye G, Liu D, Fan J, Ding W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019;134:187–196. doi: 10.1016/j.soilbio.2019.03.030. DOI
Six J, Bossuyt H, DeGryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004;79:7–31. doi: 10.1016/j.still.2004.03.008. DOI
Kumar R, Rawat KS, Singh J, Singh A, Rai A. Soil aggregation dynamics and carbon sequestration. J. Appl. Nat. Sci. 2013;5:250–267. doi: 10.31018/jans.v5i1.314. DOI
Lehmann A, Zheng WS, Rillig MC. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 2017;1:1828–1835. doi: 10.1038/s41559-017-0344-y. PubMed DOI PMC
Spatafora JW, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028–1046. doi: 10.3852/16-042. PubMed DOI PMC
Miller RM, Jastrow JD. Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD, editors. Arbuscular Mycorrhizas: Molecular Biology and Physiology. Kluwer; 2000. pp. 3–18.
Leifheit EE, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil. 2014;374:523–537. doi: 10.1007/s11104-013-1899-2. DOI
Lehmann A, Leifheit EF, Rillig MC. Mycorrhizas and Soil Aggregation. Elsevier; 2017.
Bethlenfalvay GJ, Cantrell IC, Mihara KL, Schreiner RP. Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soil. 1999;28:356–363. doi: 10.1007/s003740050504. DOI
Rashid MI, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016;183:26–41. doi: 10.1016/j.micres.2015.11.007. PubMed DOI
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J. Basic Microbiol. 2017;57:548–573. doi: 10.1002/jobm.201700046. PubMed DOI
Bomfeti CA, et al. Exopolysaccharides produced by the symbiotic nitrogen fixing bacteria of leguminosae. Rev. Bras. Cienc. Sol. 2011;35:657–671. doi: 10.1590/S0100-06832011000300001. DOI
Daynes CN, Zhang N, Saleeba JA, McGee PA. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. Biochem. 2012;48:151–161. doi: 10.1016/j.soilbio.2012.01.010. DOI
Bystrianský L, et al. Observations on two microbial life strategies in soil: Planktonic and biofilmforming microorganisms are separable. Soil Biol. Biochem. 2019;136:107535. doi: 10.1016/j.soilbio.2019.107535. DOI
Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004;84:355–363. doi: 10.4141/S04-003. DOI
Yang Y, Chuangjun H, Huang L, Ban Y, Tang M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE. 2017;12:e0182264. doi: 10.1371/journal.pone.0182264. PubMed DOI PMC
Baldock JA. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In: Huang PM, Bollag J-M, Senesi N, editors. Interactions Between Soil Particles and Microorganisms. Wiley; 2002.
Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982;33:141–163. doi: 10.1111/j.1365-2389.1982.tb01755.x. DOI
Martens DA. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 2000;29:723–727. doi: 10.2134/jeq2000.00472425002900030006x. DOI
Aiken GR, McKnight DM, Wershaw RL, MacCarthy P. Humic Substances in Soil, Sediment, and Water. Wiley; 1985.
Jandl R, Sletten RS. Mineralization of forest soil carbon: Interactions with metals. J. Plant Nutr. Soil Sci. 1999;162:623–629. doi: 10.1002/(SICI)1522-2624(199912)162:6<623::AID-JPLN623>3.0.CO;2-8. DOI
Bipfubusa M, Angers DA, N'Dayegamiye A, Antoun H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 2008;72:160–166. doi: 10.2136/sssaj2007.0055. DOI
Jiao Y, Whalen JK, Hendershot WH. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma. 2006;134:24–33. doi: 10.1016/j.geoderma.2005.08.012. DOI
Gielnik A, et al. Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminate. Sci. Total Environ. 2019;670:271–281. doi: 10.1016/j.scitotenv.2019.03.176. PubMed DOI
Erktan A, Rillig M, Carminati A, Jousset A, Scheu S. Fungal and bacterial predator-prey systems influence soil aggregate formation and stabilization. Geophys. Res. Abstracts. 2019;21:1–1.
Rillig MC, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015;205:1385–1388. doi: 10.1111/nph.13045. PubMed DOI
Kandeler E. Aggregate stability. In: Schiner F, Öhlinger R, Kandeler E, editors. Methods in Soil Biology. Springer; 1996.
Demyan MS, et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 2012;63(2):189–199. doi: 10.1111/j.1365-2389.2011.01420.x. DOI
Körschens M, Schulz E, Behm R. Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl. Mikrobiol. 1990;145:305–311. doi: 10.1016/S0232-4393(11)80045-4. DOI
Wright S, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996;161:575–586. doi: 10.1097/00010694-199609000-00003. DOI
Bradford MM. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Thonar C, Erb A, Jansa J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 2012;12:219–232. doi: 10.1111/j.1755-0998.2011.03086.x. PubMed DOI
Simon LM, Lalonde TD, Bruns TD. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 1992;58:291–295. doi: 10.1128/aem.58.1.291-295.1992. PubMed DOI PMC
Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008;65:339–349. doi: 10.1111/j.1574-6941.2008.00531.x. PubMed DOI
Stoeck T, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Ampe F, Omar NB, Moizan C, Wacher C, Guyot J-P. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 1999;65:5464–5473. doi: 10.1128/AEM.65.12.5464-5473.1999. PubMed DOI PMC
Muyzer G, de Wall EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59:695–700. doi: 10.1128/aem.59.3.695-700.1993. PubMed DOI PMC
Verhoeven KJF, Simonsen KL, McIntyre LM. Implementing false discovery rate control: Increasing your power. Oikos. 2005;108:643–647. doi: 10.1111/j.0030-1299.2005.13727.x. DOI
ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User's Guide: Software for Ordination (version 5.10). (Biometris, Wageningen University & Research, 2018).