Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi

. 2021 Jun 15 ; 11 (1) : 12548. [epub] 20210615

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34131156
Odkazy

PubMed 34131156
PubMed Central PMC8206353
DOI 10.1038/s41598-021-91653-x
PII: 10.1038/s41598-021-91653-x
Knihovny.cz E-zdroje

An important goal of sustainable agriculture is to maintain soil quality. Soil aggregation, which can serve as a measure of soil quality, plays an important role in maintaining soil structure, fertility, and stability. The process of soil aggregation can be affected through impacts on biotic and abiotic factors. Here, we tested whether soil management involving application of organic and mineral fertilizers could significantly improve soil aggregation and if variation among differently fertilized soils could be specifically attributed to a particular biotic and/or abiotic soil parameter. In a field experiment within Central Europe, we assessed stability of 1-2 mm soil aggregates together with other parameters of soil samples from differently fertilized soils. Application of compost and digestates increased stability of soil aggregates. Most of the variation in soil aggregation caused by different fertilizers was associated with soil organic carbon lability, occurrence of aromatic functional groups, and variations in abundance of eubacteria, total glomalins, concentrations of total S, N, C, and hot water extractable C. In summary, we have shown that application of compost and digestates improves stability of soil aggregates and that this is accompanied by increased soil fertility, decomposition resistance, and abundance of total glomalins and eubacteria. These probably play significant roles in increasing stability of soil aggregates.

Zobrazit více v PubMed

Lal R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004;33:528–544. doi: 10.1007/s00267-003-9110-9. PubMed DOI

Six J, Elliot ET, Paustian K. Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under no-tillage agriculture. Soil Biol. Biochem. 2000;32:2099–2103. doi: 10.1016/S0038-0717(00)00179-6. DOI

Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018;9:1636. doi: 10.3389/fmicb.2018.01636. PubMed DOI PMC

Bronick CJ, Lal R. Soil structure and management: A review. Geoderma. 2005;124:3–22. doi: 10.1016/j.geoderma.2004.03.005. DOI

Reganold JP, Glover JD, Andrews PK, Hinman HR. Sustainability of three apple production systems. Nature. 2001;410:926–930. doi: 10.1038/35073574. PubMed DOI

Aziz I, Mahmood T, Islam KR. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 2013;131:28–35. doi: 10.1016/j.still.2013.03.002. DOI

Gautam A, Guzman J, Kovacs P, Kumar S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. 2021 doi: 10.1080/03650340.2021.1887480. DOI

Lin Y, Ye G, Liu D, Fan J, Ding W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019;134:187–196. doi: 10.1016/j.soilbio.2019.03.030. DOI

Six J, Bossuyt H, DeGryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004;79:7–31. doi: 10.1016/j.still.2004.03.008. DOI

Kumar R, Rawat KS, Singh J, Singh A, Rai A. Soil aggregation dynamics and carbon sequestration. J. Appl. Nat. Sci. 2013;5:250–267. doi: 10.31018/jans.v5i1.314. DOI

Lehmann A, Zheng WS, Rillig MC. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 2017;1:1828–1835. doi: 10.1038/s41559-017-0344-y. PubMed DOI PMC

Spatafora JW, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028–1046. doi: 10.3852/16-042. PubMed DOI PMC

Miller RM, Jastrow JD. Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD, editors. Arbuscular Mycorrhizas: Molecular Biology and Physiology. Kluwer; 2000. pp. 3–18.

Leifheit EE, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil. 2014;374:523–537. doi: 10.1007/s11104-013-1899-2. DOI

Lehmann A, Leifheit EF, Rillig MC. Mycorrhizas and Soil Aggregation. Elsevier; 2017.

Bethlenfalvay GJ, Cantrell IC, Mihara KL, Schreiner RP. Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soil. 1999;28:356–363. doi: 10.1007/s003740050504. DOI

Rashid MI, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016;183:26–41. doi: 10.1016/j.micres.2015.11.007. PubMed DOI

Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J. Basic Microbiol. 2017;57:548–573. doi: 10.1002/jobm.201700046. PubMed DOI

Bomfeti CA, et al. Exopolysaccharides produced by the symbiotic nitrogen fixing bacteria of leguminosae. Rev. Bras. Cienc. Sol. 2011;35:657–671. doi: 10.1590/S0100-06832011000300001. DOI

Daynes CN, Zhang N, Saleeba JA, McGee PA. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. Biochem. 2012;48:151–161. doi: 10.1016/j.soilbio.2012.01.010. DOI

Bystrianský L, et al. Observations on two microbial life strategies in soil: Planktonic and biofilmforming microorganisms are separable. Soil Biol. Biochem. 2019;136:107535. doi: 10.1016/j.soilbio.2019.107535. DOI

Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004;84:355–363. doi: 10.4141/S04-003. DOI

Yang Y, Chuangjun H, Huang L, Ban Y, Tang M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE. 2017;12:e0182264. doi: 10.1371/journal.pone.0182264. PubMed DOI PMC

Baldock JA. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In: Huang PM, Bollag J-M, Senesi N, editors. Interactions Between Soil Particles and Microorganisms. Wiley; 2002.

Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982;33:141–163. doi: 10.1111/j.1365-2389.1982.tb01755.x. DOI

Martens DA. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 2000;29:723–727. doi: 10.2134/jeq2000.00472425002900030006x. DOI

Aiken GR, McKnight DM, Wershaw RL, MacCarthy P. Humic Substances in Soil, Sediment, and Water. Wiley; 1985.

Jandl R, Sletten RS. Mineralization of forest soil carbon: Interactions with metals. J. Plant Nutr. Soil Sci. 1999;162:623–629. doi: 10.1002/(SICI)1522-2624(199912)162:6<623::AID-JPLN623>3.0.CO;2-8. DOI

Bipfubusa M, Angers DA, N'Dayegamiye A, Antoun H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 2008;72:160–166. doi: 10.2136/sssaj2007.0055. DOI

Jiao Y, Whalen JK, Hendershot WH. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma. 2006;134:24–33. doi: 10.1016/j.geoderma.2005.08.012. DOI

Gielnik A, et al. Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminate. Sci. Total Environ. 2019;670:271–281. doi: 10.1016/j.scitotenv.2019.03.176. PubMed DOI

Erktan A, Rillig M, Carminati A, Jousset A, Scheu S. Fungal and bacterial predator-prey systems influence soil aggregate formation and stabilization. Geophys. Res. Abstracts. 2019;21:1–1.

Rillig MC, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015;205:1385–1388. doi: 10.1111/nph.13045. PubMed DOI

Kandeler E. Aggregate stability. In: Schiner F, Öhlinger R, Kandeler E, editors. Methods in Soil Biology. Springer; 1996.

Demyan MS, et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 2012;63(2):189–199. doi: 10.1111/j.1365-2389.2011.01420.x. DOI

Körschens M, Schulz E, Behm R. Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl. Mikrobiol. 1990;145:305–311. doi: 10.1016/S0232-4393(11)80045-4. DOI

Wright S, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996;161:575–586. doi: 10.1097/00010694-199609000-00003. DOI

Bradford MM. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Thonar C, Erb A, Jansa J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 2012;12:219–232. doi: 10.1111/j.1755-0998.2011.03086.x. PubMed DOI

Simon LM, Lalonde TD, Bruns TD. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 1992;58:291–295. doi: 10.1128/aem.58.1.291-295.1992. PubMed DOI PMC

Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008;65:339–349. doi: 10.1111/j.1574-6941.2008.00531.x. PubMed DOI

Stoeck T, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI

Ampe F, Omar NB, Moizan C, Wacher C, Guyot J-P. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 1999;65:5464–5473. doi: 10.1128/AEM.65.12.5464-5473.1999. PubMed DOI PMC

Muyzer G, de Wall EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59:695–700. doi: 10.1128/aem.59.3.695-700.1993. PubMed DOI PMC

Verhoeven KJF, Simonsen KL, McIntyre LM. Implementing false discovery rate control: Increasing your power. Oikos. 2005;108:643–647. doi: 10.1111/j.0030-1299.2005.13727.x. DOI

ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User's Guide: Software for Ordination (version 5.10). (Biometris, Wageningen University & Research, 2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...