Determination of acyclovir and its metabolite 9-carboxymethoxymethylguanide in human serum by ultra-high-performance liquid chromatography-tandem mass spectrometry
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34165890
DOI
10.1002/jssc.202100241
Knihovny.cz E-zdroje
- Klíčová slova
- 9-carboxymethoxymethylguanine, acyclovir, mass spectrometry,
- MeSH
- acetonitrily chemie MeSH
- acyklovir analýza MeSH
- chemické techniky analytické normy MeSH
- dospělí MeSH
- formiáty chemie MeSH
- guanin analogy a deriváty analýza MeSH
- hmotnostní spektrometrie MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- limita detekce MeSH
- mladiství MeSH
- mladý dospělý MeSH
- reprodukovatelnost výsledků MeSH
- řízení kvality MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 9-carboxymethoxymethylguanine MeSH Prohlížeč
- acetonitrile MeSH Prohlížeč
- acetonitrily MeSH
- acyklovir MeSH
- formiáty MeSH
- formic acid MeSH Prohlížeč
- guanin MeSH
A simple and rapid ultra-high-performance liquid chromatography coupled with mass spectrometry method was developed for acyclovir and its metabolite 9-carboxymethoxymethylguanine in human serum. After precipitation of serum samples with 0.1% formic acid in acetonitrile/methanol (40:60, v/v), components were separated on a Luna Omega C18 column (1.6 μm; 2.1 × 150 mm) at 40°C. Mobile phase A (2 mmol/L ammonium acetate, 0.1% formic acid in 5% acetonitrile, v/v/v) and mobile phase B (2 mmol/L ammonium acetate, 0.1% formic acid in 95% acetonitrile, v/v/v) were used for gradient elution. A linear calibration curve was obtained over the range of 0.05-50 mg/L, and the correlation coefficients were better than 0.999. The limit of quantitation was 0.05 mg/L for both analytes. The intra- and interday accuracy and precision at three concentration levels ranged between 1.6 and 13.3%, and recoveries were achieved with a range between 92.2 and 114.2%. This method was developed and validated for the therapeutic monitoring of acyclovir in patients.
Clinic of Infectious Medicine Faculty of Medicine University of Ostrava Ostrava Czech Republic
Clinic of Infectious Medicine University Hospital Ostrava Ostrava Czech Republic
Department of Clinical Pharmacology Faculty of Medicine University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Svensson J-O, Barkholt L, Säwe J. Determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine in serum and urine using solid-phase extraction and high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;690(1-2):363-366. http://doi.org/10.1016/s0378-4347(96)00424-0.
Bangaru RA, Bansal YK, Rao ARM, Gandhi TP. Rapid, simple and sensitive high-performance liquid chromatographic method for detection and determination of acyclovir in human plasma and its use in bioavailability studies. Journal of Chromatography B: Biomedical Sciences and Applications. 2000;739(2):231-237. http://doi.org/10.1016/s0378-4347(99)00488-0.
Fernández M, Sepúlveda J, Aránguiz T, von Plessing C. Technique validation by liquid chromatography for the determination of acyclovir in plasma. Journal of Chromatography B. 2003; 791(1-2):357-363. http://doi.org/10.1016/s1570-0232(03)00252-6.
Basavaiah K, Prameela HC, Chandrashekar U. Simple high-performance liquid chromatographic method for the determination of acyclovir in pharmaceuticals. Il Farmaco. 2003;58(12):1301-1306. http://doi.org/10.1016/s0014-827x(03)00157-5.
Hellden A, Odar-Cederlof I, Diener P, Barkholt L, Medin C, Svensson J-O, Sawe J, Stahle L. High serum concentrations of the acyclovir main metabolite 9-carboxymethoxymethylguanine in renal failure patients with acyclovir-related neuropsychiatric side effects: an observational study. Nephrology Dialysis Transplantation. 2003;18(6):1135-1141. http://doi.org/10.1093/ndt/gfg119.
Tadepalli SM, Quinn RP, Averett DR. A competitive enzyme-linked immunosorbent assay to quantitate acyclovir and BW B759U in human plasma and urine. Antimicrobial Agents and Chemotherapy. 1986;29(1):93-98. http://doi.org/10.1128/aac.29.1.93.
Laskin OL. Clinical pharmacokinetics of acyclovir. Clin Pharmacokinet. 1983;8:187-201.
Basavaiah K, Prameela HC. Simple spectrophotometric determination of acyclovir in bulk drug and formulations. Il Farmaco. 2002;57(6):443-449. http://doi.org/10.1016/s0014-827x(02)01237-5.
Swart KJ, Hundt HKL, Groenewald AM. Automated high-performance liquid chromatographic method for the determination of acyclovir in plasma. Journal of Chromatography A. 1994;663(1):65-69. http://doi.org/10.1016/0021-9673(94)80496-6.
Nebinger P, Koel M. Determination of acyclovir by ultrafiltration and high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1993;619(2):342-344. http://doi.org/10.1016/0378-4347(93)80128-q.
Teshima D, Otsubo K, Yoshida T, Itoh Y, Oishi R. A simple and simultaneous determination of acyclovir and ganciclovir in human plasma by high-performance liquid chromatography. Biomed Chromatogr. 2003;17:500-3.
Bahrami G, Mirzaeei S, Kiani A. Determination of acyclovir in human serum by high-performance liquid chromatography using liquid-liquid extraction and its application in pharmacokinetic studies. Journal of Chromatography B. 2005;816(1-2):327-331. http://doi.org/10.1016/j.jchromb.2004.11.038.
Boulieu R, Gallant C, Silberstein N. Determination of acyclovir in human plasma by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;693(1):233-236. http://doi.org/10.1016/s0378-4347(97)00037-6.
Peh K-K, Yuen K-H. Simple high-performance liquid chromatographic method for the determination of acyclovir in human plasma using fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;693(1):241-244. http://doi.org/10.1016/s0378-4347(97)00041-8.
Mascher H, Kikuta C, Metz R, Vergin H. New, high-sensitivity high-performance liquid chromatographic method for the determination of acyclovir in human plasma, using fluorometric detection. Journal of Chromatography B: Biomedical Sciences and Applications. 1992;583(1):122-127. http://doi.org/10.1016/0378-4347(92)80353-r.
Schimek D, Raml R, Francesconi KA, Bodenlenz M, Sinner F. Quantification of acyclovir in dermal interstitial fluid and human serum by ultra-high-performance liquid-high-resolution tandem mass spectrometry for topical bioequivalence evaluation. Biomedical Chromatography. 2018;32(6):e4194. http://doi.org/10.1002/bmc.4194.
Shao C. Quantification of Acyclovir in Human Plasma by Ultra-High-Performance Liquid Chromatography - Heated Electrospray Ionization - Tandem Mass Spectrometry for Bioequivalence Evaluation. Journal of Analytical & Bioanalytical Techniques. 2012;03(4): http://doi.org/10.4172/2155-9872.1000139.
Maes A, Garré B, Desmet N, van der Meulen K, Nauwynck H, De Backer P, Croubels S. Determination of acyclovir in horse plasma and body fluids by high-performance liquid chromatography combined with fluorescence detection and heated electrospray ionization tandem mass spectrometry. Biomedical Chromatography. 2009;23(2):132-140. http://doi.org/10.1002/bmc.1093.
Brown SD, White CA, Bartlett MG. Hydrophilic interaction liquid chromatography/electrospray mass spectrometry determination of acyclovir in pregnant rat plasma and tissues. Rapid Communications in Mass Spectrometry. 2002;16(19):1871-1876. http://doi.org/10.1002/rcm.792.
Adaway JE, Keevil BG. Therapeutic drug monitoring and LC-MS/MS. Journal of Chromatography B. 2012;883-884: 33-49. http://doi.org/10.1016/j.jchromb.2011.09.041.
Dao Y-j, Jiao Z, Zhong M-k. Simultaneous determination of aciclovir, ganciclovir, and penciclovir in human plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B. 2008;867(2):270-276. http://doi.org/10.1016/j.jchromb.2008.04.022.
Brown SD, White CA, Chu CK, Bartlett MG. Determination of acyclovir in maternal plasma, amniotic fluid, fetal and placental tissues by high-performance liquid chromatography. Journal of Chromatography B. 2002;772(2):327-334. http://doi.org/10.1016/s1570-0232(02)00120-4.
Hopfgartner G, Bourgogne E. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrometry Reviews. 2003;22(3):195-214. http://doi.org/10.1002/mas.10050.
U.S. Department of Health and Human Services, Food and Drug Administration. Bioanalytical method validation: guidance for industry. 2018. https://www.fda.gov/media/70858/download Accessed March 27, 2020
Taylor PJ. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38:328-34.
Côté C, Bergeron A, Mess J-N, Furtado M, Garofolo F. Matrix effect elimination during LC-MS/MS bioanalytical method development. Bioanalysis. 2009;1(7):1243-1257. http://doi.org/10.4155/bio.09.117.
Van Eeckhaut A, Lanckmans K, Sarre S, Smolders I, Michotte Y. Validation of bioanalytical LC-MS/MS assays: Evaluation of matrix effects. Journal of Chromatography B. 2009;877(23):2198-2207. http://doi.org/10.1016/j.jchromb.2009.01.003.
Holkar G, Daphal V, Yadav R, Rokade M. Method validation and quantitative determination of antiviral drug acyclovir in human plasma by a LCMS. Biological Forum - An International Journal. 2012;4(1):11-17.